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Abstract: This paper addresses the problem of attitude and heading restitution
for a VTOL UAV. We describe an observation strategy to restitute the complete
attitude matrix of the vehicle starting from Inertial Measurement Unit (IMU)
and magnetometers. This study is a part of the development of the ducted fan
UAV designed by Bertin Technologies. First, a measured orientation matrix is
calculated from both inertial vectors which are the gravity and the earth magnetic
field. Then, an estimated orientation is built by integrating gyroscopic readings,
and corrected by the measured one. Nonlinear observation techniques are used to
design a nonlinear estimator of the orientation matrix and an adaptive filter of the
gyroscope’s bias which ensure the convergence of the observer. Such an observer
is as efficient as classical Extended Kalman Filtering based observers, and easier
to implement in real time. Simulations are proposed to illustrate the concept.
Copyright© 2005 IFAC
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1. INTRODUCTION

The design of autonomous navigation strategy for
Micro Air Vehicles (MAV) has now become a
very challenging research area. Those small and
discreet flying vehicles, able to perform vertical
takeoff and landing (VTOL), are of great interest
for civil and military operations in urban environ-
ment. The design of autonomous VTOL vehicle
capable of stationary flight has recently motivated
many research projects (Pflimlin et al., 2004). Sig-
nificant interest has been directed towards the de-
velopment of autonomous scale model helicopter
due to their high payload to power ratio. He-
licopters, however, are extremely dangerous in
practice due to the exposed rotor blades. Very

1 Partially supported by Bertin Technologies, and the
French ministry of Armament

little has been done to the development of secure
platforms (Hamel et al., 2002). Such platforms
have a considerable potential for surveillance and
inspection roles in dangerous or awkward environ-
ments. One of the projects of the French National
Direction of Armament, DGA, is to supply the
infantry with such micro-drones by 2007. As a
part of this project, the group Bertin Technology
has in charge the development of a ducted fan
UAV which is represented in figure 1. The work
presented in this paper has been developed in
the framework of a collaboration between, Bertin
Technologies, the LAAS-CNRS and I3S laborato-
ries, both devoted to modelling and elaboration of
autonomous control strategies. In a first step, the
automatic control design must allow the vehicle to
be easily operated by an inexperienced user, de-
spite wind perturbations. Designing such a remote



Fig. 1. A view of Bertin VTOL UAV.

control requires an efficient attitude control, able
to deal with internal coupling of the system and
to maintain the vehicle in a secure flight envelope.
This is strongly dependent on a reliable attitude
estimation. Much has been done in attitude and
heading restitution using Extended Kalman filters
and a representation of the orientation based on
quaternions (Marins et al., 2001). However, im-
plementing a Kalman filter pose serious problem
due in particular to the high sensitivity of the
covariance matrix to numerical errors. Engineer-
ing techniques such as [U, D]-decomposition are
indispensable in practice to increase robustness
of the filter (Grewal et al., 2001). Using rotation
matrices to describe the orientation and designing
a nonlinear observer directly in the rotation set
SO(3) allows to overcome the linearization step
and to provide a more physical view of what the
observer is doing.

In this paper we describe an observation strategy
to restitute the complete attitude matrix of the
micro-drone starting from Inertial Measurement
Unit (IMU) and magnetometers. The proposed
observer is as efficient as an Extended Kalman
filter and much easier to implement. The paper
is organized as follows: section 2 provides a de-
scription of the geometric and kinematic model of
the attitude and a model of the sensors used to
provide the attitude measurements. The observer
design is given in section 3. Simulation results are
then proposed to illustrate the method.

2. SYSTEM MODELLING
2.1 Attitude representation and kinematics

Two reference frames are considered to model the
system (Boiffier, 1998):

e 7 is an inertial frame attached to the earth. It
is assumed to be Galilean. It is associated to the
vector base {zo, 0,20}, where zy points to the
magnetic North, zg points to the center of earth,
and yo points to the East to complete the base.

o A is body-fixed frame attached to the vehicle.
It is associated to the vector base {xp,yp, 25}
The conventional roll, pitch and yaw axis used in
mechanics of flight are considered in this paper:

xp, points forward, z, downward, and to complete
the base, y, points to the right.

