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Abstract

In this paper, we consider the problem of input disturbance suppression for nonlinear systems based

on feedforward passivity. Firstly, we show that integral control can sufficiently suppress a class of slowly

variant (including constant) input disturbance and track constant references provided certain closed-loop

stability is achieved. Then, sufficient conditions of integral controllability for nonlinear processes are

presented. These conditions are further relaxed by using an input and output transformation.

1 Introduction

An important objective of control system design is to minimize the effects of external disturbances. The

problem of disturbance rejection arises in many industrial fields, such as motion-control, active noise con-

trol, vibration control and chemical process control. Slowly variant or constant input disturbance is often

encountered in process control.

The problem of constant input disturbance suppression for nonlinear systems has drawn significant atten-

tion in academia (e.g., [1], [2] and [6]). It was proved that integral control can achieve asymptotic tracking

and asymptotic disturbance rejection for nonlinear multivariable systems, provided that the disturbance is

bounded and goes to a constant exponentially ([1] and [2]). Some recent papers, such as [6], dealt with the
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9385-5966.
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robust constant disturbance suppression problem for some special models (with triangular structure) by using

integral control with some nonlinear design techniques (e.g., backstepping).

This paper considers the problem of input disturbance suppression for a class of slowly variant disturbance

signals which are not necessarily bounded. It is shown that integral control is sufficient to reject such input

disturbances provided that the closed loop is exponentially stable. An L2 bound on the plant output under

the disturbance is also derived. Furthermore, sufficient conditions of integral controllability for nonlinear

processes are proposed. This is to answer the question that what conditions a nonlinear process needs to

satisfy such that integral action can be employed to achieve offset free control. The proposed conditions are

based on the concept of feedforward passivation, and thus can be used for stable nonlinear processes which

are non-minimum phase and/or have relative degrees larger than one.

The paper is organised as follows. The problem concerned is described in Section 2. In Section 3,

the sufficient condition for slowly variant disturbance suppression is presented. In Section 4, steady state

conditions are given for integral controllability. An input and output transformation is then introduced to

relax the above condition. Finally in Section 5, we illustrate the proposed method by using an example of

mixing plant control.

2 Problem Description
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Figure 1: A nonlinear constant disturbance suppression problem

We consider the input disturbance rejection problem for a nonlinear MIMO system, as shown in Figure 1.

The feedback system consists of a nonlinear plant P and controller C, forced by a constant command signal

r, as well as an input disturbance d. We assume that the nonlinear plant P has the same number of inputs

and outputs. Here, yr is the reference tracking error, and ũ is the input to the plant. We also assume the

input disturbance is slowly variant such that its derivative is in L2 space, as defined below:

Definition 1 Signal d(t) is said to be “slowly variant” if d(t) ∈ DdL2 = {v(t) : v(t) =
∫ t

0
ṽ(τ)dτ, ∀ṽ(t) ∈ L2}.

It should be noted that disturbance d ∈ DdL2 is more general than the disturbance as considered in [1] and

[2], and could be unbounded signal. Consider the case that d̃ = 1
1+t ∈ L2, d =

∫ t

0
1

1+τ dτ is unbounded
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Figure 2: An equivalent block diagram

when t goes to infinity. A class of disturbances encountered in the area of control engineering application can

be approximated by the slowly variant signal defined above. For example, system drifting caused by rising

temperature can be regarded as a slowly variant disturbance for an amplifier system. The gyroscope’s zero

drift and accelerometer’s zero bias of an inertial navigation system are other examples.

The problem of suppression of the above slowly variant disturbances is illustrated by Figure 2. The gain

matrix Kd is diagonal and positive definite. Plant P is stable (Later, we shall be more precise concerning

the type of stability), and its state space representation is modeled is given below:

P :





ẋ = f(x, ũ)

y = g(x, ũ).
(1)

If there is no particular declaration in this paper, we suppose that f : Rn×Rm 7→ Rn and g : Rn×Rm 7→ Rm

are unbiased in the sense that 



f(0, 0) = 0

g(0, 0) = 0.
(2)

We assume that the constant reference input signal r = 0 at this stage.

