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Two active fault diagnosis methods for additive or parametric faults are proposed. Both methods are based on
controller reconfiguration rather than on requiring an exogenous excitation signal, as it is otherwise common in
active fault diagnosis. For the first method, it is assumed that the system considered is controlled by an
observer-based controller. The method is then based on a number of alternate observers, each designed to be
sensitive to one or more additive faults. Periodically, the observer part of the controller is changed into the
sequence of fault sensitive observers. This is done in a way that guarantees the continuity of transition and global
stability using a recent result on observer parameterization. An illustrative example inspired by a field study of a
drag racing vehicle is given. For the second method, an active fault diagnosis method for parametric faults is
proposed. The method periodically adds a term to the controller that for a short period of time renders the system
unstable if a fault has occurred, which facilitates rapid fault detection. An illustrative example is given.

Keywords: active fault detection; parametric faults; observer parameterisation

1. Introduction

The task of designing a fault diagnosis system shares a
number of challenges with that of performing a system
identification, where the notion of persistent excitation
is crucial to obtain a high quality model. Similarly, if a
detection approach is based on a ‘passive’ approach,
i.e. only by logging the unmodified inputs and outputs,
faults can easily remain undetected, particularly if they
are parametric and reside in a part of the system, which
is never excited. Stoustrup and Niemann (1999)
presents an approach to fault diagnosis for systems
with parametric faults.

To that end, recently there has been significant
attention to the so-called active fault diagnosis methods,
(see e.g. Nikoukhah (1998); Nikoukhah, Campbell, and
Delebecque (2000); Campbell, Nikoukhah, and Horton
(2002); Campbell and Nikoukhah (2004); Niemann and
Poulsen (2005); Niemann (2006) and references
therein). In the active fault diagnosis methods, it is
assumed to be admissible to superimpose the control
input with a dedicated fault diagnosis signal, which is
designed to excite the faults in such a way that they
become better discernible at the output.

In this article, two other approaches are suggested
to make indiscernible faults temporarily visible without
having to add an external excitation signal.

The first approach proposed embarks from an
observer-based controller. The main idea is then to

temporarily change the observer into one, which has
been tuned to be maximally sensitive to one or more
specific faults. This procedure is then repeated
cyclically for all faults that should be detected.

The assumption of an observer-based controller is
without loss of generality, as any linear controller can
be (re-) written as an observer-based controller, pos-
sibly extended by a Youla-Kucera parameter.

The proposed method can be used as an on-line
algorithm, provided that emphasising the faults is
acceptable. Otherwise, the method can be used off-line,
meaning that the system is in a test mode (see below).

Along the same lines we will also propose a more
radical approach in this article. Rather than just

detuning the controller a bit to make it more sensitive

to faults, in this more aggressive approach an additional

term is added to the controller, intended to destabilise

the system temporarily in the presence of a parametric

fault. The rationale for this is that if the system becomes

unstable, this will be apparent very quickly, no matter

how much noise is present. Once the instability, and

hence the fault has been detected, of course the

destabilising controller part will be removed at once.
Destabilising the system is inadmissible for many

systems. Examples of systems where the method could
be applied is to discover short-circuits in electrical
motors, where it might be admissible to let the
magnetising currents increase shortly; a blocked air
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passage in a supermarket refrigeration system, where it

could be admissible to let the air temperature drop
or increase for a few minutes; or a clogging in a
fermentation process, where a mass-flow can be
allowed to change for some while.

Another approach for the latter method is to apply
the method as an off-line fault diagnosis approach. It
will be possible in many cases to do a fault diagnosis on

the system when it is out of work. This example can be
in connection with the service of the system. It will then
be possible to do the fault diagnosis in a controlled
environment. In some cases, it will be possible to place
the system in a test bench. It is clear that this off-line

approach can only be applied on systems with slowly
varying parametric faults.

The rest of this article is organised as follows.
A problem formulation is given in Section 2. Section 3
includes some preliminary results. The main results are
given in Section 4 and two illustrative examples are
given in Section 5. This article is closed with a

conclusion in Section 6.

