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Abstract

Consider a rectangular matrix describing some type of communication or trans-
portation between a set of origins and a set of destinations, or a classification of ob-
jects by two attributes. The problem is to infer the entries of the matrix from limited
information in the form of constraints, generally the sums of the elements over vari-
ous subsets of the matrix, such as rows, columns, etc, or from bounds on these sums,
down to individual elements. Such problems are routinely addressed by applying the
maximum entropy method to compute the matrix numerically, but in this paper we
derive analytical, closed-form solutions. For the most complicated cases we consider
the solution depends on the root of a non-linear equation, for which we provide an
analytical approximation in the form of a power series. Some of our solutions extend
to 3-dimensional matrices.

Besides being valid for matrices of arbitrary size, the analytical solutions exhibit
many of the appealing properties of maximum entropy, such as precise use of the
available data, intuitive behavior with respect to changes in the constraints, and logical
consistency.

1 Introduction

Consider a set of n origins communicating with a set of m destinations. For our purposes it
suffices that each origin is connected to each destination; the exact nature of the connection
is not important. The communication may be in the form of transportation, e.g. the origins
and destinations may be cities or other geographic locations, and people travel from one
to another by some means, or commodities are transported from one to another in some
fashion. Or the origins and destinations may be nodes connected by a communications
network, with various sorts of traffic flowing from each source to each destination. In either
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of these cases, the transportation or communication can be represented by an rectangular
n×m trip or traffic matrix whose i, jth entry gives the number of trips, volume of traffic,
units of a commodity, etc. from the ith origin to the jth destination. (The distinction
between origins and destinations is not mandatory; one could take n = m and think just
of a set of n locations.) In a different setting, we have a set of objects with two attributes,
say height and weight, color and shape, success/failure of a test and test condition, and
the objects are placed in a table according to the n-valued first attribute and the m-valued
second attribute. In this setting the n×mmatrix is known as a (2-dimensional) contingency
table whose (i, j)th entry is the number of objects whose 1st attribute has the ith value
and 2nd attribute the jth value.

Whichever of these two settings obtains, we are interested in the situation where we
have limited or incomplete information about the matrix: we do not know the individual
elements, but know less detailed characteristics such as the totals of the rows and/or
columns, or of some of them, the total sum of the matrix, or we have bounds on some of
these quantities, or in addition we know the values of some individual elements or have
bounds on them. The problem then is how to infer all the matrix elements from this
information, and, in this paper, we are interested in solving the problem analytically. It
is well known how to find numerical solutions to these inference problems by numerical
entropy maximization.

Most likely matrices and maximum entropy We approach the problem by regarding
the matrix as constructed from a known number of elements (trips, traffic units, etc), which
we will think of as balls, to be placed into an n ×m array of boxes. We will refer to the
number of ways (assignments of balls to boxes) in which a given matrix X can be built
as its number of realizations, #(X). If the information I is known about X, we may also
regard it as constraints that X has to satisfy, and we write #(X|I) for the number of
realizations of X that accord with I or satisfy the constraints I. For example, if what we
know about the 2×2 matrix X, xij ∈ N, is that its row sums are 7 and 3, some possibilities
are

X1 =

(

3 4
2 1

)

, X2 =

(

4 3
2 1

)

, X3 =

(

4 3
1 2

)

, X4 =

(

2 5
2 1

)

, X5 =

(

1 6
3 0

)

.

In fact there are 8 possible 1st rows and 4 possible 2nd rows, so 32 matrices satisfy
these constraints. Further, for the above examples, #(X1|I) = #(X2|I) = #(X3|I) =
10!/(1!2!3!4!) = 12600, #(X4|I) = 10!/(5!2!2!1!) = 7560, #(X5|I) = 10!/(1!3!6!) = 840 1.
We will refer to the matrix X̂ for which #(X|I), given by a multinomial coefficient, is max-
imum, as the most likely matrix given the information/constraints I. “Most likely” may
have probability connotations for some, but we use it only as a shorthand for “matrix that

1We assume that the balls are distinguishable. The boxes are distinguishable, being particular elements
of a matrix.
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can be realized in the greatest number of ways”, which has nothing to do with probability,
it is merely counting.

If the constraints are convex (in this paper they will be linear), and they specify the
sum of all the elements, the discrete problem of maximizing #(X|I) can be turned into a
continuous concave maximization problem via the Stirling approximation to the factorial:
the log of the multinomial coefficient is approximated by the entropy of the xij. This
continuous approximation is well-known, and in fact dates back to Boltzmann’s (1847-
1906) combinatorial formulation of statistical mechanics where molecules are assigned to
boxes; see e.g. [Som67]. Thus our discrete most likely matrix problem connects to the
extensive body of work on maximum entropy (MaxEnt): see the works [Ros83], [Jay03] of
E. T. Jaynes, the books [Tri69], [KK92], and the series of MaxEnt conference proceedings
[MAX98] and [MAX09]2, to name a few. So, as long as the total sum is known, the discrete
most likely matrix problem and its continuous MaxEnt analogue are equivalent to within
the Stirling approximation, and we will sometimes refer to one, sometimes to the other.

The combinatorial rationale that we consider here is appealing because of its simplicity:
it is just counting. In addition, MaxEnt has intuitive appeal as maximizing uncertainty
while conforming to precisely the available information. More importantly, it has a powerful
axiomatic basis as well: see [Ski89], and [CG06] for recent developments.

Summary and background In this paper we derive analytical, closed-form solutions
to a set of maximum entropy problems having to do with n×m matrices subject to linear
constraints. The constraints have the form of equalities or inequalities (upper bounds) on
sums over various subsets of the matrix, e.g. rows, columns, the whole matrix, the diagonal,
individual elements, etc. In §2 to §5 we consider known row, column, and total sums, as
well as upper bounds on them. We observe that when the total sum is not known, the
most likely matrix is not the MaxEnt matrix, but it has a simple relationship to a certain
MaxEnt matrix. In §6 we consider upper bounds on row sums and on individual elements.
Finally, in §7, we investigate the effect of having symmetric information in combination with
bounds on sums and specified individual elements, including an extension to 3-dimensional
matrices. Table 8.1 in §8 summarizes the types of constraints that we consider. In the most
complicated cases the solutions depend on the root of a single non-linear equation, but even
in those cases we find an analytical power series approximation to the root, hence to the
matrix elements themselves. The analytical forms allow us to treat matrices of arbitrary
size, reveal the exact structure of the most likely/MaxEnt matrix, and allow us to see
explicitly the robustness of the solution to changes in the constraints, and its behavior with
respect to uncertainty in the data. These features demonstrate the logical precision of the
MaxEnt method and are inaccessible via numerical solutions.

An extensive and in-depth study of MaxEnt matrices in transportation analysis is
[ES90]; an introduction can be found in [KK92], and a recent reference is [BD08]. Various

2The latter with the unfortunate adoption of Microsoft Word for the typesetting of mathematical papers.
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aspects of matrices characterizing traffic in IP networks, including numerical estimation
from incomplete data, are studied in [ACR+06], [ZRLD05], and the references therein3. A
semi-analytical derivation of most likely traffic matrices subject to a total cost constraint
is in [KO08]. With respect to contingency tables, [KK92] provides an introduction while
[Goo63] derives fundamental results on the “vanishing of interactions” in MaxEnt multi-
dimensional tables. For a small sample of other applications of MaxEnt see [CG02] and
[Sen91] (economics and econometrics), [KT92] and [KMO93] (queueing problems), and
[TJI02] (systems theory).

2 Specified row sums and some column sums

We begin by considering a small extension of a problem whose solution is already known
in the literature in order to introduce the concepts and general methodology used in the
rest of the paper. Phrasing the discussion in terms of an n ×m matrix X describing the
traffic from n origins to m destinations, suppose we have the following information (or
constraints) I about it:

1. The total traffic from each origin: ∀i,∑j xij = ui.

2. The total traffic to each of the first ℓ 6 m destinations: ∀j 6 ℓ,
∑

i xij = vj

We assume that the information is consistent, i.e.
∑

i ui >
∑

j vj . This information also
specifies the total traffic s in the network: s =

∑

i ui.

To find the most likely traffic matrix X̂ that follows from the information I, given that
the sum of all the entries is s, we construct X by distributing the s units of traffic into nm
boxes so that xij of them go in box (i, j). The number of ways in which this can be done
is

(

s
x11, . . . , x1m, x21, . . . , x2m, . . . , xn1, . . . , xnm

)

=
s!