3 Sufficient Conditions for slowly variant Disturbance Rejection

Papers [1] and [2] proved that if a plant can be stabilised by an integral controller and the closed-loop is

asymptotically stable (AS), then constant input disturbance rejection and constant reference tracking are

guaranteed. In [11] and [12], it was shown that for SISO systems an output feedback H∞ controller must

contain an integrator in the controller to achieve robust input disturbance suppression. In this section, we

will prove that for MIMO systems an integration matrix 1 controller can guarantee the existence of a finite

H∞ norm from disturbance generating signal d̃ to system output y (see Figure 3).

In order to set up the relationships between input-output stability [13] and Lyapunov stability for this

input disturbance rejection problem, we need to have the following preliminary definitions and theorems:
1We call a diagonal square matrix (assume the dimension of this matrix is l) with diagonal elements as ki/s (ki > 0),

i ∈ {1, 2, · · · , l} an integration matrix.
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Figure 3: The input-output stability with integration matrix controller

Definition 2 [13] A system is globally exponentially stable (GES) if and only if there exists a Lyapunov

function U(x) ≥ 0 such that

ρ1|x|2 ≤ U(x) ≤ ρ2|x|2

and with zero input
d

dt
U(x(t)) ≤ −ρ3|x|2.

Where ρi > 0, i = 1, 2, 3 are suitable scalar constants and | · | stands for Euclidean norm. If these conditions

hold, it follows that there exists some constant ρ ≥ 0 such that with x(0) = x0,

|x(t)| ≤ ρ|x0|e−ρ3t/2, for all t ≥ 0.

By local exponential stability (LES) we mean that this definition is valid at least for x in a neighbourhood

of x = 0.

Definition 3 [13] Consider the nonlinear system of the form




ẋ = f(x, u)

y = g(x, u).
(3)

The system (3) is said to be “Lp-stable with finite gain” if there exist constants bp and γp < ∞ such that

u ∈ Lm
p =⇒ y ∈ Ll

p and ‖y‖p ≤ γp‖u‖p + bp. If p = 2, γp is said to be the L2 bound from u to y.

The system (3) is said to be “Lp-stable without bias” if there exists a constant γp < ∞ such that x(0) = 0,

u ∈ Lm
p =⇒ y ∈ Ll

p and ‖y‖p ≤ γp‖u‖p.

The system (3) is “small signal Lp-stable without bias” if there exist constants rp > 0 and γp < ∞ such

that x(0) = 0, u ∈ Lm
p with ‖u‖p ≤ rp =⇒ y ∈ Ll

p and ‖y‖p ≤ γp‖u‖p.

Theorem 4 [13] Consider the system described by equation (3). Suppose that f : Rn × Rm 7→ Rn and

g : Rn × Rm 7→ Rl are unbiased in the sense that




f(0, 0) = 0

g(0, 0) = 0.
(4)
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which ensures that x = 0 is an equilibrium of the unforced system

ẋ = f(x, 0). (5)

Suppose that x = 0 is an exponentially stable equilibrium of (5), and that f is C1. Suppose also that f and

g are locally Lipschitz continuous at (0, 0), that is, suppose there exist finite constants kf , kg, r such that

‖f(x, u)− f(z, v)‖2 ≤ kf [‖x− z‖2 + ‖u− v‖2], ∀(x, u)(z, v) ∈ Br, (6)

‖g(x, u)− g(z, v)‖2 ≤ kg[‖x− z‖2 + ‖u− v‖2], ∀(x, u)(z, v) ∈ Br. (7)

Here, Br is the open ball of the radius r, that is, Br = {x : ‖x− x0‖ < r}. Then the system (3) is small

signal Lp-stable without bias for each p ∈ [1,∞). If x = 0 is a globally exponentially stable equilibrium,

and (6) and (7) hold with Br replaced by R(m+n), then the system (3) is Lp-stable without bias for each

p ∈ [1,∞). Furthermore, there exists a Lyapunov function U(x) ≥ 0 which satisfies the requirements of

exponential stability of Definition 2, and the gain γp is related to the constants ρi defining the properties of

U(x) by

‖y‖p ≤ kg[
ρ3kf

4ρ1
2ρ2

2
+ 1]‖u‖p.
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Figure 4: Nonlinear input disturbance suppression

Theorem 5 Consider the system depicted in Figure 4. Plant P is described by equations (1) and (2). Suppose

that (0, 0) is an exponentially stable equilibrium of the unforced closed loop (P, Kc

s ). Further, assume that

f is C1, and that f , g are locally Lipschitz continuous at (0, 0) with Lipschitz constants kf and kg to the

Euclidean norm ‖.‖2(See Definition 2 and Theorem 4.).

