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Robust H2 control of Markovian jump systems with uncertain switching probabilities
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This article deals with the robustH2 control problem for a class of Markovian jump linear systems with uncertain
switching probabilities. The uncertainties under consideration appear both in the system parameters and
in the mode transition rates. First, a new criterion based on linear matrix inequalities is established for
checking the robust H2 performance of the uncertain system. Then, a sufficient condition for the existence of
the state-feedback controllers is established such that the closed-loop system is quadratically mean square stable
and has a certain level of robust H2 performance in terms of linear matrix inequalities with equality constraints.
A globally convergent algorithm is also presented to construct such controllers effectively. Finally, an illustrative
numerical example is used to demonstrate the developed theory.
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1. Introduction

The objective of the robust H2 control problem is to

design a controller such that the resulting closed-loop

system achieves a certain level of H2 performance

in spite of the system model uncertainties. The H2

performance of a system may be regarded as a measure

of the average response energy over impulsive inputs

(Dullerud and Paganini 2000) and hence can be used

to character the transient response performance of

the system. However, a system with an extremely good

H2 performance for the nominal operation model

could be very sensitive to the parameter uncertainties

(Doyle 1978). On the other hand, a very robust

controller may also tend to make the H2 performance

poor generally (Zhou, Doyle and Glover 1996). Thus,

it is very natural to keep both the required H2

performance and the desired robustness of the system

in mind when designing controllers.
On the other hand, a great deal of attention has

recently been devoted to the study of Markovian jump

linear systems (MJLSs). This class of systems can model

dynamic systems subject to random abrupt variations in

their structures and have many applications (Mariton

1990; Mahmoud and Shi 2003). From a mathematical

point of view, MJLSs are a special class of stochastic

systems with system parameters changed randomly at

discrete time points governed by a Markov process.

A great number of control issues concerning the

nominal systems have been investigated, such as

stabilisation (Ji and Chizeck 1990; Feng et al. 1992;

Yuan and Mao 2004), H2 control (Costa, do Val and
Geromel 1999; de Farias et al. 2000; do Val, Geromel
and Goncalves 2002),H1 control (de Farias et al. 2000;
Cao, Lam and Hu 2003) and model reduction (Zhang,
Huang and Lam 2003). As forMJLSs with uncertainties

only in the system matrices, the issues of robust
stabilisation (El Ghaoui and Rami 1996; Boukas,
Shi and Benjelloun 1999), robust Kalman filtering
(Shi, Boukas andAgarwal 1999) and robustH1 control
(Shi and Boukas 1997; Cao and Lam 2000) have also
been well studied.

Moreover, the study of MJLSs with uncertain
switching probabilities is of its own interest because

these uncertainties can destabilise MJLSs or degrade

their performance as the uncertainties in system

matrices do (Xiong, Lam, Gao and Ho 2005). In the

literature, two descriptions concerning the uncertain

switching probabilities have been proposed. The first is

the polytopic model (El Ghaoui and Rami 1996; Costa,

do Val and Geromel 1999), where the mode transition

rate matrix is assumed to be in a convex hull with

known vertices. However, this approach often leads to

too many linear matrix inequalities (LMIs) (Xiong

et al. 2005). The other is the element-wise description

(Shi and Boukas 1997; Boukas, Shi and Benjelloun

1999; Mahmoud and Shi 2003), where bounded

uncertainties can appear in all the elements of the

mode transition rate matrix. Recently, a modified

element-wise description is addressed in Xiong et al.

(2005), where the robust stability and robust
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stabilisation problems were investigated. In the current
article, we study the robust H2 control problem for
MJLSs and adopt an improved bounding technique
for the matrix inequalities which gives less conservative
results than those in Shi and Boukas (1997); Boukas,
Shi and Benjelloun (1999); Mahmoud and Shi (2003);
and Xiong et al. (2005).

In this article, we consider the robust H2 control
problem for uncertain continuous-time MJLSs.
The uncertainties are assumed to be norm-bounded
in the system matrices and to be element-wise bounded
in the mode transition rate matrix. We aim at designing
a linear state-feedback controller such that, over all
admissible uncertainties, the closed-loop system is
quadratically mean square stable and the H2 norm of
the operator from the disturbance inputs to the
regulated outputs is no more than a prescribed upper
bound. The solution to the addressed problem is
related to a set of coupled linear matrix inequalities
with equality constraints and an effective algorithm
(El Ghaoui, Oustry and Rami 1997; Leibfritz 2001) is
suggested to construct the controller. Finally,
a numerical example is offered to illustrate the
usefulness of the proposed approach.

Notation: The notations in this article are standard.
R

n and R
m�n denote the n-dimensional Euclidean space

and the set of all m� n real matrices, respectively.
R
þ refers to the set of all strictly positive real numbers.

S
n�n is the set of all n� n real symmetric positive

definite matrices and the notation X�Y (respectively,
X4Y ) where X and Y are real symmetric matrices,
means that X�Y is positive semi-definite (respectively,
positive definite). I denotes the identity matrix with
compatible dimensions. The superscript ‘T ’ stands for
the transpose and trace( � ) is the trace of a square
matrix. k � k2 refers to the Euclidean norm for vectors
and induced two-norm for matrices. Moreover, let
(�,F , P) be a complete probability space. E( � ) stands
for the mathematical expectation operator.

