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Discretisation, as one of the basic data preparation techniques, has played an important role in data mining.
This article introduces a new hypercube division-based (HDD) algorithm for supervised discretisation. The
algorithm considers the distribution of both class and continuous attributes and the underlying correlation
structure in the data set. It tries to find a minimal set of cut points, which divides the continuous attribute space
into a finite number of hypercubes, and the objects within each hypercube belong to the same decision class.
Finally, tests are performed on seven mix-mode data sets, and the C5.0 algorithm is used to generate classification
rules from the discretised data. Compared with the other three well-known discretisation algorithms, the HDD
algorithm can generate a better discretisation scheme, which improves the accuracy of classification and reduces
the number of classification rules.
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1. Introduction

With the rapid development of computer and internet
technologies, the amount of data and information
grows exponentially. Since data mining is an extremely
powerful approach to extract useful knowledge from
large databases, it has become a research focus in
recent years (Han and Kamber 2001, Hong and
Weiss 2001, Ananthanarayana, Narasimha Murty,
and Subramanian 2003, Hu, Chen, and Tzeng 2003).
Many data mining algorithms require that the training
data contains only discrete attributes. In practice,
however, a large number of attributes are of a contin-
uous nature. In order to use these algorithms, the
continuous attributes must first be discretised. This
demands studies on appropriate discretisation methods.

Discretisation is a process that divides the values
domain of a continuous attribute into a small number

of intervals, where each interval is mapped to a

numerical, discrete value. After discretisation, data

can be reduced and simplified. Thus, results obtained

through decision trees or induction rules are usually

more compact, shorter and more accurate than results

derived using continuous values. Discretisation, as one

of the basic data preparation techniques, has received

more and more research attention.
There are three different axes by which the

existing methods of discretisation can be classified:
global versus local, supervised versus unsupervised
and static versus dynamic (Dougherty, Kohavi, and

Sahami 1995). Local methods, such as ID3, are applied

to a localised region of the data set. On the contrary,

the global methods, such as Zeta (Ho and Scott 1997),

use the entire data set to discretise. Supervised

algorithms, such as 1RD (Holte 1993), consider the

class information when constructing intervals,

whereas unsupervised algorithms, such as equal width

and equal frequency, ignore the class information

during the discretisation process. Finally, static

methods derive the parameters (e.g. number of cut

points) in each dimension separately, whereas

dynamic methods, such as C4.5 (Quinlan 1993), try

to find such parameters for all the dimensions

simultaneously and thus can preserve interdependence

among attributes.
Equal width and equal frequency are the two

simplest discretisation methods, which are unsuper-

vised and static. The equal width method simply

divides the range of an attribute into N intervals of

equal size (N is a user-specified parameter), and in the

equal frequency method, the interval boundaries are

chosen so that each interval contains approximately

the same number of objects.
The representative supervised algorithms are: max-

imum entropy (Wong and Chiu 1987), information

entropy maximisation and minimum description length

principle (Ent-MDLP) (Fayyad and Irani 1993) and

other entropy-based algorithms (Catlett 1991, Liu

and Wang 2005); statistic-based algorithms, such as
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ChiMerge (Kerber 1992), Chi2 (Liu and Setiono 1997),
Modified Chi2 (Tay and Shen 2002), StatDisc
(Richeldi and Rossotto 1995), and Khiops (Boulle
2004); class-attribute interdependence algorithms, such
as CAIM (Kurgan and Cios 2004) and CADD (Ching,
Wong, and Chan 1995); and clustering-based algo-
rithms, such as K-means discretisation (Tou and
Gonzalez 1874). The Ent-MDLP method is proposed
by Fayyad and Irani. It recursively selects the cut
points on each target attribute to minimise the overall
information entropy. The MDLP is designed as a
stopping criterion for the recursive discretisation
strategy. The ChiMerge algorithm is introduced by
Kerber, which is designed to discretise a numeric
attribute based on the �2 statistic. �2 is a statistical
measure used to test the hypothesis that two discrete
attributes are statistically independent. ChiMerge
consists of an initialisation step and a bottom-up
merging process, where merging continues until all
pairs of adjacent intervals have a �2 value exceeding
the parameter �2 � threshold. Liu and Setiono pro-
posed a Chi2 algorithm that uses the ChiMerge
algorithm as a basis, and the Chi2 algorithm improves
the ChiMerge algorithm in that the value of the
significance level is calculated based on the training
data itself.

