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This article presents a simple method for constructing a singleton fuzzy model from a given set
of input/output data. The method consists of three computational steps: the initial phase,
the growth phase, and the optional refining phase. The universe of discourse and two linguistic
terms for each input variable and a rule base are established during the initial phase.
Additional linguistic terms and rules are then appended sequentially during the growth
phase to modify the model structure and to elevate the performance. During the optional
refining phase the overall modelling performance can be further improved by adjusting the
singleton outputs of the rule set in the sense of least squares. The proposed identification
method can simultaneously provide an appropriate model structure and parameters without
any time-consuming optimisation. Several numerical examples demonstrate the effectiveness

of the proposed identification method.
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1. Introduction

System identification focuses mainly on establishing
mathematical models to represent system input-output
relationships. and selecting a specific model for the
class of models. Although numerical data are abundant
in most real world problems, the linguistic models are
the ones that are widely used for field practitioners.
This is because decisions are frequently based on quali-
tative judgement. Zadeh’s fuzzy sets theory was thus
proposed to enable individuals to describe and formu-
late the Iinguistic mental models apparent in daily life
behaviour (Zadeh 1965).

Developing a model from numerical data by fuzzy
technology has several advantages over the other
competing modelling technologies such as neural
networks: (1) The procedures are easily implemented:
(2) applying cumbersome optimisation calculation is
unnecessary; (3) the structure of the model can be
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varied during construction: and (4) the resulting model
has more physical meanings than others.

Two types of fuzzy models are widely used. the
Mamdani fuzzy model and the Takagi-Sugeno-Kang
(TSK) fuzzy model (Takagi and Sugeno 1985, Sugeno
and Kang 1986). Practitioners find the latter appealing
since the consequent parts of the IF-THEN rules in a
TSK fuzzy model are usually simple linear functions
of input variables. Thus, the model output value is a
weighted average of those linear output equations
(Yager and Filev 1994). The singleton fuzzy model is
the simplest possible form of the TSK model. Though
a TSK fuzzy model with its many parts achieves the
same accuracy as models with singleton consequent out-
puts, the zero-order singleton fuzzy model is still worth
using due to its ease of interpretation. The singleton
fuzzy model can be viewed as a neural fuzzy system,
and the well-known back-propagation learning algo-
rithm can then be applied for the learning of model
parameters. In such a case, a priori knowledge can be
effectively incorporated in the initial parametric values
(Yager and Filev 1994). A learning by back-propagation
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algorithm for neural fuzzy models, which is an applica-
tion of gradient descent method with Gaussian-type
membership functions for antecedent fuzzy sets, is
discussed by Wang and Mendel (1992). However, the
convergence of such learning algorithm is questionable.
Some investigations (Higgins and Goodman 1994,
Nakoula er al. 1996). while having the convenience
of the TSK model, present a constructing algorithm
without using optimisations. The modelling effort can
thus be reduced dramatically. However, the discussions
are restricted in single-input/single-output cases.

In this article, we present a simple yet effective method
for generating a multiple-input/single-output singleton
fuzzy model from observed input/output data. The sin-
gleton fuzzy model studied herein consists of triangular
fuzzy partitions for inputs and singletons for the
output. An explicit input/output mathematical relation
of the singleton fuzzy model is also derived. For a set
of observed input/output data pairs, the structure
and the parameters of an appropriate singleton fuzzy
model with required accuracy are determined by a
series of algebraic computations. Notably. the proposed
method does not require any time-consuming optimisa-
tion procedure. Several numerical examples demonstrate
the effectiveness of the proposed model and the identifi-
cation method.

The remainder of this paper 1s organised as follows.
In section 2. the explicit relation between input and
output is proposed. The procedure of constructing the
singleton-output type model is explained in section 3.
Several numerical examples are given step by step in
section 4 to demonstrate the effectiveness of the pro-
posed model and the identification method. The
conclusion is in section 5.

2. The singleton fuzzy model

The following equation contains a typical singleton
fuzzy model with p inputs and single output:

R(iy iz, .. dp) 1 if 2y is X and  xp is X}?

and...and x,is X{»' then y=)Uh-% (1)

where x; and ) are the jth input variable and the output
variable, respectively; y{i-2i) jg the singleton output
value of the rule R(i\, i>.....0)): X{ is the :4”’ linguistic
term of the input variable x;; V; = Y‘” X( : X(L’
is the term set of x;; and L; is the numbcr 01" [mgmst:c
terms of the input variable x;. Each linguistic term is
described by a triangular membership function X:”(.\').

such as figure | and equation (2).