∏

i,j xij!
= #(X | s), (2.1)

where the notation indicates that s is known. To render the maximization of #(X | s)
tractable, and, at the same time, achieve a relatively simple solution, we treat it as a
continuous problem and maximize the log of #(X | s) using the Stirling approximation

lnx! = x lnx− x+
1

2
lnx+ ln

√
2π +

ϑ

12x
, ϑ ∈ (0, 1), (2.2)

which is defined for all x > 0 by x! = Γ(x + 1). Using the first two terms of (2.2) and
noting that

∑

i,j xij = s is given, the problem becomes

maximize −
∑

i,j

xij lnxij , (2.3)

3We say “estimation” because the methods used do not have the same logical standing as MaxEnt.
Also, the problem of estimating traffic in a real IP network is significantly more complex than the problems
considered in this paper.
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subject to

∑

j

xij = ui for i = 1, . . . , n,
∑

i

xij = vj for j = 1, . . . , ℓ.

The expression to be maximized is the entropy of the set of demands xij. (Usually, e.g. in
information theory, entropy is defined for a vector whose entries sum to 1. What we use
here is more properly referred to as combinatorial , as opposed to information, entropy4.)
Because the entropy is a strictly concave function, the problem (2.3) has a unique solution
which can be found by forming the Lagrangean (details in §A.1)

Φ = −
∑

i,j

xij lnxij −
∑

i

λi

(

∑

j

xij − ui

)

−
∑

j

µj

(

∑

i

xij − vj

)

.

It follows that xij = e−λi−µj−1 if j 6 ℓ and e−λi−1 if j > ℓ. Denoting e−λi−1 by λ′
i and

e−µj by µ′
j, and then eliminating the primes to simplify the notation,

xij =

{

λiµj, j 6 ℓ
λi, j > ℓ

, λi, µj > 0. (2.4)

The origin and destination constraints imply that

λi(µ1 + · · ·+ µℓ +m− ℓ) = ui, i = 1, . . . , n
(λ1 + · · ·+ λn)µj = vj, j = 1, . . . , ℓ.

(2.5)

Adding the first set of constraints together and doing the same with the second set we get
(λ1+ · · ·+λn)(µ1+ · · ·+µℓ+m− ℓ) = u1+ · · ·+un = s and (λ1+ · · ·+λn)(µ1+ · · ·+µℓ) =
v1 + · · · + vℓ. If we now let λ be the sum of the λi and µ that of the µj, it follows that if
ℓ < m

λ =
s− (v1 + · · ·+ vℓ)

m− ℓ
, µ =

(n− ℓ)(v1 + · · ·+ vℓ)

s− (v1 + · · ·+ vℓ)
.

So from (2.5),

λi =

(

s− (v1 + · · ·+ vℓ)
)

ui

(n− ℓ)s
, µj =

(m− ℓ)vj
s− (v1 + · · ·+ vℓ)

. (2.6)

Using this in (2.4), we finally get

x̂ij =







uivj
s

, j 6 ℓ,

s− (v1 + · · ·+ vℓ)

m− ℓ

ui
s
, j > ℓ,

i = 1, . . . , n. (2.7)

4This usage goes back to Boltzmann’s combinatorial formulation of statistical mechanics, see [Som67].
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Now if ℓ = m, (2.5) and the two equations following it become λiµ = ui, µjλ = vj , λµ = s,
from which it follows that λiµj = uivj/s; thus (2.7) is valid even when ℓ = m. Therefore
the most likely matrix X̂ consists of an n × ℓ left-hand part whose entries are given in
the 1st line of (2.7), and a possibly empty right-hand part consisting of m − ℓ identical
columns, each of which is described by the 2nd line of (2.7).

The solution x̂ij = uivj/s for all i, j is known as the gravity model for the traffic. This
model has its origins in transportation analysis, in connection with the numbers of trips
taken between n origins and m destinations, which are cities of known populations; X
is then referred to as a “trip matrix”. See [KK92] for an introduction, and [ES90] for
an in-depth treatment. In the context of contingency tables this model is known as the
“independence model” under marginal constraints. An important generalization to multi-
dimensional n1 × n2 × · · · contingency tables is given in the classic paper [Goo63] of I. J.
Good.

The form of X̂ is conceptually robust . For example, take the model with n = m = ℓ
and suppose the destination constraints are removed. Then all the µ′

j in (2.4) can be
taken equal to 1, and the solution is x̂ij = ui/n, ∀j. Similarly, if the source constraints
are removed, x̂ij = vj/n, ∀i. And if both types of constraints are removed leaving just
∑

i,j xij = s, then x̂ij = s/n2. We see that MaxEnt yields independence and as much
symmetry/uniformity as possible, subject to the given information.

3 Bounds on row sums

Suppose that the only information we have on the n×m matrix X is upper bounds on the
row sums:

∀i,
∑

j

xij 6 ui. (3.1)

We will first show that with xij ∈ N, the most likely matrix X̂ has its row sums in fact
equal to u1, . . . , un. Indeed, let X be a matrix satisfying the constraints (3.1), and with
∑

i,j xij = s. Suppose that row i sums to strictly less than ui. This means that there is a
j such that if we increase xij by 1, the resulting matrix X ′ also satisfies the constraints.
By (2.1), X ′ is more likely than X:

#(X ′)

#(X)
=

(s+ 1)!

s!

xij!

(xij + 1)!
=

s+ 1

xij + 1
> 1.

Proceeding in this way we can keep increasing the elements of the matrix while also in-
creasing the value of #(X), until all constraints are satisfied with equality and the rows
sum to exactly u1, . . . , un. This reduces the problem to the one considered in 2, where the
total demand from each origin is known (as well as the total demand in the whole network).
So the solution to (3.1) is simply

∀i, x̂ij =
ui
n
. (3.2)
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This answer depends exactly on the given information and on nothing else. The argument
we gave above also shows that lower bounds on the row sums are immaterial.

Example 1 Suppose we have a 10 × 10 matrix, and the upper bounds on the row sums
are u1, . . . , u10 = 20, 20, 24, 30, 30, 36, 36, 36, 36, 40, measured in some units. We then find
that the total number of matrices that accord with the information I is

M(I) = 300450152 · 131128140 · 8476605282 · 40763504214 · 10272278170 ≈ 2.41 · 1089.

(The number of solutions in N of the equation x+x2+ · · ·+x10 = ui is simply the number
of compositions of ui into 10 parts, equal to

(

ui+9
9

)

. And the inequality version can be

handled by summing
(b+9

9

)

over 0 6 b 6 ui.) The most likely matrix X̂ is one of these
2.4 ·1089 matrices. We can also find the number of matrices that satisfy (3.1) with equality.
This turns out to be

M(I=) = 100150052 · 38567100 · 2119151322 · 8861631354 · 2054455634 ≈ 2.20 · 1083,

and X̂ is one of these matrices. By (2.1) and (3.2), X̂ can be realized in #(X̂) =

308!/
(

(2!)22.4!(3!)2(3.6!)44!
)10 ≈ 1.46·10549 ways, where we took some liberties by allowing

non-integral entries.
How much more likely is X̂ than a matrix X ′ which also obeys I and is the same as

X̂ except that its 5th row is (2,2,2,2,2,4,4,4,4,4), a slight deviation from (3,...,3)? We see
that #(X̂)/#(X ′) = (2!)5(4!)5/(3!)10 ≈ 4.21. If row 8 is (2,2,2,2,2,2,2,6,8,8) instead of
(3.6,...,3.6), a larger deviation, the likelihood of X ′ is significantly smaller: #(X̂)/#(X ′) =
(2!)76!(8!)2/(3.6!)10 ≈ 813.9. Note that the units chosen for the ui affect the size of the
absolute numbers above, as well as the ratios; choosing finer units increases both the
numbers and the ratios dramatically. For example, if all the ui are multiplied by 10, the
two likelihoods computed above become 1.8 · 107 and 4.2 · 1032.

4 Total sum and bounds on row sums

Now suppose that besides the upper bounds on the row sums we also know the total sum
s:

∑

i,j

xij = s, and ∀i,
∑

j

xij 6 ui. (4.1)

For a solution to exist, we must have s 6 u1 + · · · + un. By Corollary A.1 we then have

xij = λiµ, 0 < λi 6 1. (4.2)

To proceed, we consider the solution to a simpler problem: given a, b1, . . . , bn > 0, what is
the maximum entropy vector x∗ satisfying x1 + · · ·+ xn = a and ∀i, xi 6 bi?

7



4.1 The vector case

Lemma 4.1 The maximum-entropy vector x∗ satisfying
∑

i xi = a and ∀i 0 6 xi 6 bi,
where a 6 b1 + · · ·+ bn, is found as follows:

i. Arrange the bi in increasing order, and permute the xi accordingly.

ii. Find the largest j ∈ {0, . . . , n} for which b1 + · · ·+ bj + (n− j)bj 6 a. Let that be k.

Then x∗1 = b1, x
∗
2 = b2, . . . , x

∗
k = bk and x∗k+1 = · · · = x∗n = a−(b1+···+bk)

n−k .