Bay (2001) proposed a discretisation approach that
considers the interactions among all attributes. First,
it partitions all continuous attributes into intervals by
using simple discretisation techniques such as
equal-width. Then, a merge phase is carried out
iteratively on two adjacent intervals, where two
intervals are merged into one if they correspond to
two similar multivariate distributions. The merging
process continues until no more intervals can be
merged. However, such an approach can be compu-
tationally expensive, perhaps impractically so for
high-dimensional and large data sets.

There are also rough set-based discretisation
algorithms (Nguyen and Skowron 1997, Nguyen
1998). The rough set and Boolean reasoning approach
(RSBR) is a global and supervised method introduced
by Nguyen and Skowron, which searches for a minimal
set of cut points on the attribute domain that preserve
the discernibility relation of objects. It first constructs
a new information system from the given decision
table, and then utilises a heuristic device to choose cut
points. In any step of the heuristic device, a cut point
discerning a maximal number of object pairs is found
and this step is repeated until the remaining set of
discernible pairs is empty. The computational com-
plexity of this algorithm is oðn3kÞ, where n is the
number of objects and k is the number of attributes.
The high computation cost makes it not suitable for
large data sets.

Recently, much research work has been done in the

area of discretisation. Mehta, Parthasarathy, and Yang

present a novel PCA-based unsupervised algorithm for

the discretisation of continuous attributes in multi-

variate data sets. The algorithm leverages the under-

lying correlation structure in the data set to obtain the

discrete intervals and ensures that the inherent

correlations are preserved. The discretisation algo-

rithm based on class-attribute contingency coefficient

(CACC) introduced by Tsai, Lee, and Yang is a static,

global and supervised discretisation algorithm, which

extends the idea of the contingency coefficient and

combines it with the greedy method to raise the quality

of the generated discretisation scheme. Ruiz, Angulo,

and Agell propose a supervised interval distance-based

(IDD) discretisation method, which is based on inter-

val distances and a novel concept of neighbourhood in

the target space. It takes into account the order of the

output variable and can be used with any number of

different output variable values.
Most discretisation methods proposed in the past

are univariate, which discretise each attribute with

continuous values independently, without considering

the discretisation results of the other attributes. This

may lead to important information loss, and thus

increases the chance of missing interesting relations.

Some other algorithms, such as RSBR, capture the

interactions among the continuous attributes, but the

computational cost is expensive. This article intro-

duces a hypercube division-based (HDD) algorithm

for supervised discretisation, which avoids the

limitations mentioned above. This new method

considers the distribution of both class and contin-

uous attributes and the underlying correlation struc-

ture in the data set to obtain the discrete intervals.

The class-attribute interdependence maximisation

criterion is used to select cut points for a localised

region. During the discretisation process, each cut

point is chosen based on the cut points that already

exist, and the number of cut points is automatically

selected without any user supervision. The effective-

ness of the HDD algorithm is demonstrated on seven

different types and mixed-mode data sets, and

compared with three other well-known discretisation

algorithms; the HDD algorithm achieves the best

discretisation results.
The rest of this article is organised as follows:

Section 2 presents the definition of the class-attribute

interdependence maximisation criterion used in the

article. In Section 3, the HDD algorithm is described in

detail, and in Section 4, the algorithm is applied to

demonstrate best performance over the other three

discretisation algorithms. Finally, we conclude in

Section 5.
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2. Class-attribute interdependence maximisation

criterion

The class-attribute interdependence maximisation

criterion was first introduced by Kurgan and Cios

(Kurgan and Cios 2004), and it measures the depen-

dence between the class labels and the discrete attribute

values. The formal definition for this criterion is

shortly introduced in the following.
For a given training data set S, it consists of n

objects fx1, x2, . . . ,xng, one decision attribute {d } and

each object belongs to only one of k decision classes. c

indicates any of the continuous attributes. Then there

exists a discretisation scheme on c, which discretises

the continuous domain of attribute c into m discrete

intervals bounded by the pairs of numbers:

f½b0, b1�, ðb1, b2�, . . . , ðbm�1, bm�g, where b0 is the mini-

mal value and bm is the maximal value of attribute c,

and for any ið0 � i5mÞ, bi 5 biþ1. fb1, b2, . . . , bm�1g is

called the set of cut points for c. Each value of attribute

c can be classified into only one of the m intervals.
For a given discretisation scheme, the decision class

variable and the discretisation variable of attribute c

define a two-dimensional frequency matrix (called

quanta matrix), which is shown in Table 1.
In Table 1, qij denotes the total number of objects

belonging to the decision class di whose values of

attribute c are within the interval ðbj�1, bj �. niþ is the

total number of objects belonging to the i-th decision

class and nþj is the total number of objects whose value

of attribute c are within the interval ðbj�1, bj �, for

i ¼ 1, 2, . . . , k and j ¼ 1, 2, . . . ,m.
For a given quanta matrix (Table 1), the

class-attribute interdependence maximisation criterion

is defined as:

Caim ¼

Pm
j¼1

max2j
nþj

m
, ð1Þ

where maxj is the maximum value of all qij, for

i ¼ 1, 2, . . . , k.

The class-attribute interdependence maximisation
criterion has the following main properties:

(1) The larger the value of Caim, the higher the
interdependence between the class labels and the
discrete intervals. If maxj ¼ qrj, 1 � r � k, dr is
called the leading class of interval ðbj�1, bj �. The
larger the value of qrj, the higher the interde-
pendence between dr and interval ðbj�1, bj �.
Maximising the interdependence between
classes and the discrete intervals can be inter-
preted as finding the optimal discretisation
scheme, which makes the numbers of objects
belonging to the leading classes within all
intervals have the largest possible values. The
highest interdependence between the class labels
and the discrete intervals (and, at the same time,
the highest value of Caim) is achieved when all
objects within a particular interval belong to the
same decision class for all intervals, and in this
case, maxj ¼ nþj, Caim ¼ n=m.

(2) The criterion generates discretisation schemes
where each interval has all of its objects
grouped within a single class label.

3. HDD discretisation

In this section, we present the novel algorithm of
HDD. The quality of discretisation methods should
involve: (a) a simple discretisation result; (b) a reason-
able execution time for discretisation and (c) an
improvement in the accuracy and efficiency of a
learning algorithm (for a decision tree algorithm, the
efficiency is evaluated by the number of rules and
training time). The goal of our algorithm is to reduce
the number of cut points while maximising the
accuracy of the information.

3.1. Discretisation criterion

According to Section 2, the theoretical optimal
discretisation scheme generated by the class-attribute
interdependence maximisation criterion is that there
are k discrete intervals (k is the number of decision
classes), where each interval has all of its objects
grouped within a single class label. At the same time,
the theoretical maximal value Caim¼ n/k is achieved.
But in practical applications, most databases do not
have a regular class distribution. When this criterion is
used, the highest value of Caim is usually obtained
when the first cut point is chosen. In order to maximise
class-attribute interdependence, in this case it is neces-
sary to consider a large number of intervals to make
sure that objects within each interval belong to the
same class. Otherwise, if we consider only the class

Table 1. The 2D quanta matrix for attribute c.

Decision
class

Interval

[b0, b1] . . . (bj�1, bj] . . . (bm�1, bm]
Total
classes

d1 q11 . . . q1j . . . q1m n1þ
: : . . . : . . . :
di qi1 . . . qij . . . qim niþ
: : . . . : . . . :
dk qk1 . . . qkj . . . qkm nkþ
Total objects nþ1 . . . nþj . . . nþm n
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with the most samples and ignore all the other target
classes, the quality of the produced discretisation
scheme would decrease. This observation motivates
us to propose our HDD algorithm.

The HDD algorithm generates a discretisation
scheme which maintains the highest interdependence
between the target class and all the discretised attributes
(not a signal attribute). This can be interpreted as that
the HDD algorithm tries to find a minimal set of cut
points, which can divide the continuous attribute space
into a finite number of hypercubes and the objects
within each hypercube belong to the same decision class.
Since the class-attribute interdependence maximisation
criterion can measure the dependence between the class
labels and the discrete attribute values, we use it to select
cut points for a localised region. The key problem is how
to determine the number of cut points when this
criterion is used. There are two situations. First, the
Caim value continues to increase with the increase in the
number of cut points, until the maximal value (i.e.
Caim¼ n/k) appears. Second, the value of Caim
achieves the local maximum when a cut point is added
and then decreases, and in most conditions, the local
maximum value appears when the first cut point is
chosen. In the first case, we can easily determine that the
number of cut point is k� 1, but it is difficult to
determine an appropriate number of cut points for the
second case.

