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This article presents a simple method for constructing a singleton fuzzy model from a given set
of input output data. The tnethod consists of three computational steps: the initial phase,
the growth phase, and the optional refining phase. The universe of discourse and two linguistic
terms for each input variable and a rule base arc established during the initial phase.
Additional linguistic terms and rules are then appended sequentially during the growth
phase to modify the model structure and to elevate the performance. During the optional
refming phase the overall modelling performance can be further improved by adjusting the
singleton outputs of the rule set in the sense of least squares. The proposed identification
method can simultaneously provide an appropriate model structure and parameters without
any time-consuming optimisation. Several numerical examples demonstrate the effectiveness
of the proposed identification method,

Kvyword.s: huzzy sets: Fuzzy model; Indeniiticaiion

I. Introduction

System identification focuses tnaitily oti establishing
mathematical tnodels to represent system input-output
relationships, and selecting a specific model for the
class of models. Although numerical data are abundant
in most real world problems, the linguistic models are
the ones that are widely used for field practitioners.
This is because decisions are frequently based on quali-
tative judgement. Zadeh's fuzzy sets theory was thus
proposed lo enable individuals to describe and formu-
late the linguistic mental models apparent in daily life
behaviour (Zadeh 1965).

Developing a model from numerical data by fuzzy
technology has several advantages over the other
competing modelling technologies such as neural
networks: (I) The procedures are easily implemented;
(2) applying cumbersotne optimisation calculation is
unnecessary; (3) the structure of the model can be
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varied during construction; and (4) the resulting model
has more physical meanings than others.

Two types of fuzzy models are widely used, the
Mamdani fuzzy model and the Takagi-Sugeno Kang
(TSK) fuzzy model (Takagi and Sugeno 1985. Sugeno
and Kang 1986). Practitioners find the latter appealing
since the consequent parts of the IF-THEN rules in a
TSK fuzzy model are usually simpie linear functions
of input variables. Thus, the model output value is a
weighted average of those linear output equations
(Yager and Filev 1994), The singleton fuzzy tnodel is
[he simplest possible form of the TSK model. Though
a TSK fuzzy model with its many parts achieves the
same accuracy as models with singleton consequent out-
puts, the zero-order singleton fuzzy model is still worth
using due to its ease of interpretation. The singleton
fuzzy model can be viewed as a neural fuzzy system.
and the well-known back-propagation learning algo-
rithm can then be applied for the learning of model
parameters. In such a case, a priori knowledge can be
effectively incorporated in the initial parametric values
(Yager and Filev 1994). A learning by back-propagation
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algorithm for neural fuzzy models, which is an applica-
tion o( gradient descent rnethod with Gaussian-type
membership functions for antecedent fuzzy sets, is
discussed by Wang and Mendel (1992). However, the
convergence of such learning algorithm is questionable.
Some investigations (Higgins and Goodman 1994.
Nakoula ct at. 1996). while having the convenience
of the TSK model, present a constructing algorithm
without using optimisations. The modelling eflbrt can
thus be reduced dratnaticully. However, the discussions
are restricted in single-input/single-output cases.

In this article, we present a simple yet effective method
for generating a tnultiple-input/single-output singleton
fuzzy model from observed input/output data. The sin-
gleton fuzzy modei studied herein consists of triangular
fuzzy partitions for inputs and singletons for the
output. An explicit input/output mathematical relation
of the singleton fuzzy model is also derived. For a set
of observed input/output data pairs, the structure
and the parameters of an appropriate singleton fuzzy
model with required accuracy are detertiiined by a
series of algebraic computations. Notably, the proposed
method does not require any time-consuming optitrtisa-
tion procedure. Several numerical examples demonstrate
the effectiveness ofthe proposed model and the identifl-
cation method.

The retnainder of this paper is organised as follows.
In section 2, the explicit relation between input and
output is proposed. The procedure of constructing the
singleton-output type model is explained in section 3.
Several numerical examples are given step by step in
section 4 to detnonstrate the effectiveness of the pro-
posed model and the identification method. The
conclusion is in section 5.