The starting point for this result is noting that if the bi are in increasing order, there
is a unique ℓ s.t. b1 + · · ·+ bℓ < a 6 b1 + · · ·+ bℓ+1. If so, a plausible high-entropy solution
is to set the first ℓ of the xi (constrained to be smallest) equal to their upper bounds, and
split the remainder of a, which does not exceed bℓ+1, equally among the rest of the xi,
which are the more loosely constrained. Lemma 4.1 refines this idea: to actually achieve
maximum entropy, only the first k < ℓ of the xi can be set to their upper bounds.

The significance of k is as follows. Suppose b1 > a/n; then k = 0, and b2, . . . , bn are
also > a/n. This means that the bounds on the xi are loose enough to allow complete
symmetry/uniformity : the MaxEnt solution is x∗1 = · · · = x∗n = a/n. Now suppose that
b1 6 a/n and b1 + (n − 1)b2 > a, in which case k = 1. Then the bound b1 is restrictive
enough to break the symmetry: the solution is x1 = b1, x2 = · · · = xn = (a − b1)/(n − 1),
symmetric apart from x1. So, in general, k measures how many of the constraints on the
individual xi are informative, i.e. force the solution away from the total uniformity that
would have obtained if only the constraint x1 + · · · + xn = a had been present. Finally,
k = n iff b1 + · · · + bn = a. In that extreme, the solution is determined completely by the
upper bounds: x∗ = (b1, . . . , bn).

4.2 Back to the matrix

Returning to the solution (4.2), we proceed along the lines of the proof of Lemma 4.1 in
the Appendix. We treat the ui as the bi of the lemma: arrange the rows of X so that
u1 6 u2 6 · · · 6 un, and find the largest k s.t.

u1 + · · ·+ uk + (n− k)uk 6 s. (4.3)

It may be that k = 0, i.e. u1 > s/n, but k cannot exceed n. As pointed out above, the
number k measures how many of the row constraints are informative. Now consider the
solution

∑

j

x1j = u1, . . . ,
∑

j

xkj = uk, λk+1 = · · · = λn = 1. (4.4)

From (4.2), this implies that for all j, xk+1,j = · · · = xnj = µ. Since the sum of all xij
must be s,

u1 + · · · + uk + (n − k)mµ = s, so µ =
s− (u1 + · · ·+ uk)

m(n− k)
.

8



Using this in (4.4),

λi =
(n− k)ui

s− (u1 + · · ·+ uk)
i = 1, . . . , k,

and we must verify that λi 6 1. But this holds if s > u1 + · · · + uk + (n − k)ui, which is
true for any i because of (4.3).

In summary, with the rows of X arranged so that u1 6 u2 6 · · · 6 un, the solution is

x̂ij =











ui
m
, i 6 k,

s− (u1 + · · ·+ uk)

m(n− k)
, i > k,

j = 1, . . . ,m (4.5)

where k is determined by (4.3). The non-informative uk+1, . . . , un do not appear.
According to (4.5), X̂ consists of k identical columns with the structure specified in

the 1st line, followed by m − k identical columns with the structure specified in the 2nd
line. Within each set, the columns are identical because we do not have any information
that imposes a distinction. We also note that if s =

∑

i ui, then k = n− 1, and we obtain
the solution (3.2), as expected, since this value of s imposes no additional constraint. If
s/n 6 mini ui, the matrix is totally uniform: x̂ij = s/n2.

Finally, the solution (4.5) translates immediately to the case where we have bounds on
the columns, instead of the rows of the matrix.

Example 2 We re-do Example 1, adding information on the total sum s. Here
∑

i ui =

308. We see from the last column of the table that #(X̂ | s) increases with s, as intuitively
expected.

s k x̂1· x̂5· x̂10· log10 #(X̂ |s)
308 10 20 20 24 30 30 36 36 36 36 40 549.2
307 9 20 20 24 30 30 36 36 36 36 39 547.3
304 9 20 20 24 30 30 36 36 36 36 36 541.8
303 9 20 20 24 30 30 35.8 35.8 35.8 35.8 35.8 539.9
275 5 20 20 24 30 30 30.2 30.2 30.2 30.2 30.2 487.2
274 5 20 20 24 30 30 30 30 30 30 30 485.3
273 3 20 20 24 29.86 29.86 29.86 29.86 29.86 29.86 29.86 483.4
272 3 20 20 24 29.71 29.71 29.71 29.71 29.86 29.71 29.71 481.5

Table 4.1: Row sums of the most likely 10× 10 matrix X̂ as a function of s. Within a row,
all elements are equal. The stepwise line inside the table indicates the k-boundary. The
last column of the table is computed by (2.1).

9



4.3 Bounds on total sum and on row sums

Suppose that instead of knowing the total sum as above, we have only an upper bound u
on it:

∑

i,j

xij 6 u, and ∀i,
∑

j

xij 6 ui. (4.6)

What has already been said in this section suffices to solve this problem also. First, if
u >

∑

i ui, then this constraint is immaterial and we have the problem of §3, whose
solution is given by (3.2). So we are left with the case u 6

∑

i ui. Suppose that we pick

a value s < u for the total demand, and then find X̂ as in §4.2. Example 2 showed that
#(X̂ | s) increases as s increases, suggesting that we should reduce to the problem (4.1)
with s = u. Indeed, Lemma A.1 establishes this formally.

This is the first case where “most likely” is not equivalent to “having maximum en-
tropy”. However, we see that there is still a strong and simple connection: the most likely
matrix is the MaxEnt matrix with the largest total sum allowed by the constraints.

5 Bounds on row and column sums

Here we consider the situation where our information I consists just of upper bounds on
both the row and column sums of the matrix:

∑

j

xij 6 ui,
∑

i

xij 6 vj , i, j = 1, . . . , n.

The number of realizations of a matrix subject to this information is given by expression
(2.1), except in this case the total sum s is not known and has to be substituted by

∑

i,j xij .
If we use the first two terms of (2.2) to approximate the log of

#(X|I) =

(

x11 + · · ·+ xnm
x11, . . . , x1m, x21, . . . , x2m, . . . , xn1, . . . , xnm

)

,

we find that it is given by the “entropy difference” function

G(X) =
(

∑

i,j xij

)

ln
(

∑

i,j xij

)

−
∑

i,j xij −
∑

i,j(xij lnxij − xij)

=
(

∑

i,j xij

)

ln
(

∑

i,j xij

)

−∑

i,j xij lnxij.
(5.1)

(When I includes the value of
∑

i,j xij , maximizing G(X) subject to I is equivalent to
maximizing H(X) subject to I.) Proposition A.2 in the Appendix shows that G(X) is
concave over the domain xij > 0. And by Corollary A.2, the elements of X̂ have the form

x̂ij =
(

∑

k,l

x̂kl

)

λiµj, λi, µj ∈ (0, 1]. (5.2)

Given the above, we note that there are two cases to consider w.r.t. to the bounds:

10



1. All rows sum to their bounds, and all columns sum to their bounds.

2. At least one row or one column sums to less than its bound.

Case 1 is possible only when
∑

i ui =
∑

j vj . If so, the solution s.t. ∀i,
∑

j xij = ui and
∀j,

∑

i xij = vj has been discussed in §2. Thus we need only consider case 2. We can

establish the following property of X̂ :

Proposition 5.1 The matrix X̂ is s.t. for any i, j pair, either row i sums to ui, or column
j sums to vj. That is, there can be no pair i, j s.t. row i sums to < ui and column j sums
to < vj .

By virtue of Proposition 5.1, if one column of X̂ sums to less than its bound, then all
rows must sum to their bounds. The situation is symmetric w.r.t. rows and columns, so
we will analyze just the column case, where one or more columns sum to less than their
bounds.

So suppose that columns 1, . . . , k sum to their bounds, while columns k+1, . . . ,m sum
to less than their bounds, with 0 6 k < m. Then we must have v =

∑

j vj >
∑

i ui = u.
By Corollary A.2, µk+1 = · · · = µm = 1 in (5.2). Also, as pointed out above, all rows must
sum to their bounds, which implies that

∑

k,l xkl = u.
If we consider the columns, (5.2) says that xij = uλiµj for j 6 k, and xij = uλi for

j > k. Adding these by sides over i we obtain

vj = uλµj , j 6 k and vk+1 > uλ, . . . , vm > uλ, (5.3)

where λ is the sum of the λi. Further, if we add all the columns, v1+· · ·+vk+uλ+· · ·+uλ =
u, whence

λ =
u− (v1 + · · · + vk)

(m− k)u
. (5.4)

(λ = 1/m if k = 0, i.e. if all columns sum to less than their bounds.) Turning to the rows,
we have uλ1µ = u1, . . . , uλnµ = un, where µ is the sum of the µj . Thus

λiµ =
ui
u

= ri, and λµ = 1. (5.5)

We can now determine all the λi and µj : from (5.5) and (5.3),

λi = λri and µj =

{

(1/λ)vj/u, j 6 k.
1, j > k.