In the HDD algorithm, we expect that, in the
second case, after the discretisation scheme is finally
generated, there are k discrete intervals and the
leading class of each interval must be larger than a
threshold. Take Table 1, for example, if R is a
coefficient and 0:5 � R � 1, maxj 4R � nþj, for
j ¼ 1, . . . , k. Then, the minimal expectation value of
Caim can be calculated as

Caimexp ¼

Pm
j¼1

max2j
nþj

k
¼

Pm
j¼1
ðR � nþjÞ

2

nþj

k
¼

n � R2

k
: ð2Þ

Caimloc indicates the local maximal value of Caim,
and in order to obtain the expected discretisation
result, the Caim value cannot decrease more than
ðCaimloc � CaimexpÞ=ðk� 1Þ for each step. In other
words, when it is judged that a boundary
b 2 fb1, b2, . . . , bm�1g is a good candidate to be the
i-th cut point, the adjacent values Caimi (the value of
Caim for the i-th step) and Caimi�1 will be considered.
If Caimi�1 � Caimi � ðCaimloc � CaimexpÞ=ðk� 1Þ, b
will be chosen as the i-th cut point.

3.2. The HDD algorithm

The HDD algorithm works in a top-down manner,
dividing one of the existing hypercubes into two or

more new hypercubes where each hypercube has all or

most of its objects grouped within a single decision

class label.
For a given a training data set S, it consists of n

objects U ¼ fx1, x2, . . . , xng, l continuous condition

attributes C ¼ fc1, c2, . . . , clg and k decision classes.

Vci is the value domain of attribute ci, and jVci j denotes

the cardinality of Vci . R is a parameter, and

0:5 � R � 1. The HDD algorithm is composed of

three steps:

. Choose an existing hypercube, and initialise

the candidate cut points and the initial

discretisation scheme.
. Consecutively add a new cut point, which

results in the locally highest value of the Caim.

Find out the new hypercubes that need to be

partitioned again in the next dimension.
. Get rid of the redundant cut points.

The pseudocode of the HDD algorithm follows.

Step 1:

(1.1) Initialise i ¼ 1, Hypercube1 ¼ fU g.
(1.2) Initialise j ¼ 1, Hypercubeiþ1 ¼1, and

CutInt ¼1.
(1.3) Assume Uj as the j-th element of set

Hypercubei. For Uj, the value domain of ci is

Vj
ci
, and decision class is kj. For ci and Uj, do:

(1.4) Arrange the distinct values of Vj
ci
in ascending

order Vj
ci
¼ fc0i , c

1
i , . . . , cmi g, and initialise all

possible cut points B ¼ fðc0i þ c1i Þ=2,
ðc1i þ c2i Þ=2, . . . , ðcm�1i þ cmi Þ=2g. ðc

0
i , c

1
i Þ is called

the cut interval of cut point ðc0i þ c1i Þ=2.
(1.5) Set the initial discretisation scheme as f½c0i , c

m
i �g,

set GlobalCaim ¼ 0.

Step 2:

(2.1) Initialise h ¼ 1, and the Caimexp ¼ jU
j j � R2=kj.

(2.2) Tentatively add a cut point from B, which is

not already in the discretisation scheme, and

calculate the corresponding Caim value.
(2.3) After all the cut points have been tried, accept

the one with the highest value of Caim, and it is

denoted as Caimh.
(2.4) If ðCaimh 4GlobalCaim or GlobalCaim�

Caimh 5 ðCaim1 � CaimexpÞ=ðk
j � 1ÞÞ, update

the discretisation scheme with the cut point

accepted in Step 2.3 and add the corre-

sponding cut interval into CutInt, set

GlobalCaim ¼ Caimh; otherwise go to Step 2.6.
(2.5) Set h ¼ hþ 1. if h5 kj, go to Step 2.2.
(2.6) The cut points in the final discretisation

scheme divide Uj into some subsets, and

assume U0 is any one of them. If the objects
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in U0 belong to different decision classes,
update Hypercubeiþ1 ¼ Hypercubeiþ1 [ fU

0g.
(2.7) j ¼ jþ 1. if j � jHypercubeij, go to Step 1.3;

else, go to Step 3.1

Step 3:

(3.1) Arrange the cut intervals in the set CutInt in
ascending order. If the adjacent cut intervals
have intersection, they are replaced by the
intersection.

(3.2) Calculate the midpoints of all the cut intervals
in the CutInt, and they are the cut points for
attribute ci.

(3.3) i ¼ iþ 1. If i � l, go to Step 1.2; else terminate.