2. The singleton fuzzy model

The following equation contains a typical singleton
fuzzy tnodel with p inputs and single output:

such as figure I and equation (2).

X — X
.(/-I)

v
7 -V

V - - ' - -V

— 'V,
m .f.v;"<.v<.r",

(2)

otherwise.

According to the membership function definition in
equation (2), two properties are simultaneously satisfied
(Ying 1994, Chen et at. 1998).

Property I: For any seatar inptit x e t \ . no more ttutn
two memherstilp vatites are nonzero.

Property 2: Ttie sum of nonzero nwmtiership vatites
Is iiuily.

For an input pattern (.YI,.V2. .v ,̂), the degree of

fulfilment of the rule indicated by the (/ , , ' : '/>).

(pii\.i2 ip)- is determined by the fuzzy intersection
(/-norm) ofthe relevant input membership values.

(3)

By generahsing to a/)-input-single-output system, the
corresponding model response is a weighted average of
singleton outputs of the ZL, x L2 x • • • x Lp rules:

V =

(4)

RUi, /: //,) : if .v, is V,"' and

and. . .and .\> is then y = /"''' '"' (1)

where .v, and r are the /th input variable and the output
variable, respectively; v'''-'- '''' is the singleton output
value ofthe rule /?(/|, i2....Jp)\ A '̂'' is the /Ĵ  linguistic
term of the input variable .v,; Vj = (A .̂", Â >' X*.^'^}
is the term set of .Y,; and L, is the number of linguistic
terms of the input variable .Ŷ . Each linguistic term is
described by a triangular inembcrship function A^/'(.Y),

( I I

(61

J4)

Figure 1. Illustration of linguistic terms A /̂'s and triangular
membership functions V,"(.v,)s for variable .Y,. where .vj"s arc
principle values (Z.j = 6).
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(5)

In this article, the algebraic product /-norm is chosen:

A". =

and

- A2

n)
10)

The explicit equation for the modet response can be
found.

The advantage of selecting the triangular tnctiibership
fttnction as figure I and the algebraic prodtict /-tiorni
is that the sutn of all 0 ( / | . / i , . . . . Ẑ ,) is unity for any
input patterns, i.e.

/ . I / • : ^

EE- /"/,) = 1 (7)

Thus.

(8)

Since Property 1 denotes at most two membership
values which are not zero for each element of the
itipttt data, no more than 2'' elements are non-zero in
ihe set O.

4' = {0(/|./: ip)\i,= 1 . 2 L , : y = l , 2 p]

Therefore, only 2'' rules at most contribute to the final
output for any input pattern.

Withottt a loss of generality, for a two-input-sing!e-
outpitt system (y' = 2) and the algebraic product
?-norm. the output is the weighted average of the
four rules (Chen ct at. 1998). Assume that

^\'] •• '21 • ll .\ \ lit A •

then 1- = 1

/ 2 + I) : if A| is A"*/''

then y — _

+ I./2) : if.vi is A^/'^

then r =

I . / 2 + 1) : ir.vi is Â i"

then V =

and A'2 is X

and .V2 is A

and .V2 is .

^" and X2 is

,.((i + Lf:+n

This kind expression of a fuzzy rule is
commonly referred to as inde.xed representation.
Another useful representation of fuzzy rules is sequen-
tial representation:

Rii) : tf A-| is Â ," and .V2 is A ,̂''

and . . . and .v. is AT*" then v = f"\ / = 1.2 /;
I p . .

(12)

Where .vJ'' e Vj is the linguistic term in which the /th
input variable .v, belongs to and y ' ' is the singleton
output valtte of the /th rule. For an «-rule fuzzy
tnodel. the output is represented as follows:

(13)

(9)

where 4>i^ is the degree of fulfilment of the Ath rule.

3. Rule generating procedure

The unknown parameters in a fuzzy model include
the number of rules and the number of linguistic temis
for each variable (the structural parumcters). the
locations of principal values .v/' s, the singleton output
of each rule y^'\ i.e. the input/output metiibership func-
tions (the tuning parameters) (Sugeno and Yasukawa
1993). Previous literature separates the identification of
the two types of parameters (Sugeno and Kang 1986).
In addition the structural identification method fre-
quently depends on the engitieerhig judgtnent or optimi-
zation (Abonyi el at. 1999).