(5.6)

Note that neither λi nor µj depend on vk+1, . . . , vm. This means that we can take these
bounds to be as large as we please, e.g. ∞, thus handling the case where no upper bound
is specified for some of these columns.
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It remains to take care of the fact that (5.2) requires λi, µj 6 1. It is easy to verify this
for λi: it is the product of two factors, both < 1. The condition µj 6 1 is equivalent to
(m−k)vj 6 u−(v1+ · · ·+vk) for j 6 k. The inequalities in (5.3) impose another condition
on k: (m−k)min(vk+1, . . . , vm) > u− (v1+ · · ·+vk). Taking these two conditions together
we see that k and the column bounds vj must satisfy

max(v1, . . . , vk) 6
u− (v1 + · · · + vk)

m− k
< min(vk+1, . . . , vm),

where 0 6 k < m. Assume that the vj are in increasing order5. Then this condition
becomes

vk 6
u− (v1 + · · ·+ vk)

m− k
< vk+1, 0 6 k < m. (5.7)

The following result establishes the existence of a k satisfying (5.7):

Proposition 5.2 Let v1 6 v2 6 · · · 6 vm, u < v, and v1 6 u/m. Then there is a unique
k ∈ {1, . . . ,m− 1} s.t.

(m− k)vk 6 u− (v1 + · · ·+ vk) < (m− k)vk+1.

If v1 > u/m, then k = 0.

Finally, if u < v, by (5.2), (5.4), and (5.6), the elements of X̂ are

x̂ij =







uivj
u

, j 6 k,

u− (v1 + · · · + vk)

m− k

ui
u
, j > k,

i = 1, . . . , n (5.8)

where k is given by Proposition 5.2. We note that k is the number of informative column
constraints, in the sense that the solution depends on v1, . . . , vk but not on vk+1, . . . (similar
to the k in Lemma 4.1). In fact, some of vk+1, . . . , vm may be infinite, i.e. there may be
no upper bounds on some of columns k + 1, . . . ,m.

The reader may want to compare (5.8) with the result (2.7) for the model of §2. The
comparison shows that even though for the problem we just solved “most likely” is not di-
rectly equivalent to “having maximum entropy”, there is still a straightforward connection
as we also saw in §4.3.

6 Bounds on individual elements

We first point out that whereas bounds on individual matrix elements provide the utmost
flexibility in expressing constraints, they can have unintended consequences. Then we look
at the most likely matrix subject to bounds on the row sums and on individual elements.

5If the matrix is a contingency table, simply rearrange the columns. If it refers to n nodes, re-label the
nodes.
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6.1 Expressive power and consistency

6.1.1 Expressive power

Consider finding the most likely matrix X̂ subject just to the constraints

∀i, j xij 6 wij ,

where W is a given n × m matrix in N. Then it is easy to see by an argument similar
to that of §3 that X̂ has elements x̂ij = wij. Thus the information W suffices to specify
any possible most likely matrix. Conversely, to be able to specify an arbitrary matrix,
information on every matrix element is necessary; W is one form of such information.

6.1.2 Consistency

Imposingw-constraints that are satisfied with equality requires that the w- and u-constraints
together satisfy certain conditions if the matrix X̂ is not to exhibit surprising behavior.
For example, suppose we are trying to determine a 3 × 3 matrix with row/column sums
u1, u2, u3 and s.t. x11 = 0, as shown in Fig. 6.1, left. Then we must have x12 + x13 = u1
from row 1, and (x22 + x23 + x32 + x33) + x12 + x13 = u2 + u3 from columns 2 and 3. It
follows that if u1 is not strictly less than u2 + u3, then x22 + x23 + x32 + x33 = 0, which
means that all these elements are 0. So with certain u1, u2, u3, x11 = 0 may force other
elements of the matrix to be 0 as well. This does not happen without the requirement
x11 = 0: we know from §2 that for any u1, u2, u3 there is a X̂ with all elements non-zero.

0 x12 x13 u1
x21 x22 x23 u2
x31 x32 x33 u3
u1 u2 u3

u1

W A
...
uk

uk+1

B C
...
un

u1 · · · uk uk+1 · · · un

Figure 6.1: Matrices with some elements fixed by w-constraints.

More generally, suppose we have a constraint that forces a certain k×k square submatrix
of X to equal a matrix W . In the simplest case let W be in the upper left-hand corner of
X as shown in Fig. 6.1, right. Then we have

ΣW +ΣA = u1 + · · ·+ uk, ΣA +ΣC = uk+1 + · · ·+ un,

assuming that ΣW < u1 + · · ·+ uk. It can be seen that unless u and W are s.t. u1 + · · ·+
uk −ΣW < uk+1 + · · ·+ un, we must have ΣC = 0, which would force the entire submatrix
C to be 0.
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If W is an arbitrary submatrix, let its rows and columns correspond to a set I of indices.
Then the condition that must be satisfied so that C is not forced to 0 can be written as

uI <
u

2
+

wII

2
, (6.1)

where the subscripts indicate summation over the set. In terms of a traffic matrix, this
condition says that the traffic originating in the set I must be less than half of the total,
plus half of the traffic originating in I and terminating in I. As an example, suppose we
require that there is no traffic among the locations in I; then (6.1) says that the traffic
that leaves I cannot be more than half of the total traffic.

Related to the above, there is also a necessary and sufficient condition for the existence
of a non-negative matrix with specified row and column sums and an arbitrary subset of
elements specified to be 0: see Theorems 3.10 and 3.12 in Ch. 4 of [BP94]; see also §3.6 of
[ES90].

6.2 Bounds on row sums and on individual elements

Suppose we know the same bounds on the row sums as in 3, but, in addition, we have a
bound on the size of each individual element:

∀i
∑

j

xij 6 ui, and ∀i, j xij 6 wij . (6.2)

This problem is easy to solve because the constraints (6.2) are separable, so each row of the
most likely matrix X̂ can be found independently of all the other rows. Fixing a particular
row i, denote the xij by x1, . . . , xm, ui by a, and the wij by b1, . . . , bm. Then we have the
problem of finding the most likely vector x∗ that satisfies

x1 + · · ·+ xm 6 a, x1 6 b1, . . . , xm 6 bm, a, bi ∈ N. (6.3)

The solution to this problem is as follows. If a > b1 + · · · + bm, x∗ is simply (b1, . . . , bm).
If a 6 b1 + · · · + bm, then x∗ is found by replacing the inequality with an equality and
reducing to the problem solved in 4. The formal details are given in Lemma A.1 in the
Appendix.

7 Symmetric information

We now investigate some types of constraints that we have not looked at so far, but under
the additional assumption that these constraints or information are symmetric w.r.t. rows
and columns. By necessity, the matrices are n × n square. Here is one motivation for
considering symmetry. Suppose we are designing a “backbone” type, i.e. high capacity
and geographically extensive, communications network connecting a set of n locations. The
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transmission facilities in such a network typically have the same capacity in each direction.
To understand what capacities are needed for the links, we need an estimate of the traffic
matrix. Given the symmetry of the capacities, we may assume, for example, that the total
incoming and outgoing traffic for a given node are equal. The same considerations apply
to a network of roads connecting a set of cities. Thus the symmetry of capacities allows us
to act as if the traffic matrix were symmetric.

These considerations aside, the symmetric information allows us to go farther toward
analytical solutions than would be possible otherwise. One of the questions we investigate
via the analytical forms is the effect of fixing some elements on the “product of independent
factors” structure of the MaxEnt matrix.

7.1 Total sum and bounds on row and column sums

Here the sum of row i is bounded by ui, and so is the sum of column i. By Corollary A.1,
the matrix elements are of the form

xij = λiµjν, λi, µj ∈ (0, 1],

where λi, µi correspond to the row and column constraints respectively, and ν to the
constraint on the total sum. We will show that the solution is essentially the same as that
obtained in §4 for the non-symmetric, row-only case. So define k by (4.3), and consider
the solution

1. Constraints 1, . . . , k are satisfied as equalities for both rows and columns (so we must
have λ1, . . . , λk 6 1 and µ1, . . . , µk 6 1), and

2. λk+1 = · · · = λn = 1, and µk+1 = · · · = µn = 1.

It follows that the matrix must look like
[

[λiµjν]k×k [λiν]k×n−k

[µjν]n−k×k [ν]n−k×n−k

]

=

[

A B
C D

]

.

Note that rows k+1, . . . , n are identical, and so are columns k+1, . . . , n. Let ΣA, . . . ,ΣD

denote the sums of the elements of the submatrices. Clearly,

ΣA +ΣB = u1 + · · ·+ uk, ΣA +ΣC = u1 + · · ·+ uk, ΣA +ΣB +ΣC +ΣD = s.

Therefore ΣB = ΣC and u1 + · · ·+ uk +ΣB +ΣD = s. Substituting for the elements of B
and D, we find that

ν =
s− (u1 + · · ·+ uk)

(n− k)(λ1 + · · · + λk + n− k)
.