(i=1)
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W+ _m "N =XEX
X; X
0 otherwise.

According to the membership function definition in
equation (2), two properties are simultaneously satisfied
(Ying 1994, Chen er al. 1998).

Property 1:  For any scalar input x € U,. no more than
two membership values are nonzero.

Property 2:  The sum of nonzero membership values
is unity.

For an input pattern (x,xs,..... x,). the degree of
fulfilment of the rule indicated by the (ij,is.....0,)
Bistasivas ip). is determined by the fuzzy intersection
(--norm) of the relevant input membership values.

irs iz, i) = T( X x0), X2 (x2), X)) 3)

By generalising to a p-input-single-output system, the
corresponding model response is a weighted average of
singleton outputs of the L; x L, x --- x L, rules:

L 2 N (i1 240 )
y =1 I _I Zf =1 (j5 “ h """ rf’)-l' I g
lefl Zh 1 Z,’,,:I (,1)(11,!:.....1'_,,]
(4
L L L
= § i+ o SR
=1 iz=1 ip=1
()] (2) 3) (4 (5) (6)
X X X, X X X
J iA )
(1 (2 3) 4 (5) (6)
X; X 5 X X; xj

Figure 1. Ilustration of linguistic terms X([ s and triangular
membership functions F (x;)s for variable x;, where \“’5 are

principle values (L;=6).
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1s that,

dliy.ias. .. 0p)
Z._IZr—I anlqb(fl'i: ----- fﬂ)

7, (AT PR ip) =

Plir in, ... 0p) = ]—[X“f(\) (6)

The advantage of selecting the triangular membership
function as figure 1 and the algebraic product -norm
is that the sum of all @(i.7s..... i) 18 unity for any
input patterns, i.e.

Ly L Ly
ZZ Zcﬁ(u i2 ip)=1 (7)
=l ia= ip=1
Thus,
Lt)(f-],ij ..... fp) = G’)(fl.il ----- fp) (8)

Since Property 1 denotes at most two membership
values which are not zero for each element of the
input data, no more than 2” elements are non-zero in
the set &.

= (@1, e ... i)l = 1,2,...
Therefore, only 27 rules at most contribute to the final
output for any input pattern.

Without a loss of generality, for a two-input-single-
output system (p=2) and the algebraic product
r-norm, the output is the weighted average of the

four rules (Chen er al. 1998). Assume that
X = [-\-(|,I) \l].'|+l]].—\_2 c [.\'IZJI'..\'E;I+I]]

R, i2) : if xy is X{,i" and  x» is X‘:'l"'
then y = pti-i2)
Riiy,ia4+1): if xpis X and  xs is X9
then y = yt-f+l)
R+ 1,2) ;i s X" and x is X4

then y= lm+l ia)
o 1 . Al
if xy is X't and  xp is X

then 1 = plithi+h

Riy+1,ib+1):

9)

Define

\(.l|+l) X1

i) - 1 - "

X( (x1) = LD _ (i) and

X =¥
(i241)

. X5 =X

= X'(xy) = T (10)
ki -\.2. — .\.1,

The explicit equation for the model response can be
found,

\_X|X'!1[”']+;t'(1— )N Aiy i+1)

+(1=xDxp" = (- -x
[HX+ 2001 = X2+ (1= X)X+ (1 = X)(1 - )
= X Xy 4 X (1 = Xyt 4 (1 = X)Xyl
F(1=&)(1 = Xy)pli+leiatD) (1)

) Aii+1.6+1)

This kind expression of a fuzzy rule is
commonly referred to as indexed representation.
Another useful representation of fuzzy rules is sequen-
tial representation:

R(i): if x; is X‘l” and x> is X‘;’

and...and x, is X;f' then y=y¥, I=12....0

Where \“' € V; is the linguistic term in which the jth
input varmble x; belongs to and " is the singleton
output value of the ith rule. For an n-rule fuzzy
model, the output is represented as follows:

n
(k) ¢k
y=) oy, k== (13)
; ZJ::| Px

where ¢ is the degree of fulfilment of the kth rule.

3. Rule generating procedure

The unknown parameters in a fuzzy model include
the number of rules and the number of linguistic terms
for each variable (the slructural parameters), the
locations of principal values \ ’s, the singleton output
of each rule y'", i.e. the mput‘output membership func-
tions (the tuning parameters) (Sugeno and Yasukawa
1993). Previous literature separates the identification of
the two types of parameters (Sugeno and Kang 1986).
In addition the structural identification method fre-
quently depends on the engineering judgment or optimi-
zation (Abonyi et al. 1999).

