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Abstract

This paper presents a mathematical interpretation of the object-oriented
modeling paradigm inspired from the Willems’ behavioral approach of sys-
tems theory. The object modeling of interconnected dynamic systems is
introduced independently from any computer language and expressed as
a set computation problem. Two behavioral representations (complete
and partial) of an object are defined. Three object relationships, i.e.

instantiation, composition and generalization are examined in the behav-
ioral framework. Each definition is illustrated by basic examples, e.g. a
storage tank, a resistor, a control valve and an electrical circuit. The
implementation of the behavioral representations into the object-oriented
language Modelica is finally presented. 1

Keywords Object-modeling techniques, mathematical models, dynamic
systems, complex systems.

1 Introduction

Since the seventies, several object-oriented techniques have been developed for
interconnected dynamic system modeling [Elmqvist, 1978, Cellier, 1991, Otter and Elmqvist, 1997,
Borutzky, 1999a, Mann, 1999, Breedveld, 2004, Bastogne, 2004]. These efforts
have made real the development of a lot of object formalisms such as Allan,
Dymola, NMF, ObjectMath, Omola, SIDOPS+ and Smile. In 1996, a unifica-
tion attempt of existing languages was initiated and led to a new specification

1To be published in International Journal of Systems Science
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language: Modelica [Tiller, 2001]. Despite these efforts, it still seems that main
aspects of the object-orientation developed initially in computer science are not
fully appreciated in the systems science community [Borutzky, 1999b]. In fact,
the notions of object in computer science and system in automatic control, sys-
temics or cybernetics are similar. Nevertheless some basic differences can be
highlighted.

• The concept of object developed in computer science was not initially
associated with a temporal semantic as this is the case in automatic control
with the notion of dynamic system.

• In control applications, controllers are causal2 systems, i.e. based on the
definition of input and output variables, whereas physical systems are non
causal by nature [Cellier, 1991]. These differences of causality have to be
taken into account in the modeling process. However contrary to non-
causal object-modeling techniques, the systems theory is still based on a
causal perception of the process.

• The idea of object is based on concepts like instantiation or inheritance
which clearly increase the modularity of the model, i.e. updating parts of
the model according to the process evolution or easily removing an object
without changing the rest of the model.

Currently, the most widespread object-oriented modeling techniques devoted
to interconnected dynamic systems, e.g. the language Modelica, lead to handle
differential algebraic equation systems. In [Gerdin and Glad, 2006], a differen-
tial algebra approach is developed to examine identifiability of object-oriented
models.

The purpose of this paper is to show that object-oriented modeling of inter-
connected dynamic system may also be described as a problem of set compu-
tation. Set computation has a lot of practical applications in system control,
particularly in robust control and in parameter estimation [Jaulin et al., 2001].
To this end, a new mathematical interpretation of the object-oriented paradigm
for interconnected dynamic system modeling is developed herein. This new ap-
proach of object orientation relies on a behavioral formalism of systems theory
proposed by Willems in [Willems, 1986, Willems, 1991, Polderman and Willems, 1998].

The Willems’ behavioral approach of systems theory is used in section 2 to
define two behavioral representations of an object class. In the next section,
three object relationships, i.e. instantiation, composition and generalisation
are examined in the behavioral framework. Section 4 is devoted to the be-
havioral representation of interconnected dynamic systems. At last, the links
between behavioral representations and the object-oriented language Modelica
are pointed out in section 5.

2In systems theory, the causality notion involves physical realizability. A system is non

causal if its response occurs prior to the input stimulus and causal otherwise. Herein, the

question is which variable is caused by the other ? If there is an invariant solution the system

is causal but if there is no solution, e.g. the chicken-egg problem, the system is regarded as

non causal.
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2 Behavioral representations of an object

Table 1 sums up some notations used in the sequel. An object is generally de-

Table 1: Basic notation of sets
Ref. Description
D Object class
D Instance (object)
B Behavioral set
C Composition set
E Equation set
H Generalization set
L Internal variable set
P Parameter set
U Universal set
W External variable set
C Set of complexes
N Set of integers
R Set of reals

fined as a structure encapsulating data (state) and data evolution (behavior). In
case of dynamic systems, these two attributes can be described by two sets: a set
of variables and a set of time trajectories. This perception is closed to the con-
cepts of universal and behavioral sets introduced by Willems in [Willems, 1986]
and leads to a first behavioral definition of an object.