2. Problem formulation

As mentioned above, in this article we shall propose
two methods for active fault diagnosis based on
controller reconfiguration. In the first problem formu-

lation, we shall seek to design the controller reconfi-
guration in order to sensitise the controller to a
number of fault signals. In the second and more
radical approach, we shall design the controller
reconfiguration in order to destabilise the system

temporarily in the presence of a fault.
In the sequel, we will consider a fault to be a

phenomenon which causes a system to exhibit an
abnormal and/or undesired behaviour. A fault signal is
a signal that models the effect of a fault as a signal
introduced in a differential equation or difference
equation model of the nominal system. An additive

fault is defined as a fault which can be modelled as
introducing an additional additive term in the differ-
ential/difference equation model. In contrast, a para-
metric fault can be modelled better by changes to the
parameters of the model. For example, for a linear
system, a parametric fault could be modelled as

changes to the matrices in a state space description of
its model (see below).

Consider the following state space description of
a given system:

_x ¼ Axþ Buþ Bddþ Bf f þ Bww,

z ¼ CzxþDzuuþDzddþDzf f þDzww,

y ¼ Cx,

ð1Þ

where u2Rnu is the control input signal vector, x2Rnx

is the state vector of the system, and y2Rny is the

measurement vector, d2Rnd is a vector of external

disturbances and f2Rnf is the vector of potential

additive fault signals. The auxiliary signal pair w2Rnw

and z2Rnz is introduced in order to model parametric

faults or faults of parasitic dynamics, which can in

either case be done by closing a loop by an artificial

feedback of the form

w ¼ Dz, ð2Þ

where D represents the parametric faults in the system,

or parasitic dynamics.
The feedback interconnection model of the system

presented in (1) and (2) is based on the so-called

standard model which is extensively used in robust

control (see e.g. Zhou, Doyle, and Glover (1995)). It is

well-known that a model structure of this type can be

employed to represent parametric faults that can be

modelled as parametric variations of the individual

parameters in a state space model, where the param-

eters depend functionally on the faults as rational

functions (of several variables). For non-rational

functional dependency (e.g. log, sin, . . . ,), it can be

exploited that all differentiable functions can be

approximated arbitrarily well by rational functions.
Based on this general model, we shall address the

following two design issues.

2.1. Controller reconfiguration for fault sensitization

We assume that the system (1) is controlled by a

full-order observer-based controller given by

_̂x ¼ Ax̂þ Buþ L0ð y� Cx̂Þ,

u ¼ Fx̂,

where x̂ 2 Rn is the estimate of the state vector,

L02R
p�n is an observer gain for which AþL0C is

Hurwitz and F2Rm�n is a feedback gain for which

AþBF is Hurwitz. Then, this controller is stabilising

according to the separation theorem.
For this part, we shall consider only additive faults,

i.e. we disregard the signals w and z in (1). Note that

a diagnosis system that can detect an additive fault

can also (under mild assumptions) detect a parametric

fault. This holds even for closed-loop systems,

provided that the control signal is known.
The challenge is now for each possible fault in the

system to find alternate parameters for the observer

gain L1, . . . ,Lq, such that each of the corresponding

observers becomes sensitive to one or more of the

q faults.
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Furthermore, we wish to find a procedure which
enables us to tune the observer gain from the nominal
one-to-one of the faulty ones such that:

. the transition from the nominal observer with
gain L0 to any of the fault sensitised gains, Li,
should be performed such that no unaccep-
tably large transients are created.

. the transition should be performed such that
the stability is maintained throughout the
transition.

In the subsequent sections, we shall describe a
method, which embarks from such a preliminary
design of a nominal and a number of fault sensitised
observer gains, and constructs an observer-based
feedback scheme which cycles through these observer
gains in order to make sure that all faults are detected
within a cycle, while at the same time preserving
stability throughout the cycle.

2.2. Controller reconfiguration for temporary
destabilisation

We assume that the system (1) is controlled by a
stabilising feedback controller given by

u ¼ KðsÞ y: ð3Þ

In this part, we focus on parametric faults, i.e. we
disregard the signal f in (1), and assume that the system
is closed by an artificial feedback from z to w, as
described by (2).

The problem is now to devise a method which
can discriminate a nonzero D as in (2) from the
nominal situation, D� 0, possibly by modifying the
controller K(s).

In this case, the method will depend critically on
the parametric nature of the fault, as an additive fault
signal cannot destabilise a linear control system.

3. Preliminaries

In order to present the two methods proposed in this
article, we shall introduce a number of preliminaries.