2. Problem formulation

Consider the following class of MJLSs with uncertain
switching probabilities defined on a complete prob-
ability space (�,F , P):

_xðtÞ ¼ Âðr̂ðtÞÞxðtÞ þ B̂ðr̂ðtÞÞuðtÞ þ B̂wðr̂ðtÞÞwðtÞ

zðtÞ ¼ Ĉðr̂ðtÞÞxðtÞ þ D̂ðr̂ðtÞÞuðtÞ, t � 0
,

(
ð1Þ

where x(t)2R
n is the system state, uðtÞ 2 R

nu is the
control input and wðtÞ 2 R

nw is the disturbance input
and zðtÞ 2 R

nz is the regulated output. The mode
jumping process fr̂ðtÞ : t � 0g is a continuous-time,
discrete-state homogeneous Markov process on the

probability space, takes values in a finite state space

S ¼
�
{1, 2, . . . , s} and has the mode transition

probabilities

Pr r̂ðtþ �tÞ ¼ j j rðtÞ ¼ ið Þ ¼
�̂ij�tþ oð�tÞ if j 6¼ i

1þ �̂ii�tþ oð�tÞ if j ¼ i
,

�

where �t4 0 and lim�t!0ðoð�tÞ=�tÞ ¼ 0, �̂ij � 0,

ði, j 2 S, j 6¼ iÞ, denotes the switching rate from mode

i to mode j and �̂ii ¼
�
�
Ps

j¼1, j 6¼i �̂ij for all i2S.

The initial condition of the system state is x0 ¼
�

x(0)

and the initial probability distribution of r̂0 ¼
�

r̂ð0Þ

is given by � ¼
�
(�1, . . . ,�s) in such a way that

Prðr̂0 ¼ iÞ ¼ �i with �i� 0, i2S and
Ps

i¼1 �i ¼ 1.

The matrices Âi ¼
�

Âðr̂ðtÞ ¼ iÞ, B̂i ¼
�

B̂ðr̂ðtÞ ¼ iÞ,

B̂wi ¼
�

B̂wðr̂ðtÞ ¼ iÞ, Ĉi ¼
�

Ĉðr̂ðtÞ ¼ iÞ and D̂i ¼
�

D̂ðr̂ðtÞ ¼ iÞ, i2S, are appropriately dimensioned con-

stant real matrices for each operation mode i2S and it

is supposed that the system matrices Âi, B̂i, B̂wi, Ĉi, D̂i,

i2S and the mode transition rate matrix

�̂ ¼
�
ð�̂ijÞ 2 R

s�s are not precisely known a priori,

but belong to the following uncertainty domains,

respectively:

Da ¼
�
fÂi ¼ Ai þ EaiFaiHai : F

T
aiFai � I, for all i 2 Sg

ð2aÞ

Db ¼
�
fB̂i ¼ Bi þ EaiFaiHbi : F

T
aiFai � I, for all i 2 Sg

ð2bÞ

Dbw ¼
�
fB̂wi ¼ Bwi þ EbwiFbwiHbwi : F

T
bwiFbwi � I,

for all i 2 Sg ð2cÞ

Dc ¼
�
fĈi ¼ Ci þ EciFciHci : F

T
ciFci � I, for all i 2 S g

ð2dÞ

Dd ¼
�
fD̂i ¼ Di þ EciFciHdi : F

T
ciFci � I, for all i 2 S g

ð2eÞ

D� ¼
�
f�̂ ¼ �þ��: j��ijj � 2 "ij, "ij � 0,

for all i, j 2 S, if j 6¼ ig ð2f Þ

where matrices Ai, Bi, Bwi, Ci, Di, Eai, Hai, Hbi, Ebwi,

Hbwi, Eci, Hci, Hdi, (i2S) and �¼
�
q(�ij) are known

constant real matrices of appropriate dimensions.

The matrices Fai, Fbwi, Fci and ��¼
�
(��ij) denote

the uncertainties in the system matrices and the mode

transition rate matrix, respectively. Moreover, �ij (�0)
denotes the estimated value of �̂ij and ��ij ¼

�
�̂ij � �ij

is referred to as switching probability uncertainty and

can take any value in [� 2"ij, 2"ij] for all i, j2S, j 6¼ i.

For all i2S, we have �ii ¼
�
�
Ps

j¼1, j 6¼i �ij and

��ii ¼
�
�
Ps

j¼1, j6¼i ��ij.
Let xðt;x0, r̂0Þ be the trajectory of the system state

of (1) from the initial system state x02R
n and the

initial operation mode r̂0 2 S, we have the following
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definition and result on the stochastic stability for the

nominal Markovian jump system of (1).

Definition 1 (de Farias et al. 2000): The nominal

Markovian jump system of (1) with u(t)� 0 and

w(t)� 0 is said to be mean square stable if

lim
t!1

Eðkxðt; x0, r̂0Þk
2
2Þ ¼ 0

for any initial conditions x02R
n and initial distribu-

tion for r̂0 2 S.

Proposition 1 (de Farias et al. 2000): The nominal

Markovian jump system of (1) with u(t)� 0 and w(t)� 0

is mean square stable if, and only if, the coupled linear

matrix inequalities

AT
i Pi þ PiAi þ

Xs
j¼1

�ijPj 5 0, for all i 2 S ð3Þ

are feasible for matrices Pi2S
n�n, i2S.

The next definition generalises the H2-norm

concept from continuous-time deterministic systems

to the stochastic Markovian jump case.