Owing to the above circumstances, a sirnple yet effec-
tive identification method is presented to detertnine both
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model strueturc atid input/output tnembership functions
in an integrated procedure. The proposed method
eonsists of three computational steps: the initial phase,
the growth phase, and the optional refining phase.
Figure 2 illustrates the procedure. Details of the three
identificalion steps are provided in the following.

3.1. Initial phase

The simplest fuzzy model is that two linguistic tertiis
(e.g., {Large, Small} or JHigh, Low}) are assigned to
each input variable. The universes of discourse for the
input variables are constructed by these linguistic
terms and all {m) data points are enclosed by the uni-
verse of discourse.

This step focuses on building the initial model with
two linguistic terms for each input variable, 2'' rules
for/?-input-single-output system will be generated.

1. Find the universe of discourse f,', for the /th input
variable, .\j.

where

l = |.Vy|A-, e [.Yy. min. -V,. ny^y,]] ,/ - 1 ,2

n - m i n | , \ 7 , i . A 7 . 2 v , , ; , , |

2. Construct two linguistic terms, Â '* and A ŷ''.
with principal values at .v̂ .nim i»nd .\v,niu\-
respectively. Figure 3 depicts the membership
functions for A^" and A^̂ ''. Then ali data points are
located in the universe of discourse U, where
U= U] X U2X • • • X Up. The p input variables, each
with two linguistic terms, can establish 2'' rules with
the following antecedent part, where the consequenee
part for each rule can be determined as shown in the
next step.

If

If

,vi is and

and

a n d . , , and

a n d . . , a n d

Figure 2. Rule generating procedure.

A ,̂ is A]," then

,V/, i s then v =
- ' = > • ' -

If .Y| is and ,v: is and . . . and x,, is Al-' then v ^
,(2,2 2} ,(2'')

Determine the consequence part for each of the 2''
rules by the nearest data point or the refining phase
(see section 3.3). Although simpler, the nearest data
point method may not be aecurate enough. For

. (1 .1 . , (or r ) is the rule output to beinstance, i
obtained. If one input pattern (AI/. A2./
the training data set is the nearest point to

in

mum, the output measurement r/ corresponding to

(•V|./, ,Y2./ Xpj) is set to be the singleton output of
the rule. That is.

If A-| is y , " and .Y: is A -̂," a n d . . . and .Ŷ , is Â '̂̂

then v = v"-' " = y " = v/

(14)

For the same reason, all the outputs of rules v"*.
/ = 2 , 3 , . . . , 2'' are also determined.
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C2)

Figure 3. Membership functions for each inpul variable in
the initial phase.

Figure 4. Membership functions for each input variable in
Ihe growth phase. —: Membership functions of two linguistic
terms. : membership functions of three linguistic terms.

3.2. Growth phase

Additional linguistic terms and inference rules shotild be
appended on the existing fuzzy model if the latter cannot
alTord the fequired accuracy for modelling sampled
data. In this subsection, we propose a method to con-
struct more rules to enhance the performance of the
model. The underlying concept of this method is. instead
of inserting new terms to all inputs, adding a linguistic
term to the most eiVective input variable on the point
with the maximum modelling error. Some inference
rules are thus constructed due to this new fuzzy term
and then inserted into the existing fuzzy model to elim-
inate the error of that point. The proposed rule-inserting
algorithtn can effectively avoid suffering from the curse
of dimensionality. The algorithm can also be modified
to insert new terms to the most important inputs only.
The procedure is as follows.

1. Evaluate the model input for all sampling data
points. The point with maximum error between
the measurement and model is found, denoted by

(••\'l.)'--\'2.>' -VK' -^V^-

2. Add a linguistic term for .Y) with a principal value
.V|.j,. The membership Inunction of each linguistic
term for .V| is changed, such as figure 4. However,
the number of linguistic terms for the other input
variables still remain unchanged. Restated, the
number of rules increases from L| x L2 x • • • x Z.,, to
(L] + \) X Lix • • • X L,,. Determine the consequence
part by the previous method in section 3.1.