Here we give some explanation for Step 3. During
the discretisation process for a single attribute, the
hypercubes are partitioned independently, and it is
possible that some redundant cut points exist. In order
to find the optimal solution, these cut points must be
discarded. For example, we consider the data set in
Table 2 as the training data. When c1 is discretised, the
cut point is selected as 1.1, and the continuous
attribute space is divided into two rectangles, of
which the first one contains the objects x1, x2, x6 and
x7, and the second one contains the objects x3, x4, x5
and x8 (Figure 1). During the discretisation process of
c2, both the first and second rectangles need to be
partitioned again in the second dimension. For the first
rectangle, the cut interval of the selected cut point is
ð1:5, 2:5Þ, and for the second, the cut interval of the
selected cut point is ð1:3, 3Þ. These two intervals have
intersection ð1:5, 2:5Þ, and thus the final cut point of
c2 is 2. The discretisation result is shown in Table 3.

3.3. Time complexity of HDD algorithm

In what follows, we estimate the time complexity of
the algorithm for discretising a single attribute. Here
we take the attribute ci for example. Assume that the

objects in U are divided into M subsets after attribute

ci�1 is discretised, i.e. Hypercubei ¼ fU
1,U2, . . . ,UMg,

where jUj j ¼ n � Pj, j ¼ 1, 2, . . . ,M, 05Pj 5 1, andPM
j¼1 Pj ¼ 1.
In Step 1.4, sorting for Vj

ci
takes oðn � Pj �

logðn � Pj ÞÞ time, and for all the Vj
ci
ð j ¼ 1, 2, . . . ,MÞ,

the total time is
PM

j¼1 oðn � Pj � logðn � Pj ÞÞ, which

determines the time complexity of Step 1.
The time bound of Step 2 is determined by the

calculation of the class-attribute interdependence

maximisation criterion. For any objects set Uj, the

discretisation process starts with a signal interval,

and the expected maximal number of intervals is oðkÞ.

Thus, the time bound for calculating the Caim

value can be estimated as oðk2Þ. For Uj, the maximal

number of candidate cut points is n � Pj � 1, and thus

the Caim values are calculated for oðn � Pj Þ times in

Step 2.2. This gives the total time of Step 2.2 as

oðn � Pj � k
2Þ. The expected number of intervals for Uj

is oðkÞ, and we can estimate that Step 2.2 is executed

oðkÞ times. Thus, for all the Ujð j ¼ 1, 2, . . . ,MÞ, the

time complexity of Step 2 is
PM

j¼1 oðn � Pj � k
2Þ � oðkÞ ¼

oðn � k3Þ.
Compared with n, the number of cut points for

attribute ci is very small, and the time complexity of

Step 3 can be omitted.
Based on the analysis above, we can conclude that

for discretising a signal attribute ci, the time complex-

ity is
PM

j¼1 oðn � Pj � logðn � Pj ÞÞ þ oðn � k3Þ.

Proposition: If n is the scale of a problem, 05Pj 5 1,

and
PM

j¼1 Pj ¼ 1, then the time complexityPM
j¼1 oðn � Pj � logðn � Pj ÞÞ ¼ oðn � logðnÞÞ.

Figure 1. The cut point set of data set S.

Table 2. The data set S.

c1 c2 d

x1 0.4 2.5 1
x2 1 0.5 0
x3 1.3 3 0
x4 1.4 1 1
x5 1.2 1.3 1
x6 0.6 0.8 0
x7 0.2 1.5 0
x8 1.3 1 1
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Proof:

n � Pj � logðn � Pj Þ

¼ n � Pj � ðlogðnÞ þ logðPj ÞÞ

¼ Pj � n � logðnÞ þ n � Pj � logðPj ÞXM
j¼1

n � Pj � logðn � Pj Þ

¼
XM
j¼1

Pj

 !
� n � logðnÞ þ n �

XM
j¼1

Pj � logðPj Þ

¼ n � logðnÞ þ n �
XM
j¼1

Pj � logðPj Þ

XM
j¼1

oðn � Pj � logðn � Pj ÞÞ ¼ o
XM
j¼1

n � Pj � logðn � Pj Þ

 !

¼ oðn � logðnÞ þ n �
XM
j¼1

Pj � logðPj ÞÞ

¼ oðn � logðnÞÞ:

œ
There are l continuous condition attributes, and

the time complexity for discretising one is
oðn � logðnÞÞ þ oðn � k3Þ. For most real-life applica-
tions, l and k are small constants. Therefore, the
expected running time of the algorithm is oðn � logðnÞÞ,
which makes the HDD algorithm applicable to large
problems.