Definition 2 (Costa, do Val and Geromel

1999): Consider nominal Markovian jump system of

(1) with u(t)� 0, let Gzw denote the operator from w(t)

to z(t), the H2-norm of the operator Gzw is defined as

kGzwk
2
2 ¼

�
Xnw
k¼1

Xs
i¼1

�ikzk,ik
2
2,

where zk,i represents the output given by (1) when

(a) w(t)¼ ek�(t), �(t) is the unit impulse and ek is

the nw-dimensional unit vector formed by 1 at

the kth position and zeros elsewhere and
(b) x0¼ 0 and r̂0 ¼ i 2 S with probability distribu-

tion �¼ (�1,�2, . . . ,�s).

The following proposition shows that the H2

performance of the nominal system of (1) can be

calculated precisely in terms of a set of coupled linear

matrix equations.

Proposition 2 (Costa, do Val and Geromel 1999): The

nominal Markovian jump system of (1) with u(t)� 0 is

mean square stable and has H2 performance

kGzwk
2
2 ¼

Xs
i¼1

�i traceðB
T
wiPiBwiÞ ð4Þ

if the coupled linear matrix equations

AT
i PiþPiAiþ

Xs
j¼1

�ijPjþCT
i Ci¼ 0, for all i2S ð5Þ

have a unique solution Pi2S
n�n, i2S.

Based on Proposition 2, we introduce the following

definition for uncertain system (1).

Definition 3: For a prescribed scalar �H2
2R
þ, uncer-

tain MJLS (1) with u(t)� 0 is said to be quadratically

mean square stable and has robust H2 performance

kGzwk25 �H2
if there exist matricesPi2S

n�n, i2S, such
that the coupled linear matrix inequalities

Xs
i¼1

�i traceðB̂
T
wiPiB̂wiÞ5 �2H2

ð6Þ

ÂT
i PiþPiÂiþ

Xs
j¼1

�̂ijPjþ ĈT
i Ĉi50, for all i2S ð7Þ

hold over all admissible uncertainty domains (2).
Now, consider the state-feedback control law

uðtÞ ¼ Kðr̂ðtÞÞxðtÞ ð8Þ

where Ki ¼
�

Kðr̂ðtÞ ¼ iÞ 2 R
nu�n (i2S) is the controller

to be designed. Substituting the state-feedback con-

troller (8) into system (1) yields the corresponding

closed-loop system

_xðtÞ ¼ Âclðr̂ðtÞÞxðtÞ þ B̂wðr̂ðtÞÞwðtÞ

zðtÞ ¼ Ĉclðr̂ðtÞÞxðtÞ, t � 0

(
ð9Þ

where Âcli ¼ ðAi þ BiKiÞ þ EaiFaiðHai þHbiKiÞ and
Ĉcli ¼ ðCi þDiKiÞ þ EciFciðHci þHdiKiÞ, i2S.

The problems of robust H2 performance analysis

and synthesis for uncertain Markovian jump system (1)

will be explored based on linear matrix inequality
machinery.

To obtain the main results of this article, the

following lemmas will be used.

Lemma 1 (Xie 1996): Given real matrices Q, E and H

of appropriate dimensions with Q¼QT, then

Qþ EFHþ ðEFH ÞT 5 0

for all F satisfying FTF� I if, and only if, there exists

some real number �2R
þ such that

Qþ �HTHþ
1

�
EET 5 0:

Lemma 2: Given any real number "2R and any square
matrix Q2R

n�n, the matrix inequality

"ðQþQTÞ � "2TþQT �1QT

holds for any matrix T2S
n�n.

Proof: The proof follows from the inequality

0 � ð"T ð1=2Þ �QT �ð1=2ÞÞð"T ð1=2Þ �QT �ð1=2ÞÞT

¼ "2TþQT �1QT � "ðQþQTÞ

immediately. œ
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In order to simplify the proof of the main results,

we present the following lemmas.

Lemma 3: Given real matrices Q, P, D, E and H

of appropriate dimensions with Q¼QT5 0 and

P¼PT4 0, then

Qþ ðDþ EFH ÞTPðDþ EFH Þ5 0 ð10Þ

holds for all F satisfying FTF� I if, and only if, one of

the following conditions holds:

(a) there exists some real number �2R
þ such that

Qþ �HTHþDTPD DTPE

ETPD ��Iþ ETPE

� �
5 0; ð11Þ

(b) there exists some real number �2R
þ such that

Q DT HT

D �P�1 þ �EET 0

H 0 ��I

2
64

3
755 0: ð12Þ

Proof: We first prove part (a), in view of Schur

complement equivalence, inequality (10) is equivalent to

Q ðDþ EFH ÞT

Dþ EFH �P�1

" #
5 0

which can be rewritten as

Q DT

D �P�1

� �
þ

0

E

� �
F H 0
� �

þ
HT

0

� �
FT 0 ET
� �

50:

Using Lemma 1, the above inequality holds for all F

satisfying FTF� I if, and only if, there exists a real

number �2R
þ such that

Qþ �HTH DT

D �P�1 þ
1

�
EET

2
4

3
55 0:

By applying Schur complement equivalence again,

we conclude that the above inequality is equivalent to

Qþ �HTH DT 0

D �P�1 E

0 ET ��I

2
64

3
755 0

Pre- and post-multiply both sides of the above

inequality by

I 0 0

0 0 I

0 I 0

2
64

3
75

we have

Qþ �HTH 0 DT

0 ��I ET

D E �P�1

2
64

3
755 0

which is equivalent to (11) in view of Schur

complement equivalence. This completes the proof of

part (a). To prove part (b), define � ¼
�
ð1=�Þ; we have

inequality (11) is equivalent to inequality (12) by

Schur complement equivalence. This completes the

proof. œ

3. Robust H2 control

In the section, the robust H2 performance analysis

problem is addressed first in terms of coupled linear

matrix inequalities, then the associated synthesis

problem is dealt with in terms of the solvability of

a set of coupled linear matrix inequalities with

equality constraints, which can be solved using the

sequential linear programming method developed in

Leibfritz (2001).