3.1. Observer interpolation with guaranteed stability

The first method proposed in this article relies on the
following recent result from Stoustrup and Komareji
(2008). The result establishes how one observer can be
modified continuously into another one without
transients. This idea will be exploited in the results
section of this article to change a nominal observer into
several other observers that have enhanced fault
diagnosis properties.

Lemma 3.1: Let L0 and L1 be two different Luenberger

observer gains for the following system:

_x ¼ Axþ Bu, y ¼ Cxþ du

and suppose that

V0ðxÞ ¼ x�Z0x and V1ðxÞ ¼ x�Z1x

are the corresponding Lyapunov functions to AþL0C

and AþL1C, respectively, with Zi4 0, i¼ 0, 1. Then a

family of observer gains L(�), 0��� 1 is given by

Lð�Þ ¼ F ‘ ðJL0,L1,Z,�I Þ, ð4Þ

where

JL0,L1,Z ¼
L0 I

ZðL1 � L0Þ I� Z

� �
, Z ¼ Z�10 Z1

and F ‘(M,X ) denotes a lower fractional transformation

of M by X (see e.g. Stoustrup and Komareji (2008)).
Moreover, L(�) satisfies L(0)¼L0 and L(1)¼L1.

In Stoustrup and Komareji (2008) the dual result is

proved. For completeness, we will give a direct proof

of this (yet unpublished) result here.

Proof: The intermediate points admit the Lyapunov

function given by

Zð�Þ ¼ ð1� �ÞZ0 þ �Z1:

To verify the above claim, we have to show that

Zð�ÞðAþ Lð�ÞC Þ þ ðAþ Lð�ÞC Þ�Zð�Þ5 0:

The first term in the left-hand side of the Lyapunov

inequality can be rewritten as

Zð�ÞðAþLð�ÞC Þ

¼ ðð1��ÞZ0þ�Z1ÞðAþðL0þ�ðI��ðI�ZÞÞ�1

�ZðL1�L0ÞÞC Þ

¼ ðð1��ÞZ0þ�Z1ÞðAþL0Cþ�ðI��ðI�Z�10 Z1ÞÞ
�1

�Z�10 Z1ðL1�L0ÞC Þ

¼ ðð1��ÞZ0þ�Z1ÞðAþL0Cþ�ðð1��ÞZ0þ�Z1ÞÞ
�1

�Z1ðL1�L0ÞCÞ

¼ ð1��ÞZ0 AþL0Cð Þþ�Z1 AþL1Cð Þ:

From this we can conclude that

Zð�ÞðAþ Lð�ÞC Þ þ ðAþ Lð�ÞC Þ�Zð�Þ

¼ ð1� �ÞðZ0ðAþ L0C Þ þ ðAþ L0C Þ
�Z0Þ

þ �ðZ1ðAþ L1C Þ þ ðAþ L1C Þ
�Z1Þ

¼ ð1� �Þ�0 þ ��1,

International Journal of Systems Science 3
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where

�0 ¼ Z0ðAþ L0C Þ þ ðAþ L0C Þ
�Z0

and

�1 ¼ Z1ðAþ L1C Þ þ ðAþ L1C Þ
�Z1:

According to the assumptions, Z0 and Z1 are

Lyapunov functions for AþL0C and AþL1C,
respectively, i.e.

�0 5 0 and �1 5 0

from which we infer that

ð1� �Þ�0 þ ��1 5 0,

which completes the proof. h

3.2. The Youla-Kucera parameterisation

The second method proposed in this article is based on
the primary and dual Youla-Kucera parameterisations

(see e.g. Zhou et al. 1995; Tay, Mareels, and Moore
1997), which will be introduced shortly in this section.

In particular, the second method in this article

proceeds by modifying the controller in terms of
designing explicitly a Youla-Kucera parameter.