Definition 2.1 The complete behavioral representation of an object class
O is defined as follows:

O = (U∗

O,B∗

O), (1)

where:

• U∗

O
is the universal set of O, i.e. the set that contains all the elements

involved in O. U∗

O
is defined by:

U∗

O = {t ∈ TO, p∗ ∈ P∗

O, l∗(t) ∈ L∗

O, w∗(t) ∈ W∗

O}

= TO × P∗

O × L∗

O ×W∗

O, (2)

where × is the Cartesian product, TO the time axis, P∗

O
the parameter

set, W∗

O
the external variable set and L∗

O
the internal variable set. t ∈ TO

denotes the time variable, p∗ ∈ P∗

O
: the vector of parameters, w∗(t) ∈

W∗

O
: the vector of external variables and l∗(t) ∈ L∗

O
: the vector of internal

variables. A parameter corresponds to a particular variable which is kept
constant during the time range TO.
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• B∗

O
is the behavioral model, i.e. a non empty subset of U∗

O
that contains the

possible values of t, p∗, l∗(t), w∗(t) satisfying a set of constraint equations.
The complete behavioral model of an object is defined by:

B∗

O =
{

t, p∗, l∗(t), w∗(t)
∣

∣ f(t, p∗, l∗, w∗) = 0
}

, (3)

where f(·) is an implicit system of behavioral equations.

A major difference between objects used at the origin in computer science
and those used for physical systems modeling is that contrary to conventional
objects, physical phenomena are associated to a temporal semantics, physical
systems are dynamic systems. Consequently, the universal set U∗

O
includes a

time axis. In object-orientation, the principal utility of the encapsulation pro-
cess remains the privatization of the access to the data. Indeed, the concept of
object also makes it possible to legalise and limit the access of a limited number
of variables entitled external variables. They enable the object to communicate
with its environment. Internal variables correspond either to state variables or
to algebraic variables. The behavioral model B∗

O
is analog to a set of admissible

time trajectories [Polderman and Willems, 1998].
The object-orientation is based on the notion of class. A class is a paradigm

defining the elements and behaviour for a particular type of object. Any ob-
ject designed from this paradigm is an instance of this class. Instances are the
representatives of the object classes in the model. Classes are arranged into
specialization-generalization hierarchies, subclasses provide specialised behav-
ior, whereas super-classes are more generic. Moreover, any object class can be
reused to compose new objects. The taking into account of those instantia-
tion, composition and generalization relationships leads to a second behavioral
representation of an object is defined.

Definition 2.2 The partial behavioral representation of an object class O

is defined by:

O = (CO,HO,UO,BO), (4)

where:

• CO denotes the composition set. CO = {A} implies that O is composed of
A.

• HO is generalization (inheritance) set. HO = {A} implies that A is a
super-classes of O, or O is a subclass of A.

• UO is the partial universal set containing elements exclusively belonging
to O. In other words, variables of elements of CO or HO are not specified
in UO. Consequently UO ⊂ U∗

O
. UO is defined by:

UO = {t ∈ TO, p ∈ PO, l(t) ∈ LO, w(t) ∈ WO}

= TO × PO × LO ×WO. (5)
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PO ⊂ P∗

O
is the partial set of parameters of O, WO ⊂ W∗

O
is the partial set

of external variables and LO ⊂ L∗

O
is the partial set of internal variables.

Vectors p, w(t), l(t) are sub-vectors of p∗, w∗(t), l∗(t).

• BO is the partial behavioral model of O defined by:

BO = {t, p, l(t), w(t) | ∃(p′, l′, w′) with f(t, p, p′, l, l′, w, w′) = 0} , (6)

where p∗ = (p, p′), l∗ = (l, l′) and w∗ = (w,w′). p′, l′ and w′ are parame-
ters and variables defined in components and super-classes of O.

The partial representation relies on the definition of four sets instead of two
for the complete representation. In other words, an complete representation of
an object is a partial representation for which the sets CO and HO are empty.
A complete representation has for advantage to completely define an object
independently of all other objects. On the other hand, the interest of a partial
representation is to simplify the definition of an object by specifying only its
own characteristics and by not repeating the common points that it shares with
existing objects.