Then the system depicted in Figure 4 is small signal L2 stable without bias from d̃ to y.

If (0, 0) is a globally exponentially stable equilibrium, and f , g are globally Lipschitz continuous at (0, 0),

then the system is L2 stable without bias.
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Proof

Consider Figure 4. Suppose that there is an additional input dw to the integration matrix controller Kc

s .

Define the H∞ norms of the systems from d̃ to y and from dw to y are γd̃y and γdwy respectively. If we set

dw = KdKc
−1d̃ (8)

then the input dw is equivalent to the input of the signal d̃. That is, we can replace the disturbance input

d̃ ∈ L2 of the system depicted in Figure 4 by the equivalent signal dw ∈ L2. Because (0, 0) is an exponentially

stable equilibrium of the unforced closed loop (P, Kc

s ), then we will see that, according to Theorem 4, a

finite gain γdwy from dw to y exists. Then, from equation (8), we conclude that a finite gain γd̃y from d̃ to y

also exists.

More precisely, the augmented system with input dw and output y can be described as equation (9).




ẋ = f(x, ξ)

ξ̇ = Kc(−g(x, ξ) + dw)

y = g(x, ξ).

(9)

It can be verified that the state space equations are exactly the same by using either signal dw or d̃ as a

disturbance generating input provided dw = KdKc
−1d̃.

Let xa = [xT ξT ]T , then the above equation can be rewritten in the form:




ẋa = fa(xa, dw)

y = ga(xa)
(10)

Here, fa(xa, dw) =


 f(xa)

Kc(−g(xa) + dw)


 , ga(xa) = g(x, ξ).

Then, ∀(xa, dw), (x′a, d′w) ∈ R(n+2l),

‖fa(xa, dw)− fa(x′a, d′w)‖2

=

∥∥∥∥∥∥
f(xa)− f(x′a)

Kc(−g(xa) + g(x′a)) + Kc(dw − d′w)

∥∥∥∥∥∥
2

≤ kf (‖x− x′‖2 + ‖ξ − ξ′‖2) + kg(‖x− x′‖2 + ‖ξ − ξ′‖2) + ‖Kc‖2‖dw − d′w‖2
≤

√
2(kf + kg)‖xa − x′a‖2 + ‖Kc‖2‖dw − d′w‖2

≤ kfa(‖xa − x′a‖2 + ‖dw − d′w‖2). (11)

Here, ‖Kc‖2 =
√

λmax(Kc
T Kc), and kfa = max{√2(kf + kg), ‖Kc‖2}.

Similarly, it is obvious that ‖ga(xa)− ga(x′a)‖2 ≤ kga‖xa − x′a‖2, where kga = kg.

In view of the assumption that (0, 0) is an exponentially stable equilibrium of the unforced closed loop

(P, Kc

s ), there exists a Lyapunov function U(x) ≥ 0, which satisfies the requirements of Definition 2. Accord-

ing to Theorem 4 the finite gain γdwz from dw to y is γdwz = ( ρ3kfa

4ρ12ρ22 +1), where the constants ρi are defined
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by the properties of U(x). Therefore, γd̃y ≤ ‖Kd‖2‖Kc
−1‖2 ( ρ3kfa

4ρ12ρ22 + 1).

The significance of Theorem 5 is that it shows that if a controller is augmented with an integration matrix,

and the closed loop is exponentially stable, then input-output stability from d̃ to y is ensured. Note that

there is an integral weighting function between d̃ and d which ensures that for a “slowly variant” disturbance

d (see Definition 1), the output signal y is in L2 and hence asymptotically goes to zero. This implies that

integral control is sufficient to suppress the “slowly variant” input disturbance which includes asymptotically

constant disturbances.