Let a coprime factorisation of the system

Gyu(s)¼C(sI�A)�1B from (1) and a stabilising
controller K(s) from (3) be given by:

Gyu ¼ NM�1 ¼ ~M�1 ~N,

K ¼ UV�1 ¼ ~V�1 ~U,

N,M, ~N, ~M,U,V, ~U, ~V 2 RH1,

ð5Þ

where the eight matrices in (5) must satisfy the double

Bezout equation given by

I 0

0 I

� �
¼

~V � ~U

� ~N ~M

 !
M U

N V

� �

¼
M U

N V

� �
~V � ~U

� ~N ~M

 !
: ð6Þ

Explicit formulae for these eight transfer matrices can

be found, e.g. in Zhou et al. (1995).
Based on the above coprime factorisation of the

system Gyu(s) and the controller K(s), we can give a

parameterisation of all controllers that stabilise the
system in terms of a stable parameter Q(s), i.e. all

stabilising controllers are given by Tay et al. (1997):

KQ ¼ UðQÞVðQÞ�1, ð7Þ

where

UðQÞ ¼ UþMQ, VðQÞ ¼ VþNQ, Q 2 RH1

or by using a left-factored form

KQ ¼ ~VðQÞ�1 ~UðQÞ, ð8Þ

where

~UðQÞ ¼ ~UþQ ~M, ~VðQÞ ¼ ~VþQ ~N, Q 2 RH1:

Using the Bezout equation, the controller given

either by (7) or by (8) can be realised as a linear

fractional transformation (LFT) in the parameter Q,

KQ ¼ F l ðJK,QÞ, ð9Þ

where JK is given by

JK ¼
UV�1 ~V�1

V�1 �V�1N

 !
: ð10Þ

Reorganising the controller KQ given by (9) results

in the closed-loop system depicted in Figure 1.
Similarly, all plants stabilised by a given controller

can be described by the so-called dual Youla-Kucera

parameterisation. Indeed, all plants stabilised by a

controller K(s) can be described by:

Gf ðsÞ ¼ NðsÞ þ VðsÞSf ðsÞ
� �

MðsÞ þUðsÞSf ðsÞ
� ��1

ð11Þ

¼ ~MðsÞ þ Sf ðsÞ ~UðsÞ
� ��1 ~NðsÞ þ Sf ðsÞ ~VðsÞ

� �
, ð12Þ

where N, M, U, V and ~N, ~M, ~U, ~V are as described in

(5) and (6), and Sf(s)2RH1. This structure is depicted

in Figure 2.

Figure 1. Controller structure with parameterisation.
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For any parametric fault, there exists a unique dual
Youla-Kucera parameter, Niemann (2003). In Table 1,
Sf has been calculated for a number of different types
of parametric faults. An explicit formula for Sf is

Sf ðsÞ ¼ Gf ðsÞMðsÞ �NðsÞ
� �

VðsÞ � Gf ðsÞUðsÞ
� ��1

ð13Þ

¼ ~VðsÞ � ~UðsÞGf ðsÞ
� ��1 ~MðsÞGf ðsÞ � ~NðsÞ

� �
: ð14Þ

We shall use the following result in the sequel
(see e.g. Tay et al. (1997)).

Lemma 3.2: Let a nominal system Gyu(s) and a
nominal controller K(s) with factorisations as in (5) be
given. Assume that Gf is given by the parameter Sf as
(11), and KQ is given by the parameter Q as (7) or (8).
The closed-loop system formed by Gf and KQ is stable if
and only if:

(1) K internally stabilises G and
(2) Q internally stabilises Sf.

4. Main results

In the sequel, we shall state two results, which will be
used as a background for two corresponding
algorithms.

4.1. Observer tuning for fault sensitivity

The method proposed below is based on the following
theorem.

Theorem 4.1: Consider a system given by a model of
the form

_x ¼ Axþ Buu,

y ¼ Cx:

Assume that a number of stabilising observer gains L0,

L1, . . . ,Lq have been designed for this system, i.e. such

that AþLiC, i¼ 0, 1, . . . , q are all Hurwitz. Further,

assume that Zi, i¼ 0, 1, . . . , q are Lyapunov matrices

for the matrices AþLiC, i¼ 0, 1, . . . , q.
Consider an observer-based controller of the form

�C:
_̂x ¼ Ax̂þ Buþ Lð�ðtÞÞð y� Cx̂Þ

u ¼ Fx̂
,

(
ð15Þ

where

Lð�ðtÞÞ¼

F ‘ ðJLi0
,Li1

,Zi0,i1
,�ðtÞIÞ for t0� t5t1

..

.