3.1. Robust H2 performance analysis

The goal of this section is to develop a criterion for

testing the robust H2 performance of the uncertain

Markovian jump system (1) over the uncertainty

domains in (2). This criterion is stated in the following

theorem in terms of coupled linear matrix inequalities.

Theorem 1: For a prescribed scalar �H2
2R
þ,

uncertain Markovian jump system (1) with u(t)� 0 is

quadratically mean square stable and satisfies

kGzwk25 �H2
over all the uncertainty domains in (2) if

there exist matrices Pi2S
n�n, Tij2S

n�n, Wi 2 S
nw�nw

and scalars �ai2R
þ, �bwi2R

þ, �ci2R
þ, i, j2S, j 6¼ i,

such that the coupled linear matrix inequalities

Xs
i¼1

�i traceðWiÞ5 �2H2
ð13Þ

�Wiþ�bwiH
T
bwiHbwiþBT

wiPiBwi BT
wiPiEbwi

ET
bwiPiBwi ��bwiIþET

bwiPiEbwi

" #

50, for all i2S ð14Þ

Q1i CT
i Eci PiEai M1i

ET
ciCi ��ciIþ ET

ciEci 0 0

ET
aiPi 0 ��aiI 0

MT
1i 0 0 ��1i

2
6664

3
7775

5 0, for all i 2 S ð15Þ
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hold, where

Q1i ¼ AT
i Pi þ PiAi þ CT

i Ci

þ
Xs
j¼1

�ijPj þ
Xs

j¼1, j6¼i

"2ijTij þ �aiH
T
aiHai þ �ciH

T
ciHci

M1i ¼

h Pi � P1 Pi � P2 � � � Pi � Pi�1

Pi � Piþ1 � � �Pi � Ps

i
�1i ¼ diagðTi1,Ti2, . . . ,Tiði�1Þ,Tiðiþ1Þ, . . . ,TisÞ:

Proof: According to Definition 3, inequality (6) holds

if and only if there exist matrices Wi 2 S
nw�nw , i2S,

such that (13) and

B̂T
wiPiB̂wi 5Wi

hold. Note that B̂wi ¼ Bwi þ EbwiFbwiHbwi, the above

inequality is

�WiþðBwiþEbwiFbwiHbwiÞ
TPiðBwiþEbwiFbwiHbwiÞ50:

ð16Þ

Applying part (a) of Lemma 3, the above inequality

holds for all Fbwi satisfying FT
bwiFbwi � I if and only if,

there exists a real number �bwi2R
þ such that (14)

holds.
On the other hand, because of �̂ij ¼ �ij þ��ij and

��ii ¼ �
Ps

j¼1, j6¼i ��ij, in view of Lemma 2, we have

Xs
j¼1

��ijPj¼
Xs

j¼1, j 6¼i

��ijðPj�PiÞ

¼
Xs

j¼1, j 6¼i

�
1

2
��ijðPj�PiÞþ

1

2
��ijðPj�PiÞ

�

�
Xs

j¼1, j6¼i

�
ð
1

2
��ijÞ

2TijþðPi�PjÞT
�1
ij ðPi�PjÞ

�

�
Xs

j¼1, j6¼i

h
"2ijT ijþðPi�PjÞT

�1
ij ðPi�PjÞ

i

holds for any matrix Tij2S
n�n, i, j2S, j 6¼ i. Hence,

inequality (7) holds if

ÂT
i Pi þ PiÂi þ

Xs
j¼1

�ijPj

þ
Xs

j¼1, j6¼i

�
"2ijT ij þ ðPi � PjÞT

�1
ij ðPi � PjÞ

�
þ ĈT

i Ĉi 5 0:

Note that Âi ¼ Ai þ EaiFaiHai and Ĉi ¼ Ci þ EciFciHci,

according to Lemma 1, the above inequality holds for

all Fai satisfying FT
aiFai � I if and only if there exists

a real number �ai2R
þ, such that

L1i þ ðCi þ EciFciHciÞ
T
ðCi þ EciFciHciÞ5 0 ð17Þ

where

L1i ¼ AT
i Pi þ PiAi þ

Xs
j¼1

�ijPj þ �aiH
T
aiHai

þ
1

�ai
PiEaiE

T
aiPi

þ
Xs

j¼1, j6¼i

�
"2ijTij þ ðPi � PjÞT

�1
ij ðPi � PjÞ

�
:

In view of part (a) of Lemma 3 again, we would
conclude that inequality (17) holds for all Fci satisfying
FT
aiFai � I if and only if there exists a real number
�ci2R

þ such that

L1i þ �ciH
T
ciHci þ CT

i Ci CT
i Eci

ET
ciCi ��ciIþ ET

ciEci

" #
5 0

which is equivalent to (15) by Schur complement
equivalence. This completes the proof. œ

In the following remarks, we provide a comparison
of the results in (Shi and Boukas 1997; Boukas, Shi
and Benjelloun 1999; Mahmoud and Shi 2003) and the
current article.