3 Description of object relationships

3.1 Instantiation relationship

Conjecture 3.1 The instantiation relationship between an object class O and
its instance A is noted A : O and satisfies :

UA = UO (7)

BA = BO (8)

CA = CO (9)

HA = HO. (10)

In other terms, a class and its instances are identical by their form and their be-
havior. However their parameters and their variables generally contain different
values.

Example 3.1 Storage tank. Figure 1 depicts a generic tank with two open-
ings at the bottom. This type of tank can be described by the object-class T

defined by its complete behavioral representation :

T = (U∗

T ,B∗

T ), (11)
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T

Pt

Pb

h

Q1 Q2

L

Figure 1: Tank: T-class

with :

U∗

T = R × R
+4 × R

+ × (R2+ × R
2) (12)

B∗

T =















t,









ρ
g
A
h









, Pt(t),









L(t)
Pb(t)
Q1(t)
Q2(t)









∣

∣

∣

∣

∣

∣

∣

∣

ET















ET =









Pb(t) − Pt(t) = ρ · g · L(t)
Q1(t) + Q2(t) = A · dL(t)/dt
Pt(t) = 105

0 ≤ L(t) ≤ h









ρ, g, A and h are the parameters of the tank, i.e. the density of the fluid
contained in T, the gravitation constant, the section area and the height of the
tank. Pt(t) and Pb(t) are the pressures of the fluid at the top and at the bottom
of the tank respectively. Q1(t) and Q2(t) are the input-output flow rates and
L(t) is the level of water in the tank. L(t), Pb(t), Q1(t) and Q2(t) are regarded
by the modeler as external variables, i.e. variables susceptible of exchange with
other objects.

Let us consider a particular case of tank with the same characteristics as
T but with : A = 1m2 and h = 3m. A model of this tank, noted T1, is thus
regarded as an instance of T and is defined by :

T1 : T(A = 1, h = 3). (13)

3.2 Composition and generalization relationships

Let O be an object class whose the composition or the generalization sets are
not empty, e.g. either HO = {∅} and CO = {A}, or CO = {∅} and HO = {A}
with A 6= O. In the first case A is a component of O while in the second case A

is a super-class of O. Let (U∗

O
,B∗

O
) be the complete representation of O with:

U∗

O
= TO × P∗

O
×W∗

O
× L∗

O
.
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Conjecture 3.2 The composition and generalization relationships imply that
parameters and variables of A are added to those of O such that:

P∗

O = PO × P∗

A (14)

W∗

O = WO ×W∗

A (15)

L∗

O = LO × L∗

A. (16)

The complete behavioral model is then given by:

B∗

O = BO ∩ B∗

A (17)

The special case: A = O is handled by setting:

CO = {O}
def
=⇒ CO = {∅}. (18)

From an algebraic point of view, composition and generalisation relationships
imply that the behavioral equation system of O is augmented by the behavioral
equations of A. But equation (17) also shows that the complete behaviour of O

corresponds to the intersection of two behavioral sets BO and B∗

A
.

Example 3.2 Electrical resistor.

i1(t) i2(t)

v2(t)v1(t)

D

(a) D: electrical dipole class

i1(t) i2(t)

v2(t)v1(t)

R

(b) R: resistor class

Figure 2: Object models of electrical dipoles

Figure 2 shows two classes of electrical components. D is the generic class
of an electrical dipole and R corresponds to the resistor class. The complete
behavioral description of D is given by :

D = (U∗

D,B∗

D) (19)

U∗

D = R × {∅} × {∅} × R
4 (20)

B∗

D =















t,









i1(t)
i2(t)
v1(t)
v2(t)









∣

∣

∣

∣

∣

∣

∣

∣

i1 + i2 = 0 ∀v1(t), v2(t)















(21)

The class R can be viewed as a subclass of D. A partial description of R is
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Q1 Q2

P1 P2

x

x

ac
tu
at
o
r
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o
d
y

uA

B

(a) Valve

x

u

g(·)

(b) Actuator law

Figure 3: Valve: V-class

then defined by :

R = (CR,HR,UR,BR) (22)

HR = {D} (23)

CT = {∅} (24)

UT = R × R
+ × {∅} × R

2 (25)

BT =















t, R,

(

i(t)
u(t)

)

∣

∣

∣

∣

∣

∣

∣

∣

∃









D.i1
D.i2
D.v1
D.v2









with:





u(t) = D.v1(t) − D.v2(t)
i(t) = D.i1(t)
u(t) = R · i(t)



















,

(26)

where O.x denotes a variable x of the object class O.