F ‘ ðJLiq�1
,Liq ,Ziq�1, iq

,�ðtÞIÞ for tN�1� t5tN,

8>>>><
>>>>:

where Zik,ikþ1 ¼ Z�1k Zkþ1, and �(t) is a slowly varying

continuous function, chosen such that L(�(t)) is contin-

uous. This latter condition is equivalent to requiring that

�(ti)¼ 0 or �(ti)¼ 1 for all i¼ 0, . . . ,N.
Then, �C is a stabilising controller.

Proof: Theorem 4.1 follows from Lemma 3.1. It

should be noted that as the controller in Theorem 4.1 is

time-varying, the Lyapunov inequalities will have

an additional term. This term, however, will tend to

zero as the rate of the time variation tends to zero.

Note that it is straightforward to evaluate whether a

given solution is actually stable by evaluating the

Lyapunov function. This is only a sufficient condition,

so in principle the system could be stable even if this

test fails. In practice, however, this test is very useful.h

Based on this result, the fault diagnosis algorithm

can now be formulated.

Algorithm 1: Let a system with a nominal model of

the form (1) be given.

Step 1: Design (any) nominal observer-based con-

troller with observer gain L0 and feedback

gain F
Step 2: For each fault, design a new observer gain Li,

i¼ 1, . . . , q, that makes the corresponding

observer sensitive to that fault.
Step 3: Choose a sequence of these observer gains,

such that every gain appears at least once

in the sequence.
Step 4: Design �(t) as a continuous function that

varies between 0 and 1, where constant

intervals with value 0 or 1 are intervals

where a certain observer is fully active.
Step 5: Design �C as given by (15).

Figure 2. Plant structure with parameterisation.
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The outputs of the observer needs subsequent

signal processing in the standard fashion.

4.2. Controller retuning for destabilisation of
faulty system

The method proposed in this section proceeds by

detecting unstable trajectories for very short periods of

time that are provoked by controller modifications

that are designed to generate such behaviours in faulty

situations. Needless to say, this method should not be

used uncritically. The authors believe, however, that

there are cases, especially for systems with significant

noise/disturbances where parametric faults might

remain undetected by any other method. In such

cases, perhaps it can be acceptable to perform a test of

the proposed nature in an off-line situation, e.g. in a

test bench. For some less safety-critical systems it

might even be feasible to allow unstable behaviours in

on-line situations for ultra-short periods of time.

It should be noted that the unstable mode is exited as

soon as the fault is detected.
The method proposed below relies on the following

theorem.

Theorem 4.2: Let K(s) be a controller for a given plant,

which internally stabilises both the nominal model G(s)

and also the model Gf(s) 6¼G(s) for a faulty situation.

Then there exists a modification KQ of the controller
such that

(1) KQ internally stabilises G and
(2) KQ does not internally stabilise Gf

Proof: Since K stabilises Gf, Gf can be written in the
form (11) with a dual Youla-Kucera parameter Sf.
Introducing also a primary Youla-Kucera parameter Q
in the controller KQ as in (7) or (8), stability of the
closed-loop between Gf and KQ is equivalent to the
stability of a closed loop interconnection between Sf

and Q.
By a standard root locus argument, it is always

possible to choose a stable value of Q such that Q itself
is stable, and such that Q renders Sf unstable. This can
be done by introducing a number of right half-plane
zeros in Q and increasing the gain of Q until the poles
of the closed-loop cross the imaginary axis on their
way to the RHP zeros.

With this construction, KQ renders G stable since Q
is stable, and it renders Gf unstable, since the feedback
interconnection of Q and Sf is unstable. h

Based on this result, the fault diagnosis algorithm
can now be formulated.

Algorithm 2: Let a system with nominal model G(s)
and faulty model Gf (s) be given, and let a controller
K(s) that stabilises both be given.

Step 1: Compute Sf, e.g. by using (13).

Table 1. The connection between different system parametric faults in terms of D and the dual
Youla-Kucera parameter Sf.