3. Evaluate the sum of squared errors
4. Repeat steps 2 and 3 for .V2..V:i, v,,. respectively.

By doing so. the sum of squared errors
SSE2. SSEy , SSEi, are obtained.

5. Eind the minimum of {SSE{. SSE^ SSE^,), SSE,,
and the new linguistic term will be added in the .Y,-
direction. Therefore, L, adds one and other L/^^jS
are kept.

3.3. Refining phase

In addition to the nearest point method, the least
squares method can more accurately adjust the singleton
output values, while keeping the same input membership
functions from tbe growth phase, to beip the model
reach optimal performance. Use the representation
equation (12) and equation (13) for the kih sampling
point.

(15)

Collect all m sampling data.

(O22

L(o,,,\ (v,,,,,J

(16)

or.

Y = a>A (17)

Thus, the least squares soltition of A which allows the
performance index J— X!i,"=i O'A ~ .h)' to reach its
minimum is the optimal solution of the principal
values. Let the observed Y = [ I'l v: • • • Vm]^ then
(Hsia 1979)

(18)

3.4. Stopping criteria

It is a trade-off" problem between model complexity and
accuracy. Two criteria for stopping the model building
procedure are considered in the following. Both criteria
can be used to stop the model identification procedure
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to avert as well as avoid the complex model structure
and obtain an accurate tnodel.

[. Maximum number of input tinguistie terms. A realistic
model should not consist of too many linguistic
terms for a specific input. The maximum number of
linguistic terms of each variable can be prcdefiticd.
This criterioti can prevetit the fuzzy model becoming
a large nutnber of rules. Restated, the criterion
makes the model hold ati acceptable complexity.
However, the accuracy of the obtained model is not
ensured.

2. Mean of squared errors. This index is a common used
criterion to specify the model accuracy.

'"
(19)

tt

Although the MSE index can make the model accurate
enough, the model may become extremely complex.

4. Numerical examples

Several numerical examples are given step by step in the
following to demonstrate the elTectiveness of the
proposed model and the identification method.

Example 1: Consider a nonlinear function with two
inputs and single output, refer to figure 5.

2 G [ 0 . 5 ] (20)

4 ^^l^^ 4

Figure 5. Output surface of Example I.

0.0051.T;

4.9864

Figure 6. Input membership functions and singleton fuzzy rule outputs for the initial phase of ExampL' 1.
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Table 1. Principal values foi- \\. xz and singleton oLitputs v
Example I: (a) initial phase; (h) and (c) growth phase.

MSI

MSE

(al

.V ;

MSE

lb)

0,0051

4.9864

r 0.0141

0.0141

1.884

0.SI2

0 I'-U

* i

1.6067

4.9W0

0.926

0.014

4.99W

0.0051

0.0051

O.S727

1.S19K

4.9S64

.K84

.142

1.196

0.363

0.175

0.0124

•Vl

0.0141 1.6067

I.NK4

1.304

1.142

o.si:

1.474

0.861

0.644

0.406

1.064

0.563

0.363

0.175

0.0O45S

0.926

0.199

0.014

4.9990

0.926

0.399

0.199

0.014

1.000 inputs/outputs of data arc randomly distributed
on the considered domain.

I. Iniiial phase. The upper and lower bounds for the
two inputs. -Yi.î in. -Vi.ma.K- ^l.^^^^n^ ^^d -Y2,m;i.x are initi-
ally found. Two linguistic terms are defined for .V|
and .V2. The singleton outputs for the rules are
obtained, such as figure 6 and table l{a). Notably,
the output surface of the resulting fuzzy model is
the weighted average of the four rule's consequent

• outputs, i.e.

0.926(1 -

+ 0 . 0 1 4 ( 1 -Xx)(\ -

where

A ' - A

A ; ' - x->

4.9990
4.9990-0.0141

4.9864 - A:
4.9864-0.0051

0.0051

.̂ ;

Figure 7. lnpul membership functions and singleton Tuzzy rule outputs ibr the growth phase of Example 1(1).
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0.0141 0.8136 1,6067 4,9990

Figure 8. Input membership functions and singleton fuzzy rule outputs for the growth phase for Example 1(11).