Note 6 Consider plant P
′

in Figure 4. If we have a nonzero constant reference input r, we can consider

the original plant P and reference input r to be equivalent to a new plant P
′
with an equilibrium point (xe),

where g(xe, ur) = r. Sufficient conditions for stability in this situation are that the conditions of Theorem

5 are satisfied for the new equilibrium point (any equilibrium xe under investigation can be translated to the

origin by redefining the state x as x− xe [10]).

4 Sufficient Conditions for Process Integral Controllability

In this section, sufficient conditions of integral controllability for nonlinear processes are proposed based

on feedforward passivation. The concept of passivity and the Passivity Theorem for nonlinear system are

introduced first.

Definition 7 [10] Consider a nonlinear system P :




ẋ = f(x, u) x ∈ Rn

y = h(x, u), u, y ∈ Rm
(12)

and assume that the state x(t), as a function of time, is uniquely determined by its initial value x(0) and the

input function u(t). Suppose that the above system has an equilibrium at the origin, that is, f(0, 0) = 0, and

h(0, 0) = 0.

Assume that associated with the system P is a function w : Rm × Rm 7→ R, called the supply rate, which

is locally integrable for every u ∈ U. Let X be a connected subset of Rn containing the origin. If there exists

a function S : X 7→ R+ (denote R+ = [0,∞)), S(0) = 0, such that for all x ∈ X:

S(x(T ))− S(x(0)) ≤
∫ T

0

s(u(t), y(t))dt (13)

for all u ∈ U and all T ≥ 0 such that x(t) ∈ X for all t ∈ [0, T ], then we say that system P is dissipative in

X with the supply rate w(u, y). The function S(x) is then called a storage function.
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System P is said to be passive, Input Feedforward Passive (IFP (ν)) or Nonlinear Input Feedforward

Passive (NIFP), if it is dissipative with supply rate

w(u, y) = uT y, (14)

w(u, y) = uT y − νuT u (15)

or

w(u, y) = uT y − νT (u)u (16)

respectively. Where ν(u) = [ν1(u1), · · · , νm(um)]T , and νi(ui) are in the sector (0, +∞) or (0,−∞), i =

1, 2, · · · ,m.

On the basis of the concept of passive systems, the stability of two interconnected nonlinear systems can

be determined by the following Passivity Theorem:

_
y
1

u
1

H
1

u
2

y
2 H

2

y

Figure 5: Feedback interconnections of two systems.

Theorem 8 [10] Assume that the systems H1 and H2 are dissipative with respect to the following supply

rates:

wi(ui, yi) = uT
i yT

i − ρT
i (yi)yi − νT

i (ui)(ui), i = 1, 2. (17)

Furthermore assume that they are zero-state detectable (ZSD) [10] and that their respective storage functions

S1(x1) and S2(x2) are C1. Then the equilibrium (x1, x2) = (0, 0) of the feedback interconnection in Figure 5

is:

i)stable, if νT
1 (v)v + ρT

2 (v)v ≥ 0 and νT
2 (v)v + ρT

1 (v)v ≥ 0.

ii)asymptotically stable, if νT
1 (v)v + ρT

2 (v)v > 0 and νT
2 (v)v + ρT

1 (v)v > 0.

Theorem 8 implies the well known result that a feedback system comprised of a passive system and a

strictly passive system is asymptotically stable. Therefore, if a process is strictly passive, then it is integral

controllable. For non-passive processes, a feedforward subsystem Pff (see Figure 6) can be constructed to

passify the process. It should be noted that the final controller (see Figure 6) is Kc/s with the negative feed-

back of Pff . The conditions under which the subsystem Pff can achieve both input disturbance suppression

and reference tracking is investigated. In order to clarify our discussions, we introduce some notations and

concepts first.

8



�
�
� �

�
�
��

�
		




�

�
�

�
		 


Figure 6: Feedforward passivity

Definition 9 [3] (Nonlinear operator) A nonlinear operator is the operator M , which maps u to y (= Mu)

through the relations 



ẋ = f(x, u), x(0) = x0 ∈ Rn

y = g(x, u), u, y ∈ Rm
(18)

where the f and g are real analytic vector valued functions.