Example 3.3 Control valve. Figure 3 depicts a control valve composed of a
body and an actuator. The object-class V associated with the valve is described
by its relative behavioral representation:

V = (CV,HV,UV,BV) (27)

HV = {∅}

CV = {A1 : A, B1 : B}

UV = R × {∅} × {∅} × {∅}

BV =

{

t

∣

∣

∣

∣

∃

(

A1.x(t)
B1.x(t)

)

with: B1.x(t) = A1.x(t)

}

A1 is an instance of the object-class actuator A and B1 an instance of the
object-class body B. A1.x(t) and B1.x(t) denote two different variables: the
position of the actuator stem and the relative position of the plug/seat respec-
tively. The behavioral equation of BV corresponds to the mechanical coupling
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between the plug of the valve and the actuator stem. The complete behavioral
representation of B is defined by:

B = (U∗

B,B∗

B) (28)

U∗

B = R × R
+ × {∅} × (R3 × R

2+)

B∗

B =



















t, Kv,











x(t)
Q1(t)
Q2(t)
P1(t)
P2(t)











∣

∣

∣

∣

∣

∣

∣

∣

∣

Q1(t) = x(t) · Kv · (P1(t) − P2(t))
Q2(t) = −Q1(t)



















(29)

The valve coefficient Kv is a parameter and P1(t)/P2(t), Q1(t)/Q2(t) denote the
upstrem/downstream pressures and flow rates of the valve body. The complete
behavioral representation of A of the actuator is defined by :

A = (U∗

A,B∗

A) (30)

U∗

A = R
+ × {∅} × {∅} × R

2

B∗

A =

{

t,

(

x(t)
u(t)

)∣

∣

∣

∣

x(t) = g(t, u)

}

u(t) denotes the control signal of the actuator. The behavioral model of the
actuator is given by the characteristic law f(·) plotted in figure (3(b)). According
to the definitions of B and A, and the definition of the composition relationship,
the complete behavioral representation of V is given by:

U∗

V = R
+ × R × {∅} × (R5 × R

2+).

B∗

V =































t, Kv,

















A1.u(t)
A1.x(t)
B1.x(t)

B1.Q1(t)
B1.Q2(t)
B1.P1(t)
B1.P2(t)

















∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

E∗

V































E∗

V =









A1.x(t) = B1.x(t)
B1.Q1(t) = B1.x(t) · B1.Kv · (B1.P1(t) − B1.P2(t))
B1.Q2(t) = −B1.Q1(t)
A1.x(t) = g(t, A1.u)









, (31)

where E∗

V
denotes the complete system of behavioral equations of V.

Conjecture 3.3 Given definitions 3.1 and 3.2, any partial behavioral represen-
tation of an object class O may be transformed into a complete representation if
the behavioral representations of components and super-classes of O are known.

3.3 Compositions of object-relationships

Composition and generalization relationships can be combined with each other.
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• Let C(·) be a composition application such that if A ∈ CO then O = C(A)
means that O is composed of A. It is straightforward to show that C is
reflexive, non symmetric and transitive.

• Let H(·) be a generalization application such that if A ∈ HO then O =
H(A) means that O is a subclass object of A. It is straightforward to
show that H is non reflexive, non symmetric but transitive.

Two possible compositions of those object applications are possible.

• O = C ◦ H(A) implies that O is an object class composed of an interme-
diate class B = H(A) a specialised class of A.

• O = H ◦ C(A) implies that O is a specialised class of B = C(A) which is
composed of the object class A.

In both cases, the complete behavioral representation of O is the same and
is given by:

O = (U∗

O,B∗

O) (32)

U∗

O = TO × P∗

O ×W∗

O × L∗

O (33)

P∗

O = PO × P∗

B = PO × PB × P∗

A (34)

W∗

O = WO ×W∗

B = WO ×WB ×W∗

A (35)

L∗

O = LO × L∗

B = LO × LB × L∗

A (36)

B∗

O = BO ∩ B∗

B = BO ∩ BB ∩ B∗

A (37)

This result is directly deduced from the definition of composition and general-
ization relationships, c.f. equations (14) and (17), applied successively to O and
B by assuming that B has only one component (A) and no super-class.