2. Grinvih phase. The maximum discrepancy between
the model outputs and the observations is found.
Additional linguistic terms are appended for both
variables to eliminate the maximum error. Figure 7
and figure 8 display some growth processes. Table I
lists some resulting models.

3. Refining phase. If the singleton otitputs are deter-
mined by the refining phase, the mean of squared
errors will be smaller than the rules generated by
the nearest point method, as illustrated in table 2.

Example 2: The Mackey-Glass chaotic time series
(Nakoula ei al. 1996. Wang and Mendel 1992)
Mackey-Glass delay dilTcrcntial equation is used as a
benchmark problem in the neural network and fuzzy
modelling communities:

.v(0)= i.2

.v(/) = 0 V/ < 0

(21

The proposed model is a 4-input-single-output
system. The inputs are .V| = x{t — 18). x^ = .y{i — 12),
A-;, = .v(/ - 6). .V4 = .x{i). The output is _v = .v(/ + 6)
{Wang and Mendel 1992). Kigure 9 depicts one set of
time series with 1800 samples. In this modelling
problem, the sampling data in / G [1000. 1500] arc used
for identification, and data in ! e [1500. 1800] arc used
for testing the accuracy of the resulting model.
Ficures 10 and II summarise the results.

5. Conclusions

This article presents a simple algorithm for identifying
a singleton fuzzy model. The singleton fuzzy model is
advantageous in that the input-output relationship
is much easier than the linguistic fuzzy model, and can
be derived explicitly. For a set of observed patterns,
the simplest possible fuzzy model is constructed in
three steps: the initial phase, the growth phase, and
the optional refining phase.
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Table 2. Refined singleton outputs r of Example 1: (a) initial
rules; (b) and (c) growth phase.

(a) V,

Training Testing

0.0141 4,9990

0.0051
4,9864

1,179
0.355

0.390
-0.319

MSE

(b)

y 0,0141

0,0315

Vl

1.6067 4.9990

-V2 0.0051
1.8198
4.9864

1,722
0.978
0,769

0,975
0.236
0.085

0,858
0.120

- 0,034

MSE

(c)

r 0,0141 0.8136

0.00242

V|

L6067 4,9990

0.0051
0.8727
1.8198
4.9864

1,911
L323
1,109
0,898

1,357
0,835
0,560
0.395

1,070
0,518
0,280
0.096

0.917
0.381
0.125

-0.055

MSE 0.00074

600
lime

1200 1800

Figure 9, Mackey -Glass chaotic time series.

The universe of discourse of each input variable is
determined in the initial phase. Using the minitnum
and maximum of the input variables to obtain the uni-
verse of discourse can ensure that all the training data
points are in the universe. More hnguistic terms and
rules are appended in the growth phase to modify
the model structure and enhance the performance. In
addition, an alternative method based on the least
squares method to evaluate the singleton outputs is
proposed in the optional rclining phase. This method
provides a better model performance.

Compared to other fuzzy modelling methods, such as
learning by back-propagation, the proposed method
does not require time-consuming optimisation techni-
ques to identify the rnodel structure and to estimate
the rnodel parameters. Although the principal values

lOOO 13(K)
time

(a) 2'* rules

Training

1800

Testing

1000 1300 ,
time

(b)3-'rules

Trainins"

1600 1800

Testing

1000 1300
tune

(c) 4'* rules

160(1 1800

Figure 10, Modelling Mackey-Glass time series.

for input variables are not optimal, the least squares
rnethod gives optimal performance under this
model structure, and computational time is reduced.
Two criteria are suggested to stop the identification
proeess. The maximutn nutnber of inptit linguistic
terms makes the rule base simpler, and the minitnum
sum of squared errors guarantees an accurate model.

The proposed method is highly promising for
engineering applications since one can proceed with
the model identification without any searching
procedure and thus no numerical converging probletn.
Two numerical examples demonstrate the feasibility of
the proposed method in terms of building the singleton
fuzzy model from data.
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Figure 11, Input membership functions of modelling Mackey-Glass time series.
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