Owing to the above circumstances, a simple yet effec-
tive identification method is presented to determine both
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model structure and input/output membership functions
in an integrated procedure. The proposed method
consists of three computational steps: the initial phase,
the growth phase, and the optional refining phase.
Figure 2 illustrates the procedure. Details of the three
identification steps are provided in the following.

3.1. Initial phase

The simplest fuzzy model is that two linguistic terms
(e.g., {Large, Small} or {High, Low}) are assigned to
each input variable. The universes of discourse for the
input variables are constructed by these linguistic
terms and all (m) data points are enclosed by the uni-
verse of discourse.

This step focuses on building the initial model with
two linguistic terms for each input variable. 27 rules
for p-input-single-output system will be generated.

I. Find the universe of discourse U; for the jth input
variable, x;.

Uf [-\-fl-\-f € [\j mins X, mu‘c” F=lady s P
where: X pin =minfoe(, 3 2, s )

X, e = TAX{ X 156,25 o Xpm )

2. Construct two linguistic terms, X{,-” and X}:’.

with  principal  values at  xjnin  and X,
respectively. Figure 3 depicts the membership
functions for X" and X*'. Then all data points are
located in the universe of discourse U, where
U=U; xUyx -+ x U, The p input variables, each
with two linguistic terms, can establish 2 rules with
the following antecedent part, where the consequence
part for each rule can be determined as shown in the

next step.

If xis X‘ln and x> is Xg” and..
If xis X" and x;is X‘zl’ and..

If x;is X‘Iz) and x> is X‘f’ and...

3. Determine the consequence part for each of the 2
rules by the nearest data point or the refining phase
(see section 3.3). Although simpler, the nearest data
point method may not be accurate enough. For
instance, »""" (or 'V} is the rule output to be
obtained. If one input pattern (X, Xa4....X,,) in
the training data set is the nearest point to (X| min-.
Xy ey Rty D% ¥ b= Biwin) 18 muini-
mum, the output measurement y; corresponding to

I/O Data Set )

Initial Phase

Pass
MSE Check ?

No

Growth Phase

| Refining Phase |
L (optional) o

Max #
Linguistic Terms
or Rules

Yes

Pass
MSE Check ?

Yo
C Final Fuzzy Model )

Figure 2. Rule generating procedure.

aIld -\-.n iS X},l] then B

.and  x, is X1pn then 3= (Il = 4
and x5 X@ then p=pihlend =@

]
13

2 o
2) _ _l-’t' )

(X1 X240 ... X, ) is set to be the singleton output of
the rule. That is,
If xis X" and xpis XY and...and x,is XV

S | T

then y=3 P

(14)

For the same reason, all the outputs of rules 3,

i=2,3,...,2° are also determined.
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(n (2)

) (2
x; X;

Figure 3. Membership functions for each input variable in
the initial phase.

(h 2) (3)

(3)
"f

Figure 4. Membership functions for each input variable in
the growth phase. ---: Membership functions of two linguistic
terms, —: membership functions of three linguistic terms.

3.2. Growth phase

Additional linguistic terms and inference rules should be
appended on the existing fuzzy model if the latter cannot
afford the required accuracy for modelling sampled
data. In this subsection, we propose a method to con-
struct more rules to enhance the performance of the
model. The underlying concept of this method is, instead
of inserting new terms to all inputs. adding a linguistic
term to the most effective input variable on the point
with the maximum modelling error. Some inference
rules are thus constructed due to this new fuzzy term
and then inserted into the existing fuzzy model to elim-
inate the error of that point. The proposed rule-inserting
algorithm can effectively avoid suffering from the curse
of dimensionality. The algorithm can also be modified
to insert new terms to the most important inputs only.
The procedure is as follows.

I. Evaluate the model input for all sampling data
points. The point with maximum error between
the measurement and model is found, denoted by
R, yoy iy w:v ¢ Hipa Vi)

Add a linguistic term for x; with a principal value
X1y. The membership function of each linguistic
term for x; is changed, such as figure 4. However,
the number of linguistic terms for the other input
variables still remain unchanged. Restated, the
number of rules increases from Ly x Ly x ---x L, to
(Ly+1)x Lyx---x L, Determine the consequence
part by the previous method in section 3.1.

o]

3. Evaluate the sum of squared errors SSE).

4. Repeat steps 2 and 3 for x5, xa3,..... Y, respectively.
By doing so, the sum of squared errors
S Es SSEx, .o SSE, are obtained.