Remark 1: The model of the uncertain mode
transition rate matrix considered in Shi and Boukas
(1997); Boukas, Shi and Benjelloun (1999); Mahmoud
and Shi (2003) is of the form

D0� ¼
�
f�̂ ¼ �þ�� : j��ijj � 2"ij, "ij � 0,

for all i, j 2 Sg ð18Þ

A crucial difference between (18) and (2f ) is that "ii
is undefined in (2f ) for all i2S because we have
considered the probability constraint

Ps
j¼1 ��ij ¼ 0 to

ensure
Ps

j¼1ð�ij þ��ijÞ ¼ 0, which implies
"ii ¼

Ps
j¼1, j6¼i "ij, for all i2S.

Based upon Remark 1, we can prove that our
technique adopted in Theorem 1 gives less conservative
results than those in Shi and Boukas (1997); Boukas,
Shi and Benjelloun (1999); Mahmoud and Shi (2003) to
deal with the element-wise uncertainties.

Remark 2: Suppose there do exist uncertainties, that
is, at least one "ij4 0, j 6¼ i. The bounding technique for
the matrix inequalities used in Shi and Boukas (1997);
Boukas, Shi and Benjelloun (1999); Mahmoud and
Shi (2003) isXs

j¼1

��ijPj �
Xs
j¼1

2"ijPj ¼
Xs

j¼1, j6¼i

2"ijðPi þ PjÞ:

The bounding technique used in this article isXs
j¼1

��ijPj ¼
Xs

j¼1, j6¼i

��ijðPj � PiÞ

�
Xs

j¼1, j 6¼i

�
"2ijTij þ ðPi � PjÞT

�1
ij ðPi � PjÞ

�
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for any Tij2S
n�n. Then for those "ij4 0, ( j 6¼ i), we

choose Tij ¼ ð1="ijÞðPi þ PjÞ and have

"2ijTijþðPi�PjÞT
�1
ij ðPi�PjÞ

¼ "ijðPiþPjÞþ "ijðPiþPj�2PjÞðPiþPjÞ
�1
ðPiþPj�2PjÞ

¼ "ijðPiþPjÞþ "ij½PiþPjþ4PjðPiþPjÞ
�1Pj�4Pj�

¼ 2"ijðPiþPjÞþ4"ijPj½ðPiþPjÞ
�1
�P�1j �Pj

52"ijðPiþPjÞ

For those "ij¼ 0, ( j 6¼ i), we choose Tij ¼ ð1=�ÞI with

�2R
þ sufficiently small, such that

Xs
j¼1, j 6¼i

�
"2ijTij þ ðPi � PjÞT

�1
ij ðPi � PjÞ

�

5
Xs

j¼1, j 6¼i

2"ijðPi þ PjÞ ¼
Xs
j¼1

2"ijPj:

That is, our result is less conservative than the one in

Shi and Boukas (1997); Boukas, Shi and Benjelloun

(1999); Mahmoud and Shi (2003) as long as there exist

uncertainties.

3.2. Robust H2 controller synthesis

This section aims at designing a state-feedback

controller (8) such that the closed-loop system (9) is

quadratically mean square stable and satisfies

a prescribed level of H2 performance. The following

result provides a solution to the robust H2 control

problem (RH2P) for the uncertain system (1) with

uncertain switching probabilities in terms of

coupled linear matrix inequalities and equality

constraints.

Theorem 2: Consider uncertain Markovian jump

system (1), for a prescribed scalar �H2
2R
þ, there

exists a state-feedback controller (8) such that the

closed-loop system (9) is quadratically mean square

stable and has robust H2 performance kGzwk25 �H2
over

all the uncertainty domains in (2) if there exist matrices

Pi2S
n�n, Xi2S

n�n, Vi2S
n�n, Zi2S

n�n, Tij2S
n�n,

Wi 2 S
nw�nw , Yi 2 R

nu�n and scalars �ai2R
þ, �bwi2R

þ,

�ci2R
þ, i, j2S, j 6¼ i, such that the coupled linear

matrix inequalities

Xs
i¼1

�i traceðWiÞ5 �2H2
ð19Þ

�Wi BT
wi HT

bwi

Bwi �Xi þ �bwiEbwiE
T
bwi 0

Hbwi 0 ��bwiI

2
64

3
755 0 ð20Þ

Q3i M1i

MT
1i ��1i

� �
�0 ð22Þ

with equality constraints

PiXi ¼ I, ViZi ¼ I ð23Þ

hold for all i2S, where

Q2i ¼ ðAiXi þ BiYiÞ þ ðAiXi þ BiYiÞ
T
þ �aiEaiE

T
ai

Q3i ¼ �Vi þ
Xs
j¼1

�ijPj þ
Xs

j¼1, j6¼i

"2ijTij

and M1i and �1i are given in Theorem 1. In this case,

a controller (8) is given by Ki¼YiPi, i2S.

Proof: Firstly, in view of Lemma 3, we have that

LMIs (13) and (14) are equivalent to LMIs (19) and

(20) with Xi ¼
�

P�1i and �bwi ¼
�
ð1=�bwiÞ, respectively.