The nonlinear operator M defined in Definition 9 is “square” in the sense that it has the same number of

inputs and outputs.

Definition 10 [3] (Steady state operator) Let M be an input-output stable operator in the domain of M

(denoted D0(M) = UM ) [14], and u ∈ UM with limt→∞ u(t) = u∞ < ∞. Letting y∞ = limt→∞M(u(t))

(y∞ < ∞ because of the stability assumption), the steady state operator M∞ is defined by

y∞ = M∞(u∞) (19)

While M generally maps function spaces into function spaces, M∞(·) is mapping vectors from Rm into

Rm, being a static function.

Consider the operator in (18) where M is assumed input-output stable. For this nonlinear operator, M∞

is given by the system of algebraic equations




0 = f(x, u∞),

y∞ = g(x, u∞).
(20)

Lyapunov stability follows from the input-output stability provided some detectability conditions are met

[9]. In order to simplify our discussion, when we say a nonlinear system is an input-output stable, it is

assumed that the system also satisfies some detectability conditions to ensure Lyapunov stability around a

corresponding equilibrium point.

Definition 11 Assume a nonlinear system P is an input-output stable nonlinear operator. If for any input

u ∈ Up with limt→∞ u(t) = u∞ < ∞
y∞ = P∞(u∞) = 0, (21)

then, we say system P has zeros at steady state.

9



Theorem 12 Consider the system depicted in Figure 6. Plant P is described by equations (1) and (2), and

is the sum of two subsystems P0 and Pff (the feedforward connection or parallel interconnection [10] of the

two subsystems). Suppose that (0, 0) is an exponentially stable equilibrium of the unforced closed loop

(P, Kc

s ). Further assume that the subsystem Pff has zeros at steady state, i.e.

yff∞ = Pff∞(u∞) = 0. (22)

Then the output of plant P0 (i.e.,y0) will asymptotically go to zero. That is

y0∞ = lim
t→∞

y0(t) = 0. (23)

Proof Since the unforced closed-loop (P, Kc

s ) is exponentially stable around (0, 0), according to Theorem 5,

the output of plant P (i.e., y) is in L2 under the slowly variant disturbances d. That is,

lim
t→∞

y(t) = 0. (24)

From equation (22) and (24), we have that

lim
t→∞

y0(t) = lim
t→∞

y(t)− lim
t→∞

yff (t) = 0. (25)

Next, the steady state conditions are presented for a process can be rendered passive by feedforward a

subsystem which has zeros at steady state.

Definition 13 Assume a nonlinear system P is an input-output stable operator. We say system P is passive,

Input Feedforward Passive or Nonlinear Input Feedforward Passive at steady state, if its steady state input

and output relationship P∞(·) satisfies

uT P∞(u) ≥ 0, (26)

uT P∞(u) ≥ νuT u, (27)

or

uT P∞(u) ≥ νT (u)u (28)

respectively.

Theorem 14 For a nonlinear input-output stable operator P0, there exists an input output stable feedforward

subsystem Pff which has zeros at steady state to passify P0 (i.e. P = P0 + Pff is passive), if and only if

plant P0 is passive at steady state.

10



Proof (Necessity) For the input-output stable operator P0, all feedforward subsystems Pff that render

P = P0 + Pff ,

passive can be parameterized below

Pff = Pp − P0 (29)

with any passive system Pp.

Because the subsystem Pff has zeros at steady state, then from equation (29), we conclude that Pp and

P0 have the same input and output functions at steady state, that is, Pp∞(u) = P0∞(u). Furthermore,

considering that the system Pp is passive (at steady state), we conclude that the system P0 is passive at

steady state.

(Sufficiency) If P0 is passive at steady state, then we construct

Pff = P0∞(u)− P0, (30)

It can be seen that P = P0 + Pff = P0∞(u) is passive and Pff has zeros at steady state because the steady

state operator Pff∞ = P0∞(u)− P0∞(u) = 0.

It can be easily verified that replacing the word “passive” by “IFP” or “NIFP”, Theorem 14 is still correct.

Note 15 If the subsystem Pff is constructed by using equation (30) Theorem 14, then the passified system

P = P0 +Pff will be passive, NIFP or IFP (ν) given that Pff∞ is passive, NIFP or IFP (ν), respectively.