5. Find the minimum of {SSE,, SSE>,...,SSE,}, SSE;,
and the new linguistic term will be added in the Xx;
direction. Therefore, L; adds one and other L; s
are kept.

3.3. Refining phase

In addition to the nearest point method, the least
squares method can more accurately adjust the singleton
output values, while keeping the same input membership
functions from the growth phase, to help the model
reach optimal performance. Use the representation
equation (12) and equation (13) for the kth sampling
point,

n
=Y o =lon wn .. wowl| (15)
=l

Collect all m sampling data,

Y W) w32 o Wiy )
i wy wn e ooy || PP
= (16)
) - ()
L.Vm | Wyl Wm2 Wpp 4 | V7]
or,
Y = DA (17

Thus, the least squares solution of A which allows the
performance index J=Y7", (3 — )’ to reach its
minimum is the optimal solution of the principal
values. Let the observed Y =[] 12 )',,,]T. then
(Hsia 1979)

A= (@ @)'oY (18)

3.4. Stopping criteria

It is a trade-off problem between model complexity and
accuracy. Two criteria for stopping the model building
procedure are considered in the following. Both criteria
can be used to stop the model identification procedure
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to avert as well as avoid the complex model structure

and obtain an accurate model.

1. Maximum number of input linguistic terms. A realistic
model should not consist of too many linguistic
terms for a specific input. The maximum number of
linguistic terms of each variable can be predefined.
This criterion can prevent the fuzzy model becoming
a large number of rules. Restated. the criterion
makes the model hold an acceptable complexity.
However, the accuracy of the obtained model is not

ensured.

(0]

criterion to specify the model accuracy.

m

1. 3
MSE—Egm—m

. Mean of squared errors. This index is a common used

(19)

Although the MSE index can make the model accurate
enough, the model may become extremely complex.

e

4. Numerical examples

Several numerical

examples are given step by step in the
following to demonstrate the effectiveness of the

proposed model and the identification method.

Example 1:
inputs and single

y=e

AL o o=

Consider a nonlinear function with two

output, refer to figure 5.

xp,x2 € [0, 5]

Figure 5.

Output surface of Example 1.

0.0051%}

xe

49864,

o

Figure 6.

o
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@
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Input membership functions and singleton fuzzy rule outputs for the initial phase of Example 1.
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Principal values for xy. x> and singleton outputs v of

Example 1: (a) initial phase: (b) and (¢) growth phase.

(a)

X

1.000 inputs/outputs of data are randomly distributed
on the considered domain.

1. Initial phase. The upper and lower bounds for the
two iI‘lplliS. X1mins X1maxs X2.mins and X2 max ale initi-

¥y 0.0141 4.9990 ) axs
ally found. Two linguistic terms are defined for x,
L 22;’;" (l):?f 8'3}2 and x,. The singleton outputs for the rules are
MSE 0.294 obtained. such as figure 6 and table 1(a). Notably,
- the output surface of the resulting fuzzy model is
X . .
: the weighted average of the four rule’s consequent
¥ 0.0141 1.6067 4.9990 * outputs, i.e.
X 0.0051 1.884 1.196 0.926
18198 1142 0.363 0.199 v = 1.884X, X3 + 0.812X(1 — X2) + 0.926(1 — X)) X>
49864 0.812 0.175 0.014
MSE 0.0124 +0.014(1 — X )(1 — X3)
(c) Xy
where
¥ 0.0141 0.8136 1.6067 4.9990
y e -
X 0.0051 1.884 1.474 1.064 0.926 X =¥y =0 "X 4.9990 — x,
0.8727 1.304 0.861 0.563 0.399 1 A2 49990 — 0.0141
1.8198 1142 0.644 0.363 0.199 L
- 4.9864 0.812 0.406 e 0.175 0.014 X = ¥V () = _\-‘3"’ —x2 49864 — x;
' - . 2T D _ D T 4.9864 — 0.0051
00051
: o
18198
o
xf
4.9864 |
X
s ¥ A |
il = "
S
- -
— i S . = —
x0 %@ Fird
00141 1.6067 1 49990

Figure 7. Input membership functions and singleton fuzzy rule outputs for the growth phase of Example 1(I).
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ig : p ip ions and singleton fuzzy rule outputs for the growth phase for Example 1(II).
2

. Growth phase. The maximum discrepancy between
the model outputs and the observations is found.
Additional linguistic terms are appended for both
variables to eliminate the maximum error. Figure 7
and figure 8§ display some growth processes. Table |
lists some resulting models.