4 Object-oriented modeling of interconnected dy-

namic systems

The interconnection of dynamic systems may be regarded in the object-oriented
paradigm as the composition of objects.

Definition 4.1 Let S be the object class of a dynamic system defined over a
time range TS and composed of interconnected components. Its partial behavioral
representation is defined by:

S = (CS,HS,US,BS) (38)

HS = {∅} (39)

CS = {C1, · · · , Cn} (40)

US = TS (41)

BS = {t | ∃w′ ∈ (WC1
× · · · ×WCn

) with: f(t, w′) = 0} , (42)
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where C1, · · · , Cn are objects associated with the system components and f(·)
contains all the interconnection equations between the external variables w′ of
the components.

Example 4.1 Electrical circuit.
Let C be the object class of an electrical circuit depicted in figure 4(a) by

the interconnection of two electrical components: a battery B and a resistor R.
The partial behavioral representation of C is defined as follows:

C = (CC,HC,UC,BC) (43)

HS = {∅} (44)

CS = {B1 : B, R1 : R} (45)

US = R × {∅} × {∅} × {∅} (46)

BS =















t

∣

∣

∣

∣

∣

∣

∣

∣

∃









B1.U(t)
B1.i(t)
R1.U(t)
R1.i(t)









with:

[

B1.U(t) = R1.U(t)
B1.i(t) = R1.i(t)

]















R and B are given by:

R = (U∗

R,B∗

R) (47)

U∗

R = R × R
+ × {∅} × R

2 (48)

B∗

R =

{

t, R,

(

U(t)
i(t)

)∣

∣

∣

∣

U(t) = R · i(t)

}

. (49)

B = (U∗

B ,B∗

B) (50)

U∗

B = R × R
+ × {∅} × R

2 (51)

B∗

B =

{

t, E,

(

U(t)
i(t)

)∣

∣

∣

∣

U(t) = E ∀i(t)

}

. (52)

According to the definition of the instantiation, composition and generalization
relationships, the complete behavioral representation of C is then given by:

U∗

C = R × R
2+ × {∅} × R

4.

B∗

C =















t,

(

B1.E
R1.R,

)

,









B1.U(t)
B1.i(t)
R1.U(t)
R1.i(t)









∣

∣

∣

∣

∣

∣

∣

∣

E∗

C















E∗

C =









B1.U(t) = R1.U(t)
B1.i(t) = R1.i(t)
B1.U(t) = B1.E ∀B1.i(t)
R1.U(t) = R1.R · R1.i(t)









, (53)

As illustrated in figure 4(b), the complete behavioral model of C, i.e. the solu-
tion of E∗

C
, may be regarded as the intersection of the behavioral models of its

components B1 and R1, c.f. equation (17).
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Figure 4: Interconnection of electrical components

5 Link between behavioral representations and

Modelica c©

Table 2 presents the implementation of a model class O into the object-oriented
language Modelica [Elmqvist et al., 1999]. O is defined by its partial behavioral
representation :

O = (CO,HO,UO,BO) (54)

HO = {A} (55)

CO = {B1 : B} (56)

UO = R × R × R × R (57)

BO = {t, p, l, w | ∃w′ ∈ (WA ×WB) with: f(t, p, l, w, w′) = 0} . (58)

O is an subclass of A and is composed of an object B1. O has one parameter
p, one internal variable l and one external variable w. w′ denotes the vector of
external variables of A and B1. The instruction time corresponds to the time
variable t. Note that the structure of the Modelica model is split up into four
parts corresponding to the sets HO, CO, UO and BO. Accordingly, an automatic
Modelica code generator from behavioral representations is possible.

6 Conclusion

This paper presents a mathematical interpretation of the object-oriented model-
ing paradigm inspired from the Willems’ behavioral approach of systems theory.
The object modeling of interconnected dynamic systems is expressed as a set
computation problem. This result is a first step that could enhance development
of new identification methods of object-oriented models based on set computa-
tion techniques.
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Table 2: Implementation of a partial behavioral representation into Modelica
class O

// 1: INHERITANCE SET: HO = {A}
extend A

// 2: COMPOSITION SET: CO = {B1 : B}
B B1;
// 3: UNIVERSAL SET: UO = (TO,PO,LO,WO)
parameter p; PO

local Real l; LO

Real w; WO

// 4: BEHAVIORAL MODEL: BO

equation

f(time, p, l, w, w′) = 0;
end O
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