Fault description, Gyu(D) The dual Youla-Kucera parameter, Sf (D)

GyuðDÞ ¼ ðIþ DÞGyu
Sf ðDÞ ¼ ~MDðI�N ~UDÞ�1N

GyuðDÞ ¼ GyuðIþ DÞ Sf ðDÞ ¼ ~NDðI�U ~NDÞ�1M

GyuðDÞ ¼ Gyu þ D Sf ðDÞ ¼ ~MDðI�U ~MDÞ�1M

GyuðDÞ ¼ GyuðIþ DÞ�1 Sf ðDÞ ¼ � ~NDðIþM ~VDÞ�1M

GyuðDÞ ¼ ðIþ DÞ�1Gyu Sf ðDÞ ¼ � ~MDðIþ V ~MDÞ�1N

GyuðDÞ ¼ GyuðIþ DGyuÞ
�1 Sf ðDÞ ¼ � ~NDðIþN ~VDÞ�1N

GyuðDÞ ¼ ðNþ DNÞðMþ DMÞ
�1

Sf ðDÞ ¼ � ~N ~M
� � DM

DN

� �
Iþ V �U

� � DM

DN

� �� ��1

GyuðDÞ ¼ ð ~Mþ D ~MÞ
�1
ð ~Nþ D ~NÞ Sf ðDÞ ¼ Iþ D ~M D ~N

� � U

V

� �� ��1
D ~M D ~N

� � M

�N

� �
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Step 2: Find Q as any stable transfer function that
destabilises Sf (see, e.g. the constructive
proof of Theorem 4.2).

Step 3: Compute KQ by (7) or (8).
Step 4: Switch periodically between K and KQ as

frequently as required (see below).
Step 5: Detect if unstable trajectories are found

during the duty cycle of KQ.

Note that it is assumed that K also stabilises the
faulty system. The reason for this is that otherwise
there would be no reason to destabilise the system by
another controller. The phrase ‘as often as required’
in Step 2 should be taken to mean the following:

(1) the switching period should be determined as
a trade-off between the cost of postponing the
detection of the fault and the cost of running
the non-nominal controller KQ,

(2) the duty cycle of the switch to KQ should be
determined by the noise level, i.e. how long an
unstable transient is needed to detect the fault
with sufficient certainty.

The switching controller approach has been applied
in Stoustrup and Niemann (2004) in connection with
fault tolerant control. Here, it has been shown that it
is possible to stabilise a faulty system by switching
between a number of controllers. Allowing that some
of the single controllers will destabilise the closed-loop
system, it is possible to get a stable closed-loop system
by switching between the controllers.

As an alternative KQ can be run all the time,
replacing K (see the example of Section 5). This is only
admissible, if some detuning of the controller can be
allowed permanently. Fault isolation is also possible by
using a number of Q’s, where every single is designed
with respect to a single fault. Since this method is based
on the Youla-Kucera parameterisation, it is well suited
as a basis for the fault tolerant control scheme
proposed in Niemann and Stoustrup (2005).

5. Examples

Above, two methods for active fault diagnosis based
on controller reconfiguration have been proposed.
In this section, we shall give a numerical example
illustrating the use of either method.

5.1. A drag race car with faulty oscillations

The example below is inspired by a drag race car
project (Sørensen 2003). In this reference, a field study
of a real drag race vehicle is presented, where a fault
model of the type suggested below is described and
verified against real data. In this section, however, this

model is used only for inspiring and for motivating

a fault model with two oscillations, as was verified

for the real vehicle.
In a much simplified version of this system, the

basic dynamics of the drive line is a second order

system

GðsÞ ¼
1

s2 þ asþ b
,

with two real poles having negative eigenvalues. In the

numerical example, the two poles were assumed to be

�10 and �20 rad s�1, so the nominal transfer function

becomes

GðsÞ ¼
200

s2 þ 30sþ 200
:

The car can be subjected to two distinct faults both of

which manifest as oscillations caused by two different

physical phenomena. One type of oscillation is caused

by micro-slip friction phenomena in the clutch of the

vehicle, the other is caused by oscillations in the rubber

of the tyres.
It is of ultimate importance to discover the possible

presence of these two faults during test drives, as the

added acceleration of these oscillations to the huge

acceleration of the drag race drive itself might exceed

that admissible to the human body, such that the inner

organs of the driver might be damaged during the

actual race.
In this example we shall describe these two

phenomena as additive faults, i.e. the overall model

becomes

Gf ðsÞ ¼ GðsÞ 1 Gf1 Gf2

� �� �
,

where Gf1
and Gf2

are second other resonant system

Gf1 ¼
1

s2 þ 2�1!1sþ !2
1

and

Gf2 ¼
1

s2 þ 2�2!2sþ !2
2

,

chosen with resonance frequencies of 5 and 20Hz,

and damping coefficients of 5% and 1%, respectively.