And from ΣB = ΣC it follows that λ1 + · · · + λk = µ1 + · · · + µk. Now the constraint on
row i < k is λi(λ1 + · · · + λk + n − k)ν = ui. Using the expression for ν in this we find
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that λi = (n− k)ui/(s − (u1 + · · · + uk)), and this is < 1 as required. Similarly, from the
constraint for column j < k we find that µj = (n− k)uj/(s− (u1 + · · ·+ uk)). We see that
µj = λj. Therefore we need only deal with the λj. Substituting the values of the λi in the
expression for ν, we finally arrive at the solution

x̂ij =











































uiuj
s

, (i, j) ∈ A,

(s− (u1 + · · ·+ uk))ui
(n− k)s

, (i, j) ∈ B,

(s− (u1 + · · ·+ uk))uj
(n− k)s

, (i, j) ∈ C,

(s− (u1 + · · ·+ uk))
2

(n− k)2s
, (i, j) ∈ D,

(7.1)

where k is defined by (4.3). This solution is symmetric, and the reader can verify that
it satisfies all the constraints. The A,B,C matrices have the gravity form, the B and C
matrices are the transpose of one another, and the D matrix is constant. Finally, note
that we did not assume the symmetry in the solution, it followed as a consequence of the
symmetric information.

7.2 Given row and column sums, partially fixed diagonal

Assume that the sum of row and column i is ui, and that the first m 6 n of the diagonal
elements are fixed to be 0. Then, with s = u1 + · · · + un still denoting the total sum, the
matrix elements other than the first m on the diagonal must be given by

x̂ij = sλiµj, λi, µj > 0.

Including the factor s is a convenience, as will become clear. For the above solution to
be possible the consistency condition (6.1) must be satisfied: each ui must be strictly less
than half of s. We shall assume this to be the case. If λ is the sum of the λi and µ that of
the µj, and ri = ui/s, the row and column constraints can be written as

λi(µ − µi) = ri, i 6 m, λiµ = ri, i > m,
µj(λ− λj) = rj , j 6 m, µjλ = rj , j > m.

(7.2)

Here r1+ · · ·+ rn = 1 and ri < 1/2 for all i. Noting that (7.2) is unchanged if we exchange
the λi and the µj leads us to consider a solution with µi = λi. Then (7.2) reduces to

λi(λ− λi) = ri, i 6 m, λiλ = ri, i > m. (7.3)

(7.3) implies that for i 6 m we have λi = (λ±
√
λ2 − 4ri)/2, whereas for i > m, λi = ri/λ.

Suppose we pick the root with the “−” for i = 1, . . . ,m. Adding the expressions for the

16



λi by sides and dividing both sides of the result by λ 6= 0 we see that λ must satisfy the
equation

√

1− 4r1/λ2 + · · ·+
√

1− 4rm/λ2 − 2
rm+1 + · · ·+ rn

λ2
= m− 2. (7.4)

An exact analytical solution of (7.4) is impractical, but we can find an approximation. To
begin with, we observe that the l.h.s. of (7.4) is a monotone increasing function of λ so
the root of (7.4) is unique6. Second, at the expense of restricting the ri somewhat, we can
localize the root:

Proposition 7.1 Suppose that each of r1, . . . , rn is in (0, 1/3), and r1+ · · ·+rn = 1. Then
for any n > 3 and any m 6 n, equation (7.4) has a root in the interval (2

√
rmax, 4/3),

where rmax is the largest of the ri.

To see the necessity for some additional restriction on the ri, suppose that m = n and
that we extend (0, 1/3) to (0, 1/2). Then consider the set r1 =

1
2 and r2 = · · · = rn = 1

2(n−1) ;

it can be seen that (7.4) has no solution in (
√
2,∞).

In terms of the root λ of (7.4) the final solution is

x̂ij =



































sλ2

4

(

1−
√

1− 4ri/λ2
)(

1−
√

1− 4rj/λ2
)

, i, j 6 m and i 6= j,

sri
2

(

1−
√

1− 4rj/λ2
)

, i > m, j 6 m,

srj
2

(

1−
√

1− 4ri/λ2
)

, i 6 m, j > m,

srirj/λ
2, i, j > m.

(7.5)

We see that the x̂ij for i, j 6 m have a product form, but, in general, the factors are not
independent. We know from §2 that irrespective of symmetry, the dependence disappears
if we don’t fix any diagonal elements. Fixing these elements imposes a global dependence
as we saw in §6.

Example 3 We consider the two extreme cases m = n and m = 1. In addition, suppose
that all the ui are equal.

First let m = n. Then all ri are 1/n and λ =
√

n/(n− 1). From the first line of (7.5)

the matrix X̂ has the form

s

n(n− 1)











0 1 1 . . . 1
1 0 1 . . . 1
...

...
...

...
...

1 1 1 . . . 0











.

6This is also true because the solution to our strictly concave maximization problem is unique.

17



Compare this with the case where the diagonal is not fixed to 0, and the solution is
x̂ij = s/n2.

Now let m = 1. This is the simplest possible case: we have a square matrix with all
row and column sums equal, except that the single element d11 is fixed to be 0. From (7.4)
we find λ = (n− 1)/

√

n(n− 2). From the last three lines of (7.5) we see that now X̂ is

s

n(n− 1)











0 1 1 . . . 1
1 n−2

n−1
n−2
n−1 . . . n−2

n−1
...

...
... . . .

...
1 n−2

n−1
n−2
n−1 . . . n−2

n−1











.

Example 4 Now consider the case m = n, but with the ri arbitrary. We obtain an
analytical aproximation to the solution. If we let ξ = 4/λ2, (7.4) becomes

√

1− r1ξ + · · ·+
√

1− rnξ = n− 2, ξ ∈ (9/4, 1/rmax), (7.6)

where the lower bound on ξ comes from Proposition 7.1. This equation has the form
f(ξ) = c, and if ξ0 is an approximation to its solution, the reversion technique in Ch. 1
of [Hen88] can be used to find the following power series for ξ: with ρi =

√
1− riξ0 and

δ = f(ξ0)− c = ρ1 + · · · + ρn − n+ 2,

ξ = ξ0 +
2

r1/ρ1 + · · ·+ rn/ρn
δ − r21/ρ

3
1 + · · ·+ r2n/ρ

3
n

(r1/ρ1 + · · ·+ rn/ρn)3
δ2 − . . . (7.7)

It is known that this series converges, and it can be shown that δ < 1 for any ξ0 ∈
(9/4, 1/rmax)

7. By (7.5) the non-diagonal matrix elements are given by s
ξ (1−

√
1− riξ)(1−

√

1− rjξ), and (7.7) lets us find power series expansions for them in terms of δ. We do not
show these series here, but the expansions to first order result in manageable expressions.
The accuracy of the expansions remains to be investigated.

Now consider a numerical example with u = (40, 20, 30, 40). We have r =
(

4
13 ,

2
13 ,

3
13 ,

4
13

)

,
so solving (7.6) we find ξ ≈ 2.88018 ∈

(

9
4 ,

13
4

)

. If we take ξ0 = 9/4, (7.7) gives ξ ≈
2.25 + 0.749023− 0.112889 = 2.8861. Then the form s

ξ (1−
√
1− riξ)(1−

√

1− rjξ) yields

X̂ =









0 7.59 12.59 19.82
7.59 0 4.82 7.59
12.59 4.82 0 12.59
19.82 7.59 12.59 0









, vs.









12.31 6.15 9.23 12.31
6.15 3.08 4.62 6.15
9.23 4.62 6.92 9.23
12.31 6.15 9.23 12.31









,

the MaxEnt matrix without the 0-diagonal constraint, whose elements are simply srirj .
As we also saw in Example 3, the result of fixing the diagonal to 0 cannot be regarded as
a (small) perturbation of the srirj form.

7Note that ρi < 1− 1/2riξ0, so ρ1 + · · ·+ ρn < n− ξ0/2.
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Generalization (a) The solution (7.5) is valid also when the ui are upper bounds on
the row sums, instead of specifying their values. In that case Corollary A.1 requires that
λi 6 1, which is true if

∀i 2
√
ri 6 λ 6 2 or λ > 2.

But this holds by virtue of Proposition 7.1.
(b) The diagonal elements can be set to arbitrary values w11, . . . , wnn, if the ri are

re-defined as (ui − wii)/s. This actually requires a slight extension of Proposition 7.1; see
Proposition 7.2 below. And it can be verified that if we set wii = u2i /s we get the expected
solution x̂ij = srirj .