Next, consider the closed-loop system (9), let
�Ai ¼

�
Ai þ BiKi, �Ci ¼

�
Ci þDiKi, �Hai ¼

�
Hai þHbiKi

and �Hci ¼
�

Hci þHdiKi, then replacing matrices Ai,

Ci, Hai, Hci in inequality (17) with matrices �Ai, �Ci, �Hai,
�Hci, respectively, one has

�AT
i PiþPi

�Aiþ�aiPiEaiE
T
aiPi

þ
1

�ai
�HT
ai

�Haiþð �CiþEciFci
�HciÞ

T
ð �CiþEciFci

�HciÞ

þ
Xs
j¼1

�ijPjþ
Xs

j¼1, j 6¼i

½"2ijTijþðPi�PjÞT
�1
ij ðPi�PjÞ�50

ð24Þ

where �ai ¼
�
ð1=�aiÞ. Now let Vi2S

n�n such that

Xs
j¼1

�ijPj þ
Xs

j¼1, j6¼i

�
"2ijTij þ ðPi � PjÞT

�1
ij ðPi � PjÞ

�
� Vi

Q2i ðCiXi þDiYiÞ
T
ðHciXi þHdiYiÞ

T
ðHaiXi þHbiYiÞ

T Xi

CiXi þDiYi �Iþ �ciE
T
ciEci 0 0 0

HciXi þHdiYi 0 ��ciI 0 0

HaiXi þHbiYi 0 0 ��aiI 0

Xi 0 0 0 �Zi

2
6666664

3
7777775
5 0 ð21Þ
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which is equivalent to (22) in view of Schur comple-

ment equivalence and inequality (24) is equivalent to

�AT
i Pi þ Pi

�Ai þ Vi þ �aiPiEaiE
T
aiPi

þ
1

�ai
�HT
ai

�Hai þ ð �Ci þ EciFci
�HciÞ

T
ð �Ci þ EciFci

�HciÞ5 0:

Now, pre- and post-multiply both sides of the above

inequality by Xi and apply the changes of variables

Zi ¼
�

V�1i and Yi ¼
�
KiXi, and one obtains

L2i þ ½ðCiXi þDiYiÞ

þ EciFciðHciXi þHdiYiÞ�
T
½ðCiXi þDiYiÞ

þ EciFciðHciXi þHdiYiÞ�5 0

where

L2i ¼ ðAiXiþBiYiÞ þ ðAiXi þBiYiÞ
T
þXiZ

�1
i Xi

þ �aiEaiE
T
aiþ

1

�ai
ðHaiXiþHbiYiÞ

T
ðHaiXiþHbiYiÞ:

According to part (b) of Lemma 3, the above inequal-
ity holds for all Fci satisfying FT

ciFci � I if and only

if there exists a real number �ci2R
þ such that

L2i ðCiXiþDiYiÞ
T
ðHciXiþHdiYiÞ

T

CiXiþDiYi �Iþ�ciEciE
T
ci 0

HciXiþHdiYi 0 ��ciI

2
64

3
7550

which is equivalent to (21) in view of Schur comple-
ment equivalence. This completes the proof. œ

In the case when the mode transition rate matrix

is known exactly, we do not need to introduce the
additional variables Vi, Zi, i2S and the equality
constraints (23). The corresponding result is stated in
the following corollary in terms of coupled linear

matrix inequalities and can be proved similarly to that
of Theorem 2. It should be noticed that the condition is
necessary and sufficient since Lemma 2 is no longer
needed in the proof.

Corollary 1: Consider uncertain Markovian jump
system (1) with mode transition rate matrix known
exactly, for a prescribed scalar �H2

2R
þ, there exists

a state-feedback controller (8) such that the closed-loop

system (9) is quadratically mean square stable and has

robust H2 performance kGzwk25 �H2
over all the

uncertainty domains in (2a)–(2e) if, and only if, there

exist matrices Xi2S
n�n, Wi 2 S

nw�nw , Yi 2 R
nu�n and

scalars �ai2R
þ, �bwi2R

þ, �ci2R
þ, i2S, such that the

coupled linear matrix inequalities

Xs
i¼1

�i traceðWiÞ5 �2H2

�Wi BT
wi HT

bwi

Bwi �Xi þ �bwiEbwiE
T
bwi 0

Hbwi 0 ��bwiI

2
64

3
755 0

hold for all i2S, where

Q4i¼ ðAiXiþBiYiÞþ ðAiXiþBiYiÞ
T
þ�iiXiþ�aiEaiE

T
ai

M2i¼

� ffiffiffiffiffiffi
�i1
p

Xi
ffiffiffiffiffiffi
�i2
p

Xi � � �
ffiffiffiffiffiffiffiffiffiffiffiffi
�iði�1Þ
p

Xiffiffiffiffiffiffiffiffiffiffiffiffi
�iðiþ1Þ
p

Xi � � �
ffiffiffiffiffiffi
�is
p

Xi

�
�2i¼ diag X1,X2, . . . ,Xi�1,Xiþ1, . . . ,Xsð Þ

In this case, controller (8) is given by Ki ¼ YiX
�1
i , i2S.

It is observed that the solution set to Theorem 2

is not convex due to the equality constraints (23).

Now, let the equality constraints (23) be weakened

to the following semi-definite programming

relaxations:

Pi I

I Xi

� �
� 0,

Vi I

I Zi

� �
� 0 ð25Þ

and for a sufficiently small number �2R
þ, let the strict

inequalities (19), (20), (21) be replaced by

Xs
i¼1

�i traceðWiÞ þ � � �
2
H2

ð26Þ

�Wiþ�I BT
wi HT

bwi

Bwi �Xiþ�bwiEbwiE
T
bwi 0

Hbwi 0 ��bwiI

2
64

3
75� 0 ð27Þ

Q4i ðCiXi þDiYiÞ
T
ðHciXi þHdiYiÞ

T
ðHaiXi þHbiYiÞ

T M2i

CiYi þDiYi �Iþ �ciEciE
T
ci 0 0 0

HciXi þHdiYi 0 ��ciI 0 0

HaiXi þHbiYi 0 0 ��aiI 0

MT
2i 0 0 0 ��2i

2
6666664

3
7777775
5 0
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and

respectively, then the sequential linear programming

method (Leibfritz 2001) can be employed to find

a solution of Theorem 2. The solution of RH2P is

summarised below.