4. Experimental results

In this section, we experimentally validate the pro-
posed algorithm, and compare it with other three
well-known discretisation algorithms on seven differ-
ent types and mixed-mode data sets.

4.1. Experimental setting

The seven data sets which we used to test the HDD
algorithm are obtained from the known UCI machine
learning repository (Blake and Merz 1998), and they

are as follows:

(1) Iris Plants data set (iris),
(2) Johns Hopkins University Ionosphere data set

(ion),
(3) Wisconsin Diagnostic Breast Cancer (cancer),
(4) Pima Indians Diabetes Database ( pima),
(5) Yeast data set (yeast),
(6) Page Blocks Classification data set ( page),
(7) Thyroid Disease data set (thy).

A detailed description of the data sets is shown in
Table 4.

Experiments are carried out, and the HDD algo-
rithm is compared with other three discretisation
algorithms. The three discretisation algorithms are
CAIM, ChiMerge and Ent-MDLP, all of which are
supervised algorithms. The ChiMerge algorithm
requires the user to specify the significance level and
max-interval. Different types of data sets have different
properties, and in order to avoid an excessive number
of discrete intervals and achieve a good discretisation
result, in our experiment the values of these two
parameters are chosen as: for iris, pima, page and
thy f0:95, 6g, for ion and cancer f0:99, 3g and for
yeast f0:95, 10g. The HDD algorithm has a parameter
R, the value of which is specified as 0.8 in our
experiment.

4.2. Analysis of the results

To evaluate the effect of generated discretisation
schemes, we use the discretised data sets as input to
C5.0 algorithm to generate classification rules. In our
experiments, C5.0 is chosen since it is a state-of-the-art
decision-tree learner algorithm, and it is conveniently
available and widely used as a standard for comparison
in the machine learning literature.

Since C5.0 algorithm can handle data sets with
continuous attributes, we compare its performance

Table 4. Properties of data sets used in the experiments.

Properties

Data sets

iris ion cancer pima yeast page thy

Number of
objects

150 351 569 768 1484 5473 7200

Number of
attributes

4 34 30 8 8 10 21

Number of
continuous
attributes

4 33 30 8 8 10 6

Number of
decision
classes

3 2 2 2 10 5 3

Table 3. Discretisation result of S.

c1 c2 d

x1 1 2 1
x2 1 1 0
x3 2 2 0
x4 2 1 1
x5 2 1 1
x6 1 1 0
x7 1 1 0
x8 2 1 1
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while it generates rules from original continuous data
sets against the results achieved using discretised data
sets. The classification quality is measured using
predictive error rate, tree size, i.e. the number of
nodes, and execution time for building the tree. The
10-fold cross-validation test method is applied to all
data sets. The data set is divided into 10 parts, of which
nine parts are used as training sets and the remaining
one part as the testing set. The experiments are
repeated 10 times. The final predictive error rate is
taken as the average of the 10 predictive error rate
values. The rank column in Tables 5–7 is a direct
comparison of results. The rank value (Demsar 2006) is
defined as RANKj ¼

1
N

P
i

rji, where r
j
i is the rank of j-th

of k algorithms on the i-th of N data sets. For a
particular data set, the best performing algorithm gets
the rank of 1 and the second best gets the rank of 2.

Compared with the raw data and the data dis-
cretised using the other three discretisation algorithms,
the data discreted by the HDD algorithm achieve the
smallest predictive error rate for four out of seven data
sets. For cancer and page data sets it has the third
smallest predictive error rate, and for yeast data set,
it achieves the fourth smallest. For this test, the HDD
algorithm achieves the highest rank (2), which means
that, on average, the HDD algorithm reaches the
highest accuracy among all the compared algorithms.

The number of rules generated by the C5.0 algo-
rithm shows that the HDD algorithm achieves the
smallest number of rules for four out of seven data sets,
and for cancer, yeast and page data sets, it has the
second smallest. Again, the rank of the HDD algo-
rithm is better than the ranks of the other discreti-
sation algorithms, which shows that, as regards to the
number of rules generated by the C5.0 algorithm, the
best performance is achieved by the HDD algorithm.

When the C5.0 algorithm uses the raw data and
data discretised by the Ent-MDLP, ChiMerge, CAIM

Table 5. The predictive error (err.) rates and standard deviations (std.) achieved by C5.0 algorithm using raw data sets and
discretised data sets (bold values indicate the best results).