3. Refining phase. 1f the singleton outputs are deter-

mined by the refining phase, the mean of squared

errors will be smaller than the rules generated by

the nearest point method, as illustrated in table 2.

Example 2: The Mackey-Glass chaotic time series
(Nakoula er al. 1996, Wang and Mendel 1992)
Mackey-Glass delay differential equation is used as a
benchmark problem in the neural network and fuzzy
modelling communities:

oo 02x(t—7) )
0= g 0. T 7
X0)=12 1)

¥B)y=0 ¥Yr<0

The proposed model is a 4-input-single-output
system. The inputs are x; = x(r — 18), x; = x(+ —12),
X3=x(t—6), xg=x(1). The output is y=x(r+6)
(Wang and Mendel 1992). Figure 9 depicts one set of
time series with 1800 samples. In this modelling
problem. the sampling data in 7 € [1000, 1500] are used
for identification, and data in ¢ € [1500. 1800] are used
for testing the accuracy of the resulting model.
Figures 10 and 11 summarise the results.

5. Conclusions

This article presents a simple algorithm for identifying
a singleton fuzzy model. The singleton fuzzy model is
advantageous in that the input-output relationship
is much easier than the linguistic fuzzy model, and can
be derived explicitly. For a set of observed patterns,
the simplest possible fuzzy model is constructed in
three steps: the initial phase, the growth phase. and
the optional refining phase.
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Table 2. Refined singleton outputs y of Example 1: (a) initial
rules; (b) and (c¢) growth phase.

(a) X
¥ 0.0141 4.9990
X3 0.0051 1179 0.390
49864 0.355 —0.319
MSE 0.0315
(b) Xy
¥y 0.0141 1.6067 4.9990
X3 0.0051 1.722 0.975 0.858
1.8198 0.978 0.236 0.120
4.9864 0.769 0.085 —0.034
MSE 0.00242
(€) X
v 0.0141 0.8136 1.6067 4.9990
X3 0.0051 1.911 1.357 1.070 0917
0.8727 1.323 0.835 0.518 0.381
1.8198 1.109 0.560 0.280 (§ i s
4.9864 0.898 0.395 0.096 —0.055
MSE 0.00074
12} ' /
l s
0.8 H
0.6 4
04 i B
0 600 . 1200 1800
time

Figure 9. Mackey-Glass chaotic time series.

The universe of discourse of each input variable is
determined in the initial phase. Using the minimum
and maximum of the input variables to obtain the uni-
verse of discourse can ensure that all the training data
points are in the universe. More linguistic terms and
rules are appended in the growth phase to modify
the model structure and enhance the performance. In
addition. an alternative method based on the least
squares method to evaluate the singleton outputs is
proposed in the optional refining phase. This method
provides a better model performance.

Compared to other fuzzy modelling methods, such as
learning by back-propagation. the proposed method
does not require time-consuming optimisation techni-
ques to identify the model structure and to estimate
the model parameters. Although the principal values

Training

time
(a) 2* rules

Training

time
(b) 3% rules

Training Testing |
1

1000 1300 1600 1800

time
(c) 4* rules

Figure 10. Modelling Mackey-Glass time series.

for input variables are not optimal. the least squares
method gives optimal performance under this
model structure, and computational time is reduced.
Two criteria are suggested to stop the identification
process. The maximum number of input linguistic
terms makes the rule base simpler, and the minimum
sum of squared errors guarantees an accurate model.

The proposed method is highly promising for
engineering applications since one can proceed with
the model identification without any searching
procedure and thus no numerical converging problem.
Two numerical examples demonstrate the feasibility of
the proposed method in terms of building the singleton
fuzzy model from data.
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L X ) A3 J‘ X4
) > | <]
041 1.32 0.4 1.32 041 1.32 041 132
i |
| K] | O] | XX
041 0.75 132 041088  1.32 041 112132 | 041 124132
o XX OO | XXX | XX
4
041 0.75 1.25 1.32 0.41 088 1.151.32 041 0.84 1.121.32 041061 1.241.32
1

Figure 11. Input membership functions of modelling Mackey-Glass time series.
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