7.3 3-dimensional matrices with fixed diagonal

The development of §7.2 can be extended to 3-dimensional matrices. These can be thought
of as contingency tables involving elements with 3 attributes, or as trip matrices where a
trip is characterized by an origin and a destination as in the 2-dimensional case, and, in
addition, by a class of vehicle, say, or as traffic matrices where traffic flows have origins,
destinations, and a size class, such as “small”, “medium”, “large”. Whatever the three
attributes, we will index them by i, j, k. We will consider the case where the whole diagonal
is 0 and the available information is the sums over all (i, k) sections and all (j, k) sections
of the matrix:

∀i
∑

j 6=i

xijk = uik, ∀j
∑

i 6=j

xijk = vjk.

In the case of a traffic matrix for example, this means that we know the total number of
flows originating at i and of size class k, and the total number ending at j of size class k.
The matrix elements will then be

xijk = sλikµjk for i 6= j, and 0 otherwise,

where the λik and µjk are s.t.

∀i s
∑

j 6=i

λikµjk = uik, ∀j s
∑

i 6=j

λikµjk = vjk.

Now let this information be symmetric w.r.t i and j, i.e. vik = uik. Further, define
rik = uik/s. Then the above constraints can be written as

∀i λik(µ.k − µik) = rik, ∀j µjk(λ.k − λjk) = rjk,

where the dot indicates summation over the corresponding index. Since the index j in the
second set of constraints could have equally well been written i, we are led to consider a
solution with µik = λik and the single set of constraints

∀i λik(λ.k − λik) = rik.
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Proceeding as we did after (7.3), λik =
(

λ.k −
√

λ2
.k − 4rik

)

/2. Adding these over i and

setting ξk = 4/λ2
.k, we arrive at a generalization of (7.6):

∀k
√

1− r1kξk + · · ·+
√

1− rnkξk = n− 2.

This is completely analogous to what we found in Example 4, except that here we have
one equation for each of the ξk. The final expression for the elements of the matrix is

xijk =
4

ξk

(

1−
√

1− rikξk
)(

1−
√

1− rjkξk
)

for i 6= j, and 0 otherwise.

Note that the matrix sections corresponding to different values of k are independent of one
another. The above development generalizes to the case where only the first m < n of the
diagonal elements are fixed, and in the other ways discussed in §7.2.

7.4 Given row and column sums, fixed diagonal blocks

We generalize the development of §7.2 to equality constraints expressed by a block-diagonal
matrix W with blocks W1, . . . ,Wm, m > 3. This means that the n nodes are partitioned
into m sets I1, . . . , Im, and the submatrix of X that has rows and columns in Ij is con-
strained to equal Wj . So X looks like

I1 I2 . . . Im
I1 W1

I2 W2
...

. . .

Im Wm

where the rest of the entries are determined by the u-constraints and, as previously, are
given by sλiλj . Thus for the nodes in the set I1 we have the equations

sλ1(sum of λj , j /∈ I1) = u1 − (sum of first row of W1),

sλ2(sum of λj , j /∈ I1) = u2 − (sum of second row of W1),

etc. Let λI1 denote
∑

i∈I1
λi, and similarly for λI2 , etc. Also let λ = λI1 + · · ·+ λIm . Then

the above equations can be written as

sλ1(λ− λI1) = u1 − w1I1 , sλ2(λ− λI2) = u2 − w2I1 , . . .

where the meaning of the additional notation should be clear. If we now add these equations
by sides, the result can be written compactly as

λI1(λ− λI1) = rI1 , where rI1 = (uI1 − wI1I1)/s,
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and where subscripts that are sets indicate summation over the respective sets. If we do
the same thing for the rows in I2, . . . , Im, we arrive at the system of equations

λI1(λ− λI1) = rI1 , λI2(λ− λI2) = rI2 , . . . , λIm(λ− λIm) = rIm ,

which has exactly the form (7.3) except that here the rIi don’t sum to 1, but to

σ = 1− 1

s

m
∑

i=1

wIiIi < 1.

Of course, the uIi and wIiIi are assumed to satisfy the consistency condition (6.1). Pro-
ceeding just as in §7.2, we have

λIj =
1

2

(

λ−
√

λ2 − 4rIj

)

so that λ is the root of the equation

√

1− 4rI1/λ
2 + · · · +

√

1− 4rIm/λ
2 = m− 2, (7.8)

about which we have a generalization of Proposition 7.1:

Proposition 7.2 Suppose that rI1 + · · · + rIm = σ < 1, and each rIj is in (0, σ/3). Then
for m > 3 equation (7.8) has a root in (2

√
rmax, 4

√
σ/3), where rmax is the largest of the

rIj .

Given the root λ of (7.8), if i ∈ Ik, λi is given by 2ri/(λ +
√

λ2 − 4rIk). But this
expression also equals ri(λ −

√

λ2 − 4rIk)/(2rIk). So the solution to our problem is: for
i ∈ Ik, j ∈ Iℓ, k 6= ℓ,

x̂ij =
s

4

λ2rirj
rIkrIℓ

(

1−
√

1− 4rIk/λ
2
)(

1−
√

1− 4rIℓ/λ
2
)

,

ri =
ui − wiIk

s
, rIk =

∑

i∈Ik

ri =
uIk − wIkIk

s
.

(7.9)

Suppose that all blocks are of size 1, so m = n and the constraints are xii = wii. Then it
is easily seen that (7.9) gives the same result as (7.5). An analytical approximation to the
solution of (7.8), and to the matrix elements themselves, can be found by the power series
(7.7).

Finally, the solution (7.9) holds even when the ui are upper bounds on the row and
column sums. In that case Corollary A.1 requires λIj 6 1, which holds if ∀j, 2√rIj 6 λ 6 2.
But this last condition obtains by virtue of Proposition 7.2.
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8 Conclusion

Table 8.1 summarizes the problems for which we obtained results in this paper. We saw
that the most likely/MaxEnt matrices exhibit as much independence, symmetry, and
uniformity as possible subject to the available information or constraints. Further, they are
robust with respect to changes in the information/constraints. Lastly, given independent
constraints on the rows and columns, the matrix elements have a “product of independent
factors” form, unless some of them are fixed, in which case the independence disappears.

Rectangular matrices/contingency tables

Given row sums and some column sums
Bounds on row sums
Total sum and bounds on row sums
Bounds on total sum and row sums
Bounds on row and column sums
Bounds on row sums and on individual elements

Square matrices with symmetric information

Total sum and bounds on row and column sums
Given row sums and partially-fixed diagonal,

with extension to 3d matrices
Given row sums and fixed diagonal blocks

Table 8.1: Summary of cases solved.

The types of constraints that we considered were relatively simple, as befits an initial
exploration of the space of analytical solutions. The aim was to have enough basic results to
establish a framework for further investigations, perhaps motivated by constraints arising
in concrete problems.

Finally, even though we used the discrete balls–and–boxes framework throughout, all
that is said in this paper applies also to deriving 2-dimensional discrete probability distribu-
tions from incomplete information, if we think of the balls as “probability quanta” thrown
into the boxes. Jaynes [Jay03] calls this the “Wallis derivation” of MaxEnt probability
distributions.

Acknowledgments Thanks to my colleagues Howard Karloff and N.J.A. Sloane for in-
teresting and helpful discussions.

A Auxiliary results and Proofs

A.1 Optimal solutions of concave programs

We review some standard terminology and results.
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Suppose C is a convex set in R
n. A concave program is the problem of maximizing a

concave function f on this set, subject to a number of equality and inequality constraints:

maxx∈C f(x) subject to
gi(x) = 0, i = 1, . . . , ℓ, hj(x) 6 0, j = 1, . . . ,m,

(A.1)

where the gi are linear on C (and assumed linearly independent) and the hj are convex
on C. All x ∈ C satisfying the constraints are called feasible. The Lagrangean function
associated with the concave program (A.1) is

Φ(x, α, β) = f(x)−
∑

i

αigi(x)−
∑

j

βjhj(x). (A.2)

The following result (Theorem 2.30 in [ADSZ88], or §5.5.3 of [BV04]) gives sufficient condi-
tions for solving a concave program in which all functions are differentiable on (the interior
of) C:

Theorem 1 If x∗ is feasible, and there are α∗, β∗ such that

∇xΦ(x
∗, α∗, β∗) = 0, β∗

j hj(x
∗) = 0 and β∗

j > 0 ∀j,

then x∗ solves the concave program (A.1).

Also recall that if a strictly concave function on a convex set has a maximum, the
maximizing point is unique (Theorem 2.22 in [ADSZ88]).