Algorithm RH2P: For a given precision �2R
þ, let N

be the maximum number of iterations and

a sufficiently small number �2R
þ be given.

(1) Determine P 0
i , X

0
i , V

0
i , Z

0
i , T

0
ij, W

0
i , Y

0
i , �

0
ai,

�0bwi, �
0
ci, i, j2S, j 6¼ i, satisfying (22) and (25)–

(28). Let k :¼ 0.
(2) Solve the following convex optimisation

problem for the variables Pi, Xi, Vi, Zi, Tij,

Wi, Yi, �ai, �bwi, �ci, i, j2S, j 6¼ i:

min
Xs
i¼1

traceðPiX
k
i þ Pk

i Xi þ ViZ
k
i þ Vk

i ZiÞ

subject to ð22Þ and ð25Þ�ð28Þ for all i 2 S:

(3) Let T k
i :¼ Pi, L

k
i :¼ Xi, U

k
i :¼ Vi and Rk

i :¼ Zi

for all i2S.
(4) If�����

Xs
i¼1

traceðT k
i X

k
i þ Pk

i L
k
i þUk

i Z
k
i þ Vk

i R
k
i Þ

� 2
Xs
i¼1

traceðPk
i X

k
i þ Vk

i Z
k
i Þ

�����5 �

then go to step (7), else go to step (5).
(5) Compute 	*2 [0, 1] by solving

min
	2½0,1�

Xs
i¼1

traceð½Pk
i þ 	ðT

k
i � Pk

i Þ�½X
k
i þ 	ðL

k
i � Xk

i Þ�

þ ½V k
i þ 	ðU

k
i � Vk

i Þ�½Z
k
i þ 	ðR

k
i � Zk

i Þ�Þ

(6) Let

Pkþ1
i :¼ Pk

i þ 	
	ðT k

i � Pk
i Þ,

Xkþ1
i :¼ Xk

i þ 	
	ðLk

i � X k
i Þ,

Vkþ1
i :¼ Vk

i þ 	
	ðUk

i � Vk
i Þ,

Zkþ1
i :¼ Zk

i þ 	
	ðRk

i � Zk
i Þ,

for all i2S, and k :¼ kþ 1, if k5N, then go to

step (2), else go to step (7).

(7) Stop. If
Ps

i¼1 traceðP
k
i X

k
i þ Vk

i Z
k
i Þ ¼ 2sn, then

a solution is found successfully, else a solution
cannot be found.

Remark 3: As explained in (Leibfritz 2001),
Algorithm RH2P always generates a strictly decreasing
sequence of the values of the objective function

f ðkÞ ¼
�
Xs
i¼1

traceðPk
i X

k
i þ Vk

i Z
k
i Þ:

Thus, { f (k)} always converges to some f *� 2sn and
if f *¼ 2sn, then the corresponding optimal values P	i ,
X	i , V

	
i , Z

	
i , T

	
ij, W

	
i , Y

	
i , �

	
ai, �

	
bwi and �

	
ci, (i, j2S, j 6¼ i),

are a solution of Theorem 2. Moreover, the sequence
fðPk

i ,X
k
i ,V

k
i ,Z

k
i ,T

k
ij,W

k
i ,Y

k
i ,�

k
ai,�

k
bwi,�

k
ciÞg generated by

Algorithm RH2P is bounded for all i2S.

4. Numerical example

In this section, in order to illustrate the usefulness and
flexibility of the theory developed in this article, we
present a numerical example. Attention is focused
on designing a robust H2 controller such that the
closed-loop system has guaranteed H2 performance
with respect to the uncertain switching probabilities.
It is assumed that the system under consideration has
two switching modes with uncertainties only in the
mode transition rate matrix. The system data of (1) are
as follows:

A1¼
0 0:1

0 1

� �
, A2¼

�1 0:1

0 �1

� �
,

B1¼
0:9

�1

� �
, B2¼

0:1

1

� �
C1¼

1 �0:1

0 1

� �
,

C2¼
1 0:1

0 1

� �
, D1¼

0

0

� �
, D2¼

0

0

� �

�¼
�1:9 1:9

10 �10

� �
, Bw1¼

1

0

� �
, Bw2¼

0:1

1

� �
,

x0¼
0

0

� �
"12¼ 0:9, "21¼ 4, �1¼ 0:5, �2¼ 0:5:

The nominal system of the uncertain system given
above is not mean square stable. Suppose that
a controller (8) is desired such that the closed-loop

Q3i þ �I ðCiXi þDiYiÞ
T
ðHciXi þHdiYiÞ

T
ðHaiXi þHbiYiÞ

T Xi

CiYi þDiYi �Iþ �ciE
T
ciEci 0 0 0

HciXi þHdiYi 0 ��ciI 0 0

HaiXi þHbiYi 0 0 ��aiI 0

XT
i 0 0 0 �Zi

2
6666664

3
7777775
� 0, ð28Þ
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system (9) is robustly mean square stable and has

robust H2 performance kGzwk25 �H2
with �H2

¼ 2

over all the uncertainties ��122 [�1.8, 1.8] and

��212 [� 8, 8]. One controller can be obtained based

on Corollary 1 by ignoring the effect of the uncertain-

ties and one solution is as follows:

X1 ¼
2:7721 �2:1463

�2:1463 2:3428

� �
,

X2 ¼
1:8839 �0:7832

�0:7832 2:0859

� �
, W1 ¼ 2:9163,

Y1 ¼ �14:7217 15:2169
� �

,

Y2 ¼ �12:4819 �15:0692
� �

, W2 ¼ 2:7685,

K1 ¼ �0:9693 5:6072
� �

,

K2 ¼ �11:4095 �11:5081
� �

:

Applying this controller, the resulting nominal

closed-loop system becomes mean square stable and

has the H2 performance �	H2
¼ 0:6022 (according to

Proposition 2) with associated Gramian matrices

P1 ¼
0:9028 0:7742

0:7742 0:8526

� �
, P2 ¼

0:4156 0:1794

0:1794 0:2616

� �
:

However, this controller cannot guarantee the H2

performance, even the stability of the closed-loop

system, over the admissible uncertainties. Let us

consider the case ��12¼�1.3 and ��21¼ 6; the

closed-loop system remains mean square stable but has

a largely degraded H2 performance as �	H2
¼ 12:4895

with associated Gramian matrices given by

P1 ¼
16:5255 17:6342

17:6342 19:0324

� �
, P2 ¼

5:9375 6:3536

6:3536 7:1234

� �
:

Moreover, in the case ��12¼�1.4 and ��21¼ 6, the

closed-loop system becomes mean square unstable.
Fortunately, Algorithm RH2P can be employed

here to construct a more powerful controller such that

the closed-loop system is robustly mean square stable

and preserves the desired H2 performance over all the

admissible uncertainties in the switching probabilities.

To compute with Algorithm RH2P for this example,

it is chosen that �¼ 10�10, N¼ 100 and �¼ 0.01.

One set of solutions is

P1 ¼
3:1248 3:1564

3:1564 4:0721

� �
, P2 ¼

3:0913 3:0874

3:0874 4:2268

� �
,

V1 ¼
0:1470 0:2766

0:2766 1:6164

� �
, V2 ¼

0:7002 0:6272

0:6272 1:0958

� �
,

X1 ¼
1:4744 �1:1428

�1:1428 1:1314

� �
,

X2 ¼
1:1959 �0:8735

�0:8735 0:8746

� �
,

Z1 ¼
10:0361 �1:7172

�1:7172 0:9125

� �
,

Z2 ¼
2:9306 �1:6773

�1:6773 1:8726

� �
,

T12 ¼
0:1300 0:2516

0:2516 0:8163

� �
,

T21 ¼
0:0114 �0:0020

�0:0020 0:0826

� �
,

W1 ¼ 3:1248, W2 ¼ 4:8752,

Y1 ¼ �4:8662 5:5920
� �

;

Y2 ¼ �0:3370 �5:7670
� �

,

K1 ¼ 2:4441 7:4113
� �

,

K2 ¼ �18:8467 �25:4163
� �

:

It can be verified that kP1X1�Ik2¼ 2.1292� 10�12, kP2

X2�Ik2¼ 2.1270� 10�12, kV1Z1�Ik2¼ 2.1220� 10�12,

kV2Z2�Ik2¼ 2.1324� 10�12. Therefore, the equality

constraints (23) are satisfied. By applying this con-

troller, the resulting nominal closed-loop system is

mean square stable and has the H2 performance

�	H2
¼ 0:8113 with associated Gramian matrices

P1 ¼
1:3998 1:1331

1:1331 1:1344

� �
, P2 ¼

0:5475 0:1689

0:1689 0:1835

� �
:

To contrast with the previous controller, let us consider

the same case ��12¼�1.3 and ��21¼ 6; the closed-

loop system remains mean square stable and achieves

the guaranteed H2 performance �	H2
¼ 1:2813 with

associated Gramian matrices

P1 ¼
2:0227 1:8720

1:8720 1:9836

� �
, P2 ¼

0:7768 0:4365

0:4365 0:4448

� �
:

In the case ��12¼�1.4 and ��21¼ 6; the closed-loop

system remains mean square stable as well as having

guaranteed H2 performance �	H2
¼ 1:3296 with asso-

ciated Gramian matrices

P1 ¼
2:0938 1:9561

1:9561 2:0814

� �
, P2 ¼

0:7947 0:4563

0:4563 0:4661

� �
:

Even in the extreme case ��12¼�1.8 and ��21¼ 8,

the closed-loop system is still mean square stable and

has guaranteed H2 performance �	H2
¼ 1:6052 with

associated Gramian matrices

P1 ¼
2:4519 2:3802

2:3802 2:5770

� �
, P2 ¼

0:9316 0:6099

0:6099 0:6271

� �
:
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5. Conclusions

This article discussed the robust H2 control problem
for MJLSs with uncertain switching probabilities.
Attention was focussed on the design of a robust
controller such that the closed-loop system is quad-
ratically mean square stable and guarantees a desired
robust H2 performance over all the admissible
uncertainties both in the system matrices and in the
switching probabilities. It led to a non-linear problem
consisting of a set of coupled linear matrix inequalities
and a set of equality constraints. An algorithm
involving convex optimisation was addressed to solve
such a problem. The developed theory was illustrated
by a numerical example and presented powerful utility
and flexibility.
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