C5.0

Data sets

iris ion cancer pima yeast page thy

err. std. err. std. err. std. err. std. err. std. err. std. err. std. Rank mean

Raw data set 7.3 3.2 10.6 1.9 6.5 1.2 26.8 1.9 44.5 0.7 3.0 0.3 0.3 0.1 3.4
Ent-MDLP 6.7 2.2 10.5 1.4 4.6 0.7 24.7 1.2 41.9 0.8 3.3 0.3 0.7 0.1 2.7
ChiMerge 6.0 1.8 9.4 1.9 5.6 1.2 25.4 1.4 47.3 1.0 3.5 0.3 0.8 0.2 3.7
CAIM 6.0 1.2 9.7 1.1 4.4 1.0 24.5 1.1 44.8 1.0 3.4 0.2 1.3 0.1 2.7
HDD 4.0 1.1 5.4 1.5 5.4 1.0 24.2 1.3 45.8 1.3 3.4 0.2 0.3 0.1 2

Table 6. The number (num.) of rules and standard deviations (std.) generated by C5.0 algorithm using raw data sets and
discretised data sets (bold values indicate the best results).

C5.0

Data sets

Rank mean

iris ion cancer pima yeast page thy

num. std. num. std. num. std. num. std. num. std. num. std. num. std.

Raw data set 3.9 0.2 13.3 1.1 11.1 0.9 23.5 2.5 162.8 7.6 28.2 1.2 15.5 0.7 4
Ent-MDLP 3.2 0.2 9.4 0.5 8.8 0.3 9.0 0.4 34.8 1.0 35.8 1.2 21.5 0.5 3.1
ChiMerge 4.0 0.3 7.6 0.5 9.4 0.6 15.5 1.5 101.9 3.2 37.3 1.3 26.2 0.8 4.1
CAIM 3.1 0.1 8.8 0.4 7.3 0.2 5.1 0.5 90.9 2.2 33.9 0.9 10.0 0.3 2.1
HDD 3.0 0.0 5.4 0.3 8.5 0.2 3.8 0.2 39.2 1.2 28.8 0.9 10.0 0.2 1.4

Table 7. The time (s) for building decision tree by C5.0
algorithm using raw data sets and discretised data sets (bold
values indicate the best results).

C5.0

Data sets
Rank
meaniris ion cancer pima yeast page thy

Raw data
set

0.2 0.8 0.6 0.7 2 2.7 1 4.1

Ent-MDLP 0.1 0.5 0.5 0.7 0.8 0.8 0.6 2.1
ChiMerge 0.2 0.6 0.5 1.2 1.6 0.7 0.7 3.1
CAIM 0.2 0.4 0.4 0.7 1.6 0.7 0.5 1.7

HDD 0.1 0.3 0.4 1.2 1.3 0.8 0.5 1.9
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and HDD algorithms to build the decision tree, the
CAIM algorithm has the shortest execution time on
average. The HDD algorithm achieves the second
shortest, and the execution time of CAIM and HDD
are comparable to each other.

In order to further analyse the effect of the HDD
algorithm, as suggested by Demsar (Demsar 2006), we
use the Friedman test and the Bonferroni–Dunn test
with significance level � ¼ 0:05 to statistically verify
the hypothesis of improved performance. With the
‘Rank mean’ column in Tables 5–7, we use the
Friedman test to check whether the measured average
ranks are significantly different. If the Friedman test
reports a significant difference, the Bonferroni–Dunn
test is used to compare the other algorithms against
HDD. Finally, the results of the Bonferroni–Dunn
tests are visually represented in Figure 2. In Figure 2,
the top line in the diagram is the axis on which we plot
the average ranks of all the methods. All algorithms
with ranks outside the marked interval are significantly
different from the HDD.

For Table 5, the corresponding value of the
Friedman test is less than zero, but the critical value
of Fð4, 24Þ is 2.78, which means that there are no signif-
icant differences among the predictive error rates
generated by raw data and data discretised using the
four discretisation algorithms. However, if we remove
the raw data set and the CAIM algorithm (the algori-
thms Ent-MDLP and CAIM have the same rank, so we
choose only one of them), we obtain a different result.
The ranks achieved by Ent-MDLP, ChiMerge and
HDD change to 1.9, 2.7 and 1.4 respectively, and the
value of the Friedman test is calculated as