Corollary A.1 Suppose the function f in (A.2) is the entropy, and all the constraints are
linear and involve coefficients that are either 0 or 1. Then the elements of x∗ have the
form

x∗k =
∏

i∈Ek

α′
i

∏

j∈Ik

β′
j , where α′

i > 0, β′
j ∈ (0, 1],

where Ek is the set of indices of the equalities gi in which xk appears, and Ik is the set
of indices of the inequalities hj where xk appears. The j-th inequality constraint can be
satisfied either as a strict inequality or as an equality, and we must have

hj(x
∗) ln β′

j = 0. (A.3)

Corollary A.2 If the function f in (A.2) is the entropy difference function G of (5.1)
and the constraints are as in Corollary A.1, then

x∗k =
(

∑

16ℓ6n

x∗ℓ

)

∏

i∈Ek

α′
i

∏

j∈Ik

β′
j , α′

i > 0, β′
j ∈ (0, 1],

where the β′
j must satisfy (A.3).
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A.2 Proofs for §4

Proof of Lemma 4.1

The Lagrangean is

Φ = −
∑

i

xi lnxi − λ1(x1 − b1)− · · · − λn(xn − bn)− µ(x1 + · · ·+ xn − a).

Setting ∇Φ to 0, we have for all i

xi = e−λi−µ−1
 λiµ. (A.4)

By Corollary A.1, for a point (x1, . . . , xn) given by (A.4) to solve the problem the following
must hold

a) (x1, . . . , xn)must be feasible,

b) By (A.3), we must have λi ∈ (0, 1] for all i, and (xi − bi) ln λi = 0.

Now arrange the bi and xi as stated in part (i) of the lemma. Consider the solution

xi = bi = λiµ, with λi 6 1, i = 1, . . . , k
xi = µ, with λi = 1, i = k + 1, . . . , n

(A.5)

in accordance with (b) above, where k is as yet undetermined. Putting (A.5) into the
equality constraint we get b1 + · · · + bk + (n− k)µ = a. It follows that

xk+1 = · · · = xn = µ =
a− (b1 + · · ·+ bk)

n− k
. (A.6)

Now let k be chosen as in part (ii) of the lemma. Then the solution (x1, . . . , xn) given by
(A.5), (A.6) is feasible as required in (a) above: by the definition of k, b1 + · · · + bk+1 +
(n− k − 1)bk+1 > a, which is equivalent to µ < bk+1.

To satisfy (b), we need to check that λi 6 1 for i = 1, . . . , k. From (A.5) and (A.6),

λi =
(n− k)bi

a− (b1 + · · ·+ bk)
and λi 6 1 ⇔ a− (b1 + · · ·+ bk) > (n− k)bi.

But this last condition holds ∀i 6 k by the definition of k. We have found a solution x∗,
and because the entropy function is strictly concave, this solution is unique and we are
done. It remains to show that it is possible to find a k as required in part (ii) of the lemma.
This is done in Proposition A.1 below.

Proposition A.1 Given b0 = 0 < b1 6 b2 6 · · · 6 bn and 0 < a 6 b1 + · · ·+ bn, there is a
k ∈ {0, . . . , n} s.t. the inequality

a− (b1 + · · ·+ bj) > (n − j)bj

holds for all j 6 k and for no larger j.
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Proof Consider the function ϕ(j) = a− (b1 + · · ·+ bj)− (n− j)bj , j ∈ {0, 1, . . . , n}. It is
easy to see that ϕ(j) > ϕ(j+1) for all j, so this function is monotone decreasing. Further,
ϕ(0) = a > 0 and ϕ(n) = a − (b1 + · · · + bn) 6 0. So there is a k 6 n s.t. ϕ(j) > 0 for
j 6 k, and ϕ(j) < 0 for j > k, as claimed. Note that k = n iff b1 + · · · + bn = a. �

A.3 Proofs for §5

Proposition A.2 The function

G(x1, . . . , xn) =
(

∑

i

xi

)

ln
(

∑

i

xi

)

−
∑

i

xi −
∑

i

(xi lnxi − xi)

=
(

∑

i

xi

)

ln
(

∑

i

xi

)

−
∑

i

xi lnxi

is concave over the domain x1 > 0, . . . , xn > 0.

This is probably known somewhere in the information theory literature, but I don’t
know where. So a proof is presented below.
Proof By Theorem 2.14 of [ADSZ88] it suffices to show that H(x) = ∇2G(x), the Hessian
of G, is negative semi-definite. We find

H(x) =
1

x1 + · · · + xn
Un − diag

(

1

x1
, . . . ,

1

xn

)

,

where Un is a matrix all of whose entries are 1, and for an arbitrary vector y = (y1, . . . , yn)
we must have yTH† 6 0. To establish this, first write H as

H(x) =
1

x1 + · · ·+ xn

(

Un − diag

(

x1 + · · ·+ xn
x1

, . . . ,
x1 + · · · + xn

xn

))

.

Now define ξi = xi/(x1 + · · · + xn). The condition yTH† 6 0 is then equivalent to

(y1 + · · ·+ yn)
2 6 y21/ξ1 + · · · + y2n/ξn, (A.7)

where the ξi are positive and sum to 1. The truth of (A.7) follows from the fact that
y21/ξ1 + · · · + y2n/ξn is a convex function of ξ1, . . . , ξn over the domain ξ1 > 0, . . . , ξn > 0,
and its minimum under the constraint ξ1 + · · ·+ ξn = 1 occurs at ξ∗i = yi/(y1 + · · · + yn).
So the least value of the r.h.s. of (A.7) as a function of ξ1, . . . , ξn is (y1 + · · ·+ yn)

2. �

Proof of Proposition 5.1

We first give a straightforward proof assuming that xij ∈ N. Suppose there is a matrix X
s.t. for some i, j row i sums to less than ui and column j to less than vj . Further, let X
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have total sum s. Consider the matrix X ′ formed by adding 1 to xij. First, if X satisfies
the constraints, so does X ′. Second, #(X ′|I)/#(X|I) = (s + 1)/(xij + 1) > 1. Thus X ′

has more realizations than X, and so X cannot be the most likely matrix X̂ .
To give a proof assuming that the elements of X are non-negative reals, by Corollary

A.2 we must have x̂ij = (
∑

k,l x̂kl)λiµj. Now if there is a pair i, j s.t.
∑

j x̂ij − ui < 0 and
∑

i x̂ij − vj < 0, we must have λi = µj = 1, so x̂ij =
∑

k,l x̂kl. Thus all other elements of

X̂must be 0. Further, x̂ij 6 min(ui, vj). But it is easy to see that this matrix cannot have
the most realizations.

Proof of Proposition 5.2

Consider the function ϕ(ℓ) = u−(v1+ · · ·+vℓ)−(n−ℓ)vℓ+1. It is easy to check that ϕ(ℓ) ր
as ℓ ր. Further, ϕ(0) = u−nv1 > 0 if u/n > v1. Finally, ϕ(n−1) = u−(v1+ · · ·+vn) < 0.
Thus there is a least ℓ, s.t. ϕ(ℓ) < 0, 1 6 ℓ < n − 1, and ϕ(ℓ − 1) > 0. Let that ℓ be k.
The two conditions ϕ(k) < 0 and ϕ(k − 1) > 0 establish what is claimed.

A.4 Proofs for §6.2

The following result is a variation of Lemma 4.1: it says that the most likely vector with
sum bounded by a and elements bounded by the vector b is the MaxEnt vector with sum
equal to a and elements bounded by b.

Lemma A.1 The most likely vector x∗ = (x∗1, . . . , x
∗
m) satisfying ∀i 0 6 xi 6 bi and

x1 + · · ·+ xm 6 a, a, bi ∈ N, is found as follows. If a 6 b1 + · · ·+ bm, the inequality in this
constraint can be replaced by equality and then x∗ is given by Lemma 4.1. If a > b1+· · ·+bm,
then x∗ = (b1, . . . , bm).

Proof First we reduce the problem in N to another problem in N. Suppose that a 6
b1+· · ·+bm. Let y = (y1, . . . , ym), yi ∈ N be the most likely vector summing to α 6 a−1 and
satisfying yi 6 bi. Pick a yj s.t. yj < bj; this exists because y sums to α, which is strictly
less than b1+ · · ·+ bm. But then the vector y′ = (y1, . . . , yj−1, yj +1, yj+1, . . . , ym) sums to
α+1, satisfies the b-constraints, and by the argument given in §3, #(y′ | α+1) > #(y | α).
So by increasing the allowed sum α we get a more likely vector. It follows that the most
likely vector x∗ in N satisfying the constraints sums to exactly a, and (an approximation
in R) can therefore be found by Lemma 4.1.

Now let a > b1 + · · · + bm. In that case the a-constraint is irrelevant and we have
precisely the problem solved in §3 for a matrix; so x∗ = (b1, . . . , bm). �
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A.5 Proofs for §7.2

A.5.1 Proof of Proposition 7.1

We already noted that the function

f(λ) =
√

1− 4r1/λ2 + · · · +
√

1− 4rm/λ2 − 2(rm+1 + · · ·+ rn)/λ
2 − (m− 2)

is monotone increasing for any m 6 n. We will now show that f(4/3) > 0 and f(2
√
rmax) 6

0.

f > 0 at 4/3 This reduces to showing that

√

1− 9/4r1 + · · ·+
√

1− 9/4rm − 9/8(rm+1 + · · ·+ rn) > m− 2. (A.8)

The l.h.s. has the form
∑

i ϕi(ri) where ϕi(·) is concave, so it is a concave function of
r1, . . . , rn (Prop. 2.16 of [ADSZ88]) over the convex domain defined by r1+· · ·+rn = 1 and
0 < ri 6 1/3. Therefore its minimum occurs on the boundary of the domain ([ADSZ88],
Prop. 2.25.) The boundary consists of all points s.t. three of the ri are 1/3 and the rest
are 0. There are several cases to consider. First, it is easy to check that (A.8) holds for
m = 0 and m = 1.