According to the Passivity Theorem (Theorem 8), the closed loop system is AS if a diagonal PI matrix 2

controller, which is IFP (k
¯ p) (k

¯ p = min1≤i≤m{kpi} > 0) is used provided that Pff∞ is NIFP . The stability

condition is required to achieve constant disturbance rejection and reference tracking (as in [1] and [2]).

As discussed in Section 3, if an integral controller can exponentially stabilise a nonlinear system then the

suppression of the “slowly variant” input disturbance d ∈ DdL2 is achievable. A sufficient condition to obtain

exponential stability is that the serial connection of Kc

s and P0 is so called Cr-semiglobally output feedback

exponentially passive (r ≥ 1) [4]. Details of the Cr-semiglobally output feedback exponential passivity (r ≥ 1)

can be found in [4].

In Theorem 14, we presented an equivalent condition for a plant P0 to be made passive (IFP (ν) or

NIFP ) by using a feedforward subsystem which has zeros at steady state. That is, plant P0 should be

passive (IFP (ν) or NIFP ) at steady state. For those processes which are not passive at steady state, it is

possible to passify them at steady state by using an input transformation

ũ = φ(u) (31)

2We call a diagonal square matrix (assume the dimension of this matrix is m) with diagonal elements as kpi +kii/s (kpi > 0,

kii > 0), i ∈ {1, 2, · · · , m} a PI (Proportion and Integration) matrix.
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and an output transformation

ỹ = ψ(y) (32)

to plant P0. The functions φ(·) and ψ(·) are both local diffeomorphism in U ∈ Rm [5] [8]. If we assume plant

P0 is described by

P0 :





ẋ = f(x) + g(x)u

y = h(x).
(33)

Then, we just need functions φ(·) and ψ(·) to satisfy




0 = f(x) + g(x)φ−1(ũ)

ỹ = ψ(h(x)).
(34)

and

ỹT ũ ≥ 0.

If the static input output function of system P0: y = P0∞(u) is a local diffeomorphism in U ∈ Rm, then

we can directly select input transformation as φ(·) = P0∞(·) (ψ(·) = I) to transfer the system P0 passive at

steady state. However, even in this case, both the input and output transformation may be used together to

make them more effective and physically meaningful.

5 Illustrative Example

In this section, we illustrate the proposed conditions using an example of mixing tank process ([7]) as shown

in Figure 7. The tank is fed with two inlet flows with flowrates F1(t) and F2(t). Both inlet flows contain one

dissolved material with concentrations c1 and c2 respectively. The flowrate of the outlet flow is F (t). Assume

that the tank is well stirred so that the concentration of the outlet flow is the same as the concentration in

 

Outgoing Flow F 

Concentration c 

Feed F1 Feed F2 

Propeller

Concentration c1 Concentration c2 

Figure 7: The mixing system.
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the tank. The inlet flowrates, F1(t) and F2(t), are manipulated to control both flowrate F (t) and the outlet

concentration c(t) to the desired values under the constant input disturbance. V (t) is the volume of the

liquid in the tank.

The process is modelled as follows:

P0 :





ẋ1 = −k
√

x1
S + u1 + u2

ẋ2 = − (u1+u2)x2
x1

+ (c1u1+c2u2)
x1

.
(35)





y1 = k
√

x1
S

y2 = x2.
(36)

where x1(t) = V (t), x2(t) = c(t); u1(t) = F1(t), u2(t) = F2(t); y1(t) = F (t) and y2(t) = c(t). Constant S is

the cross-sectional area of the tank and k is the discharge coefficient of the exit flowrate. Their values are

S = 10m2 and k = 5.916 .

The steady state input output function is




y1 = u1 + u2

y2 = c1u1+c2u2
u1+u2

,
(37)

from which it can be seen that this mixing system is not passive at steady state.