The transformation matrix between the inertial
frame and the body fixed frame is called attitude
matrix R. By definition, each column of R is made
of the components of the corresponding body fixed
base vector expressed in the inertial frame? :

R= [xbv Yb, Zb]I

R being the transformation matrix between two
orthogonal frames, it is an element of SO(3). With
the usual matrix product, SO(3) is a group whose
elements satisfy (Murray et al., 1994):

VP € SO(3), P71 = PT et det(P) =1

Introducing the canonical base {e1, e, e3} of R3:
e1 = [1,0,0]7, e; = [0,1,0]7, e3 = [0,0,1]T,
the components of the inertial base vectors with
respect to the body fixed frame are given by:

[zo]a = R"er [yoJa = R"ez [20]la = R'es

Denoting by Q = [p,q,r]7 the angular veloc-
ity vector of the body fixed frame relative to
the inertial frame, expressed in body frame, the
kinematic equation of attitude that expresses the
evolution of R through time is given by (Murray
et al., 1994):

R = Rsk(Q) (1)
Where sk(2) denotes the skew-symmetric ma-
trix 3 associated to Q.

2.2 IMU and magnetometers modelling

The VTOL UAV is equipped with a low cost strap
down IMU, that provides the angular velocity (2
components as well as the linear accelerations,
and a 3-axis magnetometer. Angular rates allow
to predict the evolution of the attitude matrix,
while the measure provided by accelerometers and
magnetometers is used to correct this prediction.
When designing an observer, one has to make a
trade-off between the drift resulting from integra-
tion of the gyroscopic measurements and the relia-
bility of noisy readings provided by accelerometers
and magnetometers.

Gyroscope modelling The 3-axis gyroscope pro-
vides the angular velocities of the body frame
relative to the inertial frame, expressed in the
body fixed frame. If the measured angular rates
were perfect, it would be sufficient to integrate
these measurements using equation (1) to provide
the orientation matrix R. However, due to open-
loop integrations, any bias on gyroscopic measure-
ments lead to an error on the attitude prediction

2 To describe the attitude of a vehicle, many authors use
the Direct Cosine Matrix DCM. By definition one gets
DCM = RT

3 VYu € R3, sk(u) is the skew matrix associated to u :
Yo € R3, u x v = sk(u)v



which grows to infinity. This phenomena is known
as gyroscopic drift. To take into account on-line
estimation of gyroscope’s bias, we consider the
model of gyroscopic measurements given by:

U =Q+b (2)

where b depends on the temperature. Many low
cost IMU are now internally compensated in
temperature, and as a result, b oscillates slowly
around a constant average value. In the observer
design, b will be supposed constant. We will pro-
pose an adaptive filter to estimate b on-line. In
practice, the estimator will succeed in estimating
gyroscope’s bias even though they vary slowly.

Accelerometers modelling The 3-axis accelerom-
eter provides the non gravitational linear accel-
erations applied to the vehicle relative to iner-
tial frame (Radix, 1980). Accelerometers readings
gather all forces applied to the vehicle, except
gravity. In case of ”strap-down” IMU, readings are
expressed in body fixed frame. When the absolute
acceleration of the vehicle in the inertial frame is
weak (||vasll < g), accelerometers’ readings A,
provide the components of gravity vector in A:

—

A?n = Yabs —gz0 — Am ~ _gRT€3
N (3)

1Vabsll<g

If measurements were absolutely reliable, pitch
and roll of the vehicle could be directly deduced
from the accelerometers, working as inclinometers
in that case. However, accelerometers’ readings
are very noisy and very sensitive to the vibratory
environment surrounding the IMU. Furthermore,
if for any reason (wind gust, or transition from
hovering to forward flight), the vehicle acquires a
non negligible absolute acceleration in the inertial
frame, the attitude provided by accelerometers
will no more be reliable. Therefore, it is important
in practice to correlate the attitude measured
by the accelerometers and the attitude predicted
by integrating the gyroscopic measurements to
provide a correct attitude estimation (Suh, 2003).