For this system, a nominal observer-based controller is

designed based on an LQG design, i.e. a second-order

controller.
In addition to the nominal observer, two observers

are designed to be sensitive to the two faults that are

anticipated to occur. In this case, this is particularly

simple, as the obvious choice is to assign poles for each

of the two observers to coincide with the resonance

frequencies.
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Figure 3 shows single-sided spectra of output from
these three observers in three different cases. The title of
each subplot indicates the state of the system, either in
nominal or in one of the faulty states. The vertical label
indicates for which observer has been applied, either the
nominal or one designed to be sensitive to one of the
faults. In all cases, the controlled system is driven by a
low-frequency random reference with some measure-
ment noise. In the plots shown in the first row, no faults
have occurred. This is reflected in the FFTs, all of which
have LF components exclusively with exception from
two almost undiscernible spikes at the resonance
frequencies for the two sensitised observers. In the
second and the third row of plots, either of the two
faults are introduced (as random signals driving the two
oscillators). In these cases, the observer sensitised at
5Hz has a clear spike at that frequency for the first fault,
and likewise with the other observer. The two fault

sensitised observers, however, have no significant

spikes at the frequency of the non-occurrent fault.

The nominal observer has only insignificant frequency

contributions at the two fault frequencies.
Next, we proceed with Step 3 of Algorithm 1, where

the following sequence of observer gains are chosen

for each cycle:

L0, L1, L0, L2, L0

and the corresponding �(t) is shown in Figure 4.
Based on these choices of observer gain sequence

and selection parameter �(t), we can now calculate �C

by (15). This has been done, and Figure 5 shows three

simulations based on the same reference signal.
Figure 5 shows a simulation of the system with an

observer cycling controller. As indicated by the

labels, the controller has transitions back and forth

between the nominal observer and the two fault
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Figure 3. Single-sided spectra of output from observers. The title of each subplot indicates the state of the system, either nominal
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be sensitive to one of the faults. Spikes are clearly discernible in the diagonal where either of the two faults have occurred.
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sensitive observers. In Figure 5(a), the nominal situa-
tion is shown. No oscillations are seen in any period. In
Figure 5(b), the first fault has been introduced. An
oscillation is clearly visible in the third period, where
the corresponding fault sensitive filter is fully active.
No oscillations are seen elsewhere. In Figure 5(c), the
second fault has been introduced. In this case, an
oscillation is seen in the seventh period, which
corresponds exactly to the period, where the observer
that has been sensitised to the second fault is
fully active.

In conclusion, the control scheme shown would
clearly stimulate oscillations in the vehicle caused by
the two faults in a test drive, even if they are present to
an extent, where the driver would not notice them with
the nominal controller. This gives a valuable dimension
to the test drive, where the drive can be discontinued
immediately, if one of the dangerous oscillations is
discovered.

It should be noted that the above example does in
fact not disclose the full power of the method. Indeed,
in the model approach taken, the faulty states are not
controllable by the control signal. That means that the
results displayed above are in a way obtained just by
using the closed-loop system as a ‘signal processor’ for
an oscillation of a fixed amplitude. In general, how-
ever, it could be anticipated that fault states would
often be controllable, which means that they would be
stimulated by the proposed controller, not just
emphasised in the observer.

5.2. Destabilising a system with a parametric fault

We consider a system with the transfer function

GðsÞ ¼
1

sþ p
¼

1

sþ 1
,

where the parameter p has the nominal value p¼ 1.
A parametric fault is considered, which increases the

parameter by 10% when it occurs, i.e.

Gf ðsÞ ¼
1

sþ pf
¼

1

sþ 1:1
:

For this system, a nominal controller is considered,

which assigns poles in {�2,�3}. With a positive

feedback convention, such a controller has a transfer

function given by

KðsÞ ¼ �
2

sþ 4
:

Figure 6 shows a simulation with this controller,

where the above mentioned fault occurs at t¼ 27 s.