By introducing the following input transformation




û1 = u1 + u2

û2 = c1u1 + c2u2,
(38)

and the output transformation 



ŷ1 = y1

ŷ2 = y1y2,
(39)

The original process is transformed into the following system:

P ′0 :





ẋ1 = −k
√

x1
S + û1

ẋ2 = −x2û1
x1

+ û2
x1

.
(40)





ŷ1 = k
√

x1
S

ŷ2 = kx2

√
x1
S ,

(41)

with steady state input output function 



ŷ1 = û1

ŷ2 = û2.
(42)

It can be seen that the transformed system is IFP (1) at steady state 3. Therefore, there exists a feedforward

subsystem Pff which has zeros at steady state and renders the mixing system passive, according to Theorem

14. One possible choice is Pff = P0∞ − P ′0 = I − P ′0.
3It is noted that although the steady state input output relation of the transformed system is linear, the dynamic part of the

system is still nonlinear.
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Figure 8: The simulation construction implemented by using Simulink.

System stability under such a controller is tested using Simulink (a product of The MathWorks Inc.).

The control diagram is shown in Figure 8. The initial state of the process P0 is x(0) = [0.6 1.3]T . The

reference input is a constant vector [1, 1.6]T . The input disturbance is [0.3,−0.3]T .

During the simulation, we select the diagonal PI matrix with different proportional and integral gains(see

figure 8). The simulation results (see Figure 9) show that the closed loop system is stable even with large

proportional and integral gains. The input disturbances can be rejected rapidly, and the controller can ensure

offset free tracking of the flowrate and the product concentration.
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Figure 9: The inputs and outputs of the plant
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6 Conclusions

Based on feedforward passivation, this paper considers an input disturbance rejection problem for nonlinear

systems. Steady state conditions are given for a system which can be rendered passive by a feedforward

subsystem with zeros at steady state. It is shown that plants which satisfy the proposed conditions can

effectively suppress constant and slowly variant input disturbances under integral control.

7 Acknowledgments

The authors gratefully acknowledge the financial support of the Australian Research Council (Grant A00104473).

References

[1] C. Desoer and Y. Wang. Foundations of feedback theory for nonlinear dynamical systems. IEEE Trans.

on Circuits and Systems, 27(2):104–123, 1980.

[2] C. Desoer and Y.T. Wang. The robust nonlinear servomechanism problem. Int. J. Contr., 29(5):803–828,

1979.

[3] C.G. Economou and M. Morari. Internal model control. 5. extension to nonlinear systems. Ind. Eng.

Process Des. Dev., 25:403–411, 1986.

[4] A.L. Fradkov and D.J. Hill. Exponential feedback passivity and stabilizability of nonlinear systems.

Automatica, 34:697–703, 1997.

[5] A. Isidori. Nonlinear Control Systems. Springer-Verlag, New York, 1989.

[6] Z.P. Jiang and I. Mareels. Robust nonlinear integral control by partial-state and output feedback.

Proceedings of the IEEE Conference on Decision and Control, pages 2084–2089, 2000.

[7] H. Kwakanaak and R. Sivan. Linear Optimal Control Systems. Wiley Interscience, 1972.

[8] R. Marino and P. Tomei. Nonlinear Control Design: Geometric, Adaptive and Robust. Prentice Hall,

London, 1995.

[9] R. Ortega, A. Loria, P.J. Nicklasson, and H. Sira-Ramirez. Passivity-based Control of Euler-Lagrange

Systems. Springer, London, 1998.

[10] R. Sepulchre, M. Jankovic, and P. Kokotovic. Constructive Nonlinear Control. Springer Verlag, New

York, 1996.

15



[11] S.W. Su, B.D.O. Anderson, and T.S. Brinsmead. Robust disturbance suppression for nonlinear systems

based on H∞ control. Proceedings of the 39th Conference on Decision and Control, pages 3013–3018,

2000.

[12] S.W. Su, B.D.O. Anderson, and T.S. Brinsmead. Use of integrator in nonlinear H∞ design for disturbance

rejection. Automatica, 38:1951–1957, 2002.

[13] M. Vidyasagar. Nonlinear Systems Analysis. Prentice Hall, New Jersey, 1993.

[14] G. Zames. On the input-output stability of time-varying nonlinear feedback systems part one: Conditions

derived using concepts of loop gain, conicity, and positivity. IEEE Trans. on Automatic Control, 11:228–

238, 1966.

16