Magnetometers modelling To achieve complete
attitude estimation, we add to inertial measure-
ments the information provided by a 3-axis mag-
netometer. Such a device is able to give the yaw
angle ¢ by measuring the earth magnetic field in
the body fixed frame. Let m be the direct cosine
vector of the earth magnetic field. Let m and h be
the components of m respectively in the inertial
frame Z and in the body fixed frame A. Then we
have the following equation:

h=R'm (4)

By definition of the inertial frame, one gets m €
span{ey,es}, that is to say:

m = (elm)e; + (eAm)es

2.8 Measured orientation matrixz construction

Both inertial vectors measured by the IMU com-
pleted with magnetometers are represented in fig-
ure 2. Let u be the normalized components of the
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Fig. 2. Representation of the gravity and the earth
magnetic field in the inertial frame.

accelerometers readings in body frame:
— Am ~
([ Al

We are going to present a method to build the
complete attitude matrix R by using both inertial
vectors m and g expressed in body frame. The
main idea is to use Gram-Schmidt’s orthonor-
malization method to construct RTe; and RTeq
starting from h and u and to complete the base
by the cross product of both vectors.

u —RTeq

Proposition 1. Consider the following matriz R
built from h and u:

R h— (uTh)u —u X h
|h = (uTh)ull [|h — (uTh)ul
Then we have R = R.

T

u

Proof. First we have:

h— (u"h)u = R"m — (—(R%e3) " R"m)(—R" e3)
= R (m — (e m)es)
= (ef'm)R" e,

By convention e; points to the North, so ef'm > 0.
It yields:
efm = ||h— (u"h)u|
So the first column of RT expresses as R e;. The
second column of R” can be written:
h— (uTh)u
A = (uT h)ull

—u X h .
lh — (uT h)ull

As (RTe3) x (RTe;) = RT(e3 x e1), the second
column of RT equals RTey. Finally, we get:

RT = RT[€1,62,63] = RT

(—u)x = (R"e3)x(R"e1)

O

3. OBSERVER DESIGN

In this section, a nonlinear estimator of the ori-
entation matrix and an adaptive filter of the gy-
roscope’s bias are designed. Convergence of the



resulting estimator is achieved by means of non-
linear observation techniques (Krstic et al., 1995).

Let us denote by R € SO(3) and b the estimations
of R and b respectively. Estimations errors R and
b are defined by:
R=R"R and b=b-b
The convergence of the observer is ensured if and
only if the following two conditions are verified:
R—>Ig><3 andl;—>0
The observer design consists in building filters on

R and b. To keep R within SO(3), the following
structure on the estimator is imposed:

R= Rsk(Q) and b=Tr (5)

Where T' is a positive gain which allows to tune
up the adaption of the gyroscope’s bias.

Let us introduce the following direct cosine vec-
tors of R®, which represent the components of
the inertial base vectors in the body frame and in
the estimated body frame respectively:

t=RTe;; y=RTey; 2=RTes
#=RTe;; §=RTey; 2=RTes
Let X, Y, Z denote the cross product between the

estimated direct cosine vectors and the real ones:
X=zxx,Y=9xy, Z=2Xz

Theorem 1. With the above notations, the estima-
tion law on attitude Q0 given by:

Q=R(Qm—b)+w (6)
with w, defined as:
w=—-k(X+Y+2), k>0 (7)
and the adaptive filter 7 defined by:
r=RT(X+Y +2) (8)

ensure convergence of the estimator given in (5)
for any initial rotation angle oy between the es-
timated orientation matriz and the real one and
any initial estimation error on gyroscope bias by
verifying:

0] < bmaz  With bmazr < 2V20
bgnax ))

2r
©)

|ao] < Amaz With umaez = arccos(l — 5(4 —

Proof. Let us define the Lyapunov function:
1 ~ 1 575
V= §||13x3 = Rl[3yop + 51“ bTh
In the expression of V', || I3x3 —RHF,.O;) denotes the

Frobenius norm* of the matrix I3yx3 — R. Using
the explicit form of this norm, it yields:

1 - - 1 ops
V = trace((Isxs — R)(Iaxs R)T) + 5F—leb

4 Recall that the Frobenius norm of a square matrix M is
given by:

[|M]| prob = \/trace(MMT)

Developing the term (Isxs — R)(Isxs — R)”, one
gets

(Isxz — R)(Isxs — R)" = Isx3 — R— R" + RR”
As a product of two matrices in SO(3), R is
naturally in SO(3). This means that RRT = I3x3.