Next let m = 2. What we want to prove reduces to
√

1− 9/4r1 +
√

1− 9/4r2 −
9/8(r3 + · · · + rn) > 0. The possibilities for the boundary are r1 = r2 = r3 = 1/3, or
r1 = 1/3, r3 = r4 = 1/3, or r3 = r4 = r5 = 1/3, and the desired inequality holds under any
of these conditions.

Lastly suppose that m > 3, and, without loss of generality, that r1 = r2 = r3 = 1/3.
Then (A.8) becomes 3/2 + m − 3 > m − 2, which is true. Next, let r1 = r2 = 1/3,
rm+1 = 1/3; (A.8) becomes 1 +m − 2 − 3/8 > m − 2, which is also true. The remaining
two cases are r1 = 1/3, rm+1 = rm+2 = 1/3, and rm+1 = rm+2 = rm+3 = 1/3, and (A.8)
holds for both.

f 6 0 at 2
√
rmax Without loss of generality we may assume that rmax = r1 because this

makes the notation simpler. Then f(2
√
rmax) < 0 reduces to establishing

√

1− r2/r1 + · · · +
√

1− rm/r1 −
rm+1 + · · ·+ rn

2r1
6 m− 2. (A.9)

We will find the maximum of the function on the l.h.s., treating r1 as known for the
moment. Using Theorem 1, the l.h.s. is a concave function of r2, . . . , rn, and under the
constraint r2 + · · ·+ rn = 1− r1 it has a unique maximum at the point determined by

1

2r1
=

1

2r1

(

1− r2
r1

)−3/2
= · · · =

1

2r1

(

1− rm
r1

)−3/2
.
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Thus the maximum occurs at the point r2 = · · · = rm = 0 and rm+1 + · · · + rn = 1 − r1,
where the value of the function is m − 1 − (1 − r1)/(2r1). Therefore (A.9) will hold iff
r1 6 1/3.

The above proof assumed that m < n. When m = n, (A.9) becomes

√

1− r2/r1 + · · · +
√

1− rn/r1 6 n− 2. (A.10)

As before, the l.h.s. is a concave function for fixed r1, and its maximum occurs at r2 =
· · · = rn = (1− r1)/(n − 1). Thus (A.10) holds if

(n − 1)

√

1− 1− r1
(n− 1)r1

6 n− 2,

which is true if r1 6 1/3.

Proof of Proposition 7.2 We re-use the proof of Proposition 7.1. Define f(λ) =
√

1− 4rI1/λ
2 + · · · +

√

1− 4rIm/λ
2 − (m− 2). Setting ρi = rIi/σ, this becomes

f(λ) =
√

1− 4σρ1/λ2 + · · ·+
√

1− 4σρm/λ2 − (m− 2),
∑

i

ρi = 1.

Then f(4
√
σ/3) > 0 is equivalent to

√

1− 9/4ρ1 + · · ·+
√

1− 9/4ρm > m− 2; but this is
a special case of (A.8). It remains to show that f(2

√
rmax) = f(2

√
σρmax) 6 0. Assuming

w.l.o.g. that ρmax = ρ1, this reduces to
√

1− ρ2/ρ1 + · · · +
√

1− ρ2/ρm 6 m − 2, which
follows from (A.10).

References

[ACR+06] D. Alderson, H. Chang, M. Roughan, S. Uhlig, and W. Willinger. The Many
Facets of Internet Topology and Traffic. Networks and Heterogeneous Media,
1(4), 2006.

[ADSZ88] M. Avriel, W.E. Diewert, S. Schaible, and I. Zang. Generalized Concavity.
Plenum Press, 1988.

[BD08] F. Bilich and R. DaSilva. Maximum Entropy Principle for Transportation. In
Bayesian Inference and Maximum Entropy Methods in Science and Engineer-
ing, 28. American Institute of Physics (AIP), 2008.

[BP94] A. Berman and R.J. Plemmons. Nonnegative Matrices in the Mathematical
Sciences. SIAM Press, 1994.

[BV04] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge, 2004.

28



[CG02] A. Cmiel and H. Gurgul. Application of maximum entropy principle in key
sector analysis. Systems Analysis Modelling Simulation, 42(9):1361–1376, 2002.

[CG06] A. Caticha and A. Giffin. Updating Probabilities. In 26th International Work-
shop on Bayesian Inference and Maximum Entropy Methods in Science and
Engineering, 2006.

[ES90] S. Erlander and N.F. Stewart. The Gravity Model in Transportation Analysis:
Theory and Extensions. VSP, Utrecht, The Netherlands, 1990.

[Goo63] I.J. Good. Maximum Entropy for Hypothesis Formulation, Especially for Multi-
dimensional Contingency Tables. Annals of Mathematical Statistics, 34(3):911–
934, 1963.

[Hen88] P. Henrici. Applied and Computational Complex Analysis, Vol. 1. John Wiley,
1988.

[Jay03] E.T. Jaynes. Probability Theory: The Logic of Science. Cambridge University
Press, 2003.

[KK92] J.N. Kapur and H.K. Kesavan. Entropy Optimization Principles with Applica-
tions. Academic Press, 1992.

[KMO93] K. Ku-Mahamud and A. Othman. Model reduction of general queueing net-
works. International Journal of Systems Science, 24(1):183–192, 1993.

[KO08] S.K. Korotky and K.N. Oikonomou. Scaling of Most-Likely Traffic Patterns
of Hose- and Cost-Constrained Ring and Mesh Networks. Journal of Optical
Networking, 7:550–563, June 2008.

[KT92] D. Kouvatsos and P. Tomaras. Multilevel aggregation of central server mod-
els: a minimum relative entropy approach. International Journal of Systems
Science, 23(5):713–739, 1992.

[MAX98] Maximum Entropy and Bayesian Methods in Science and Engineering. Kluwer
Academic Publishers, 1985-1998.

[MAX09] Bayesian Inference and Maximum Entropy Methods in Science and Engineer-
ing. American Institute of Physics (AIP), 1999-2009.

[Ros83] R.D. Rosenkrantz, editor. E. T. Jaynes: Papers on Probability, Statistics, and
Statistical Physics. D. Reidel [Kluwer], Dordrecht, The Netherlands, 1983.

[Sen91] J.K. Sengupta. Maximum entropy in applied econometric research. Interna-
tional Journal of Systems Science, 22(10):1941–1951, 1991.

29



[Ski89] J. Skilling. Classic maximum entropy. In J. Skilling, editor, Maximum Entropy
and Bayesian Methods. Kluwer Academic, 1989.

[Som67] A. Sommerfeld. Thermodynamics and Statistical Mechanics. Lectures on The-
oretical Physics, Vol. 5. Academic Press, 1967.

[TJI02] S. Trivedi, B. Jones, and S. Iyengar. Why k-systems methodology works. Sys-
tems Analysis Modelling Simulation, 42(1):23–31, 2002.

[Tri69] M. Tribus. Rational Descriptions, Decisions and Designs. Pergamon Press,
1969.

[ZRLD05] Y. Zhang, M. Roughan, C. Lund, and D. Donoho. Estimating Point-to-Point
and Point-to-Multipoint Traffic Matrices: An Information-Theoretic Approach.
IEEE/ACM Transactions on Networking, 13(5), 2005.

30


	1 Introduction
	2 Specified row sums and some column sums
	3 Bounds on row sums
	4 Total sum and bounds on row sums
	4.1 The vector case
	4.2 Back to the matrix
	4.3 Bounds on total sum and on row sums

	5 Bounds on row and column sums
	6 Bounds on individual elements
	6.1 Expressive power and consistency
	6.1.1 Expressive power
	6.1.2 Consistency

	6.2 Bounds on row sums and on individual elements

	7 Symmetric information
	7.1 Total sum and bounds on row and column sums
	7.2 Given row and column sums, partially fixed diagonal
	7.3 3-dimensional matrices with fixed diagonal
	7.4 Given row and column sums, fixed diagonal blocks

	8 Conclusion
	A Auxiliary results and Proofs
	A.1 Optimal solutions of concave programs
	A.2 Proofs for §4
	A.3 Proofs for §5
	A.4 Proofs for §6.2
	A.5 Proofs for §7.2
	A.5.1 Proof of Proposition 7.1