The system is driven by a reference of 1 and Gaussian

noise with �¼ 0.1. The occurrence of the fault is hardly

discernible.
A doubly coprime factorisation of the plant and the

given controller is

GðsÞ ¼ NðsÞM�1ðsÞ, KðsÞ ¼ UðsÞV�1ðsÞ,

where

NðsÞ ¼
1

sþ 2
, MðsÞ ¼

sþ 1

sþ 2
,

UðsÞ ¼ �
2

sþ 2
, VðsÞ ¼

sþ 4

sþ 2
:

The Sf (s) parameter of the dual Youla-Kucera

parameterisation for the faulty model can now be

found as

Sf ðsÞ ¼ Gf ðsÞMðsÞ �NðsÞ
� �

VðsÞ � Gf ðsÞUðsÞ
� ��1

¼ �
0:1

s2 þ 5:1sþ 6:4
:

A primary Youla-Kucera parameter Q(s)

which assigns poles of the closed loop between Sf(s)

and Q(s) in

0:1, � 6, � 5, � 3f g

is given by

QðsÞ ¼ �
252:5sþ 750:5

s2 þ 8:8sþ 10:32
:

Thus, this Q(s) is indeed a stable transfer function that

destabilises the Q�Sf loop.
The fault can now be diagnosed by switching in this

Q(s) in the structure shown in Figure 1. During the

diagnosis period, the resulting controller becomes

KQðsÞ ¼ UðsÞ þMðsÞQðsÞð Þ VðsÞ þNðsÞQðsÞð Þ
�1

¼ �
254:5sþ 257

s2 þ 9:8s� 236:4
:

A simulation with the Q parameter switched in

permanently, i.e. both through the nominal and the

0 10 20 30 40 50 60 70 80 90

0

0.2

0.4

0.6

0.8

1

t(s)

β(
t)

Selection parameter β(t) for observer gains 

Figure 4. Observer selection parameter �(t). In this case, the
transitional periods have been chosen to be of the same
length as the stationary periods for each observer.
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faulty situation, is shown in Figure 7. The system
remains stable, whenever the system has its nominal
value, but turns unstable immediately when the fault
occurs, which can be detected very rapidly. The inputs
for the simulation in Figure 7 were the same as in the

simulation shown in Figure 6.

6. Conclusions

A method has been proposed for active detection of
faults without an exogenous excitation signal. The
method relies on a result on parameterisation of

observers that interpolate two given observers in such

a way that all intermediate observers are guaranteed to

be stable. The approach proceeds by an initial design

of a number of observers that are each sensitive to one

or more faults and which together span all faults that

should be detected. The fault detection is then estab-

lished through a transition cycle that encompasses all

the observers in turn and thereby enables detection by

emphasising an occurred fault, that might otherwise

have been indiscernible.
An important tuning parameter of the proposed

method is the ratio of duration between the sensitised

observers and the nominal observer. Clearly, it will
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–0.2
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0
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Switching between nominal and fault sensitive observers
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Figure 5. Simulation of system with observer cycling controller. As indicated by the labels, the controller has transitions back
and forth between the nominal observer and the two fault sensitive observers. In (a) no fault occurs. In the second plot (b), Fault
#1 has occurred and in (c), Fault #2 has occurred. Oscillations are clearly discernible in the windows where the two sensitive
observers are active and nowhere else.
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Figure 7. Simulation of system with fault destabilising
controller. The fault occurrence is indicated with the
vertical line.
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have a performance degrading effect to have long
durations of the sensitised observers, whereas it will
give a greater risk of undetected false if they are made
too short.

Also, a method has been proposed for active
detection of parametric faults, which requires that it
is admissible to render the system unstable for a short
period of time. It should be noted that many fault
diagnosis methods can be reformulated to detect other
types of fault, whereas this specific method is
exclusively applicable to internal faults, as a bounded,
additive signal can never destabilise a stable, linear
closed-loop system.

The method can be implemented both as a periodic
switching between a nominal and an active fault
diagnosing controller. Alternatively, the method can
be implemented as a permanent modification of the
controller. The advantage of the former method is that
the detuning of the controller only takes place in short
time intervals. The advantage of the latter method is
that it facilitates very rapid fault detection.

For both methods, there are several systematic
design methods that can be applied to obtain the filters
for the former method and the controllers for the latter
method, some of which are mentioned above. Most
candidate methods, however, are frequency domain
methods. This leaves a significant challenge for practi-
cal fault diagnosis methods, however, where
time-to-detect is an important parameter. Since
time-to-detect is primarily based on transient proper-
ties, it is difficult to handle this by frequency
domain-based methods. Incorporating a time-to-detect
specification to the design is therefore a topic of further
research.
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