So, as trace(R) = trace(RT), the final expression
of V is given by:

V =3 — trace(R) + %F_IIN)T?) (10)

Now, let us calculate the time derivative of R.
Using (5), one gets:

R = RTR+ RTR = —sk(Q)R" R + R Rsk(Q)
= —sk(Q)R + Rsk(Q)

There, let us recall one of the main properties of
skew-symmetric matrix (Murray et al., 1994):

VR € SO(3),Yw € R?, Rsk(w)R” = sk(Rw)

So ]:2 is given by:

R = —sk(Q)R + Rsk(Q) I3sxs = —sk(Q — RQ)R
~—~

_RT

Th

Now, using (2), equation (6) can be written:
Q=R(Qy b)+w=RQ+b)+w
~~

Q+b

Q

It yields the final expression of ]:Z
R = —sk(Rb+m)R (11)

Now, let us go back to the calculation of V. Using
(10), one gets:

V = —trace(R) + r157h
As stated before, the 'gyroscope’s bias is supposed
constant. Therefore, b is simply b = —b. Using the
expression of R given by (11), V can be written:
V = trace(sk(Rb + w)R) — I 'b7b
At this stage, one can notice that R can be
expressed by:
R = RTR = RT (erel + egel + esel)R
= (RTe1)(e] R) + (R"ex)(e3 R) + (R"es)(e5 R)

That is to say:

R=ixT 4+ g7 + 2.7 (12)
So V is finally given by:

V = trace(sk(Rb + w)iaT) + trace(sk(Rb + w)jyT)

+trace(sk(Rb + w)227) — I 167h
Let us recall the following property of the trace:
Va,b € R? trace(ab”) = a’b
This property leads to the following expression:
V = [sk(Rb+ w)#]Tx + [sk(Rb + )] y
+[sk(Rb + w)2] Tz — =157



Keeping in mind the basic properties® of skew-
symmetric matrices, the following expression of V'
is obtained:

V=@R) (Exe+ixy+ixz)—T'7b
+wl(@Exz+ixy+2xz)
The adaptive filter given by (8) cancels the in-

fluence of b in the expression of the Lyapunov
function time derivative, which therefore can be
written as follows:

V=l (X+Y +2)
Finally, with the expression of w (7), we get:
V=-—kX+Y+2Z? (13)

The non positivity of V is then ensured. Using the
theorem of Lasalle, the observer state tends to the
invariant set of V:

{(M,b) € SOB3) x R*/X +Y + Z =0}

The resulting gap R between the estimated orien-
tation matrix and the real one defines a rotation
of an angle a about a unit vector w between z, y, z
and &,9,2. In the base {z,y,z}, this rotation

expresses as R = exp(sk(w)a) £ [rijli<ij<3. The
analytical form of cross products X, Y and Z in
base {z,y, z} is given by:

X=—-axxi= —sk(el)ﬁel = —[0,—r31,721]"
Y = —y x § = —sk(ea) Reg = —[r32, 0, —r12]"
Z = —z x 2 = —sk(e3)Rez = —[r13,731,0]"

When adding those three terms, the components
of the rotation vector w appear (Murray et al.,
1994):

r32 — T'23
X+Y+Z=—|rmsg—r3 | =—-26na)w
21 —T12

The condition X+Y +Z = 0 defining the invariant
set becomes:

2(sina)w =0
w being a unit vector, this is only possible if
a = Qora = =+rw. This means that R can

converge to the real attitude matrix (case o =
0) or to a matrix deduced from the real one
by an axial symmetry about axis w (case a@ =
+7). To guarantee the convergence of R to R,
we need to characterize the attractive domain
of the equilibrium point o = 0. Initializing the
observer state inside this domain will ensure the
convergence to the real attitude matrix. First, let
us recall the relation between the rotation angle
a and R (Murray et al., 1994):

trace(R) — 1

2
The expression of the Lyapunov function given by
(10) can be written as follows:

Ccosox =

1 -
V =2(1—-cosa)+ §F*1|b\2

5 Vu,v € R3, sk(u)T = —sk(u) and sk(u)v = —sk(v)u

Let us define D, = {(a,b) € R x R®/V(a,b) <
a} the region delimited by the equipotential curve
{V = a}. It is clear that for Vo,w € R/0 <wv <
w, D, C D, and that Va > 0,(a,b) = (0,0) €
D,. As V < 0, we ensure that Dy ) C Dy(o-
To determine the attractive domain of the point
(a,b) = (0,0), it is sufficient to consider the
biggest region D, within the hyperplanes o = +r.

v (0)

trajectory of

(24
‘max the observer state

Fig. 3. Illustration of the attractive domain
around equilibrium configuration a =0 .

This region is tangent to both hyperplanes at
points (a,b) = (£m,0). At these points, V =
2(1 — cos(£m)) = 4. The attractive domain is the
interior of Dy4. Considering the the upper born on
the initial gyroscope’s bias estimation error b,,q,
the maximal initial angular gap ag allowed can be
determined by the relation:

1 -
V(0) = 2(1 — cosap) + 51171|b0|2 <4

This leads to the upper born on ag ¢ and bo given
by (9). The observer being initialized in this way,
the convergence of R to R is ensured. R — R

means R — I3y3 and R — 0. Furthermore, the
convergence to zero of X +Y + Z means that @

will tend to zero, as well as b (cf. (7) and (8)).
Therefore, the estimation error on gyroscope’s
bias tends to a constant value denoted by b>.

When t — oo in the expression of R given by
(11), it can be shown that 0> verifies:

sk(b®) =0
which implies the convergence of b to zero.O

4. SIMULATION RESULTS

In our simulation, the observer given by the equa-
tion (5) is sampled using Rodrigue’s formula:

Ry = Re Ay

6 Taking an adaption gain very small T' = 0.01, and
an important initial error on gyroscope’s bias estimation
bmaz = 5°/s, one gets amas =~ 145°. In practice, initial-
izing the observer state with the first measured attitude
matrix, maximal angular gap «o will not exceed 30° so
this upper born is not very constraining



where Ay = exp(sk(wg)7), given that Q(t) = wy
for t € [kr,(k+1)7]. Ay has a closed form solution
(Murray et al., 1994) of the form:

sin((|w [|7)
llw I

1 — cos(flwrIT)

Ap =I3x3 + sk(wg) + sk? (wy,)

lwel?

This discrete form will preserve the evolution of
Ry, within SO(3) because Ay = exp(sk(wy)7) is
a rotation matrix. However, to prevent any accu-
mulation of numerical errors, columns of Ry, can
be kept orthogonal by Gram-Schmidt algorithm.

5 10 15 20 25 30 35 40

time (s)

Fig. 4. Evolution of the estimated Euler angles
and gyroscope’s bias.

Simulations were performed to represent the con-
vergence of the three Euler angles estimation
and the gyroscope’s bias estimation. A good be-
havior of the estimator can be observed on fig-
ure 4 in spite of large gaps between initial val-
ues of estimated Euler angles and the real ones
([-50°,30°, —100°]) and an important gyroscopic
drift (b = [0.02, —0.05,0.07]7rd/s).

5. CONCLUSION

In this draft, we have proposed an observation
strategy to estimate the orientation of a VTOL
UAV taking advantage from both short term pre-
cision given by integration of measured angular
rates and long term precision provided by ac-
celerometers and magnetometers. A nonlinear es-
timation law defined on SO(3) and an adaptive
filter on gyroscope’s bias have been designed and
a theorem both proves the convergence of the
method and provides an upper born on the initial
angular gap between the estimated orientation

matrix and the real one. Behavior obtained in sim-
ulation is very encouraging and integration inside
the embedded calculator of Bertin Technologies
VTOL UAYV is in progress. At this moment, a
similar but simplified algorithm providing roll and
pitch angles has been successfully integrated and
allows remote controlled flight using PIDs. In fur-
ther work, we will propose a nonlinear control law
coupled with this estimation law which ensures
the stability of the closed loop system despite
wind gusts.
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