�2F ¼
12 � 7

3 � 4
ð1:92 þ 2:72 þ 1:42Þ �

3 � ð3þ 1Þ2

4

� �
¼ 6:0,

FF ¼
6 � 6:0

7 � 2� 6:0
¼ 4:5:

The critical value of Fð2, 12Þ is 3.89, so the

Friedman test reaches statistical significance. At

p ¼ 0:10, CD is 1:960
ffiffiffiffiffiffiffi
3 � 4
6 � 7

q
¼ 1:05. We obtain

Figure 2(a), from which we can see that the predictive

error rate of HDD is statistically comparable to that

of Ent-MDLP and significantly better than that of

ChiMerge.
The corresponding value of the Friedman test for

Table 6 is

�2F ¼
12 � 7

5 � 6

�
ð42 þ 3:12 þ 4:12 þ 2:12 þ 1:42Þ

�
5 � ð5þ 1Þ2

4

�
¼ 10:6,

FF ¼
6 � 10:6

7 � 4� 10:6
¼ 3:7:

The critical value of Fð4, 24Þ is 2.78, so we reject

the null hypothesis, which means that there are

significant differences among the number of rules

generated by raw data and data discretised using the

four discretisation algorithms. At p ¼ 0:10, CD is

2:241
ffiffiffiffiffiffiffi
5 � 6
6 � 7

q
¼ 1:9. The visualisation of the Bonferroni–

Dunn test is illustrated in Figure 2(b). Figure 2(b)

shows that considering the number of generated

rules, the HDD algorithm is comparable to

Ent-MDLP and CAIM, and performs significantly

better than raw data and ChiMerge. If we remove

the raw data from this comparison, the ranks achieved

by Ent-MDLP, ChiMerge, CAIM and HDD change

to 2.9, 3.7, 2 and 1.3 respectively. The correspond-

ing value of the Friedman test is 7.5, which is larger

than the critical value of Fð3, 18Þ. At p ¼ 0:10, CD

is 2:128
ffiffiffiffiffiffiffi
4 � 5
6 � 7

q
¼ 1:5. The Bonferroni–Dunn test in

Figure 2(c) shows that the number of generated
rules of HDD is significantly less than that of
Ent-MDLP and ChiMerge, and comparable to that
of CAIM.

As regards the time for building decision tree,

the time of HDD is a little longer than that of

CAIM but the difference does not reach statistical

significance.
The comparison between the HDD algorithm and

the other three discretisation algorithms shows that

the HDD algorithm can generate discrete data that

improves the accuracy of the classification result

achieved by the subsequently used machine learning

algorithm and reduces the number of rules generated

by the decision tree algorithm. At the same time, the

time for building the decision tree is comparable to

the time of the fastest algorithm CAIM used in the

experiment.

ChiMerge

ChiMerge

Raw data set

HDD

HDD
CAIM

HDD
CAIM

Ent-MDLP

Ent-MDLP

Ent-MDLP

4 3 2 1

45 3 2 1

3 2 1

ChiMerge
(a)

(b)

(c)

Figure 2. Comparison of HDD against the other discretisa-
tion methods with the Bonferroni–Dunn tests: (a) predictive
error rates; (b) and (c) number of rules.
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5. Conclusion and future work

In this article, we propose a new discretisation algo-
rithm, HDD, which, unlike most of the traditional
discretisation methods, considers distribution of both
class and continuous attributes and the underlying
correlation structure in the data set to obtain the
discrete intervals.

HDD is a supervised and top-down algorithm,
dividing one of the existing hypercubes into two or
more new hypercubes where each hypercube has all of
its objects grouped within a single decision class label.
In addition, the algorithm can work with any class-
labelled and high-dimension data sets, and the number
of cut points need not be set previously by the user,
in contrast to some other discretisation algorithms.

We demonstrate the effectiveness of the HDD
algorithm on seven standard data sets and compare it
with another three well-known discretisation algo-
rithms. The comparison shows that the HDD algo-
rithm can generate a discretisation result that improves
accuracy of the classification result and reduces the
number of classification rules generated by the C5.0
algorithm. Thus, the HDD algorithm outperforms the
other three discretisation algorithms. The computa-
tional cost of the HDD algorithm is oðn � logðnÞÞ,
which validates that it is effective and can be applied to
discretisation problems of large data sets.

Future work will include the expansion of the
HDD algorithm so it can deal with data sets with
missed values, which commonly exist in real-life
applications. We also plan to extend the HDD
algorithm so that it can be used to discretise dynamic
data sets, where the cut points for an attribute may
change over time.
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