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A collaborative variational/Monte Carlo scheme is proposed to solve the multi-target tracking (MTT) problem in
wireless sensor networks (WSNs). The prime motivation of our work is to balance the inherent trade-off between
the resource consumption and the accuracy of the target tracking. For the sake of resource efficiency, we reduce
the MTT problem to distributed cluster-based variational target tracking when the targets are far apart; and
switch to data association only when the targets are gathered, leading to ambiguous measurements. The
sequential Monte Carlo (SMC) method is employed to assign the ambiguous measurements to specific targets or
clutter based on association probabilities. The associated observations are then incorporated by the variational
filter, where the distribution of involved particles is approximated by a simple Gaussian distribution for each
target. In addition, considering the situation that the number of targets is varying, an hypothesis test is integrated
into the collaborative scheme, to deal with the cases of arrivals of new targets and disappearances of the tracked
targets. The effectiveness of the proposed scheme is evaluated and compared with the classic SMC MTT
algorithm in terms of tracking accuracy, computation complexity and energy consumption.

Keywords: multi-target tracking; variational filtering; sequential Monte Carlo; data association;
wireless sensor network

1. Introduction

Multi-target tracking (MTT) deals with the state
estimation of several moving targets. It is not a trivial
extension of single target tracking but rather a chal-
lenging topic of research (Khan, Balch, and Dellaert
2006). Due to the fact that in most practical tracking
applications the sensors yield unlabeled measurements
of the targets (Vermaak, Godsill, and Pérez 2005), the
main difficulty of MTT comes from the assignment of
a given measurement to a specific target (Kreucher,
Kastella, and Hero 2005), which always requires
exhaustive testing of all possibilities leading to great
resource consumption. Furthermore, clutter measure-
ments may arise due to multi-path effects, sensor
errors, spurious objects, etc., further increasing the
complexity of the data association problem. Therefore,
existing MTT algorithms generally present two basic
ingredients: an estimation algorithm coupled with a
data association method (Hue, Le Cadre, and Pérez
2006). In fact, MTT is much easier when the targets are
distinctive and do not interact with each other. It can
be solved by employing multiple independent trackers.
However, for those targets that are similar in appear-
ance, obtaining their correct trajectories becomes
significantly more challenging when they are in close

proximity or present partial occlusions (Song, Cui,

Zha, and Zhao 2008). Therefore, much of the theory of
MTT was developed for centralised processing (Liu,
Chu, and Reich 2007). Whereas wireless sensor net-

works (WSNs) demand a somewhat different
approach, which focus on scalable performance and
management of limited resources. In WSNs, the main

challenge to implement an MTT algorithm is to reduce
the computational complexity of the problem while
still providing reasonable tracking performance. This

challenging problem has attracted considerable atten-
tion in the literature (Yang and Sikdar 2003; He and
Hou 2005; Liu et al. 2007).

Data association has been the primary focus of

the MTT literature (Liu et al. 2007). Traditionally, the
nearest neighbour (NN) approach, which utilises the
closest measurement to the predicted target measure-

ment, is the simplest approach for MTT (Blackman
and Popoli 1999; Hue, Le Cadre, and Pérez 2002b;
Song, Lee, and Ryu 2005). The NN filter assumes at

any time that the NN measurement is target-originated
and a standard Kalman filter (KF) is then used to
update the target state estimate. However, the NN

measurements may be originated from a clutter,
leading to filter divergence in many situations.
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Performance of the NN filter has been deeply analysed
in Li and Bar-Shalom (1996). As long as the data
association is considered in a deterministic way, all
possible associations must be exhaustively enumerated
(Hue et al. 2002b). Multiple hypothesis tracking (MHT)
was proposed by Reid (1979). The idea is to recursively
enumerate the set of all possible associations (called
hypotheses) of measurements to existing tracks, new
tracks and false alarms (namely clutters) while respect-
ing the mutual exclusion association constraint. An
advantage of this approach is that the number of tracks
is not required to be known a priori because track
initiations and terminations are explicitly hypothesised.
Furthermore, data association decisions are effectively
delayed until more data are received since multiple
hypotheses are kept. Therefore, MHT can address low
detection probability, high false alarm rates, initiation
and termination of tracks, and delayed measurements.
However, this approach suffers from large storage space
requirements and exponentially increasing processing.
This leads to an NP-hard problem because the number
of possible associations increases exponentially with
time. To cope with this problem, pruning and gating
have been proposed to eliminate the unlikely hypoth-
eses. However, good hypotheses may be eliminated as
well. The joint probabilistic data association filter
(JPDAF) proposed by Fortmann, Bar-Shalom, and
Scheffe (1980), consisting of updating each individual
track state with weighted combinations of all measure-
ments, is an alternative solution. This approach is based
on computing the probability that measurements can be
associated with tracks with respect to the mutual
exclusion constraint. A disadvantage of this approach
is that the number of targets needs to be known a priori.
In fact, JPDAF is a particular way of combining the
multiple hypotheses generated by MHT into a single
hypothesis and, therefore, can be viewed as an instance
ofMHT. Sequential Monte Carlo (SMC) methods are a
class of algorithms which sample from complex prob-
ability distributions conditioned on observations. The
application of SMC-based approach to data association
(SMCDA) has been proposed in Hue, Le Cadre, and
Pérez (2002a) and Oh, Russell, and Sastry (2004),
where samples are drawn according to the association
probabilities. The sample with the highest probability
is considered as the best association hypothesis.
As the hypotheses are not explicitly enumerated in
SMCDA, the large storage space is no longer required
compared to MHT. Besides, the SMCDA approach is
very easy to implement and can be applied under very
general hypotheses to cope with heavy clutters
situations.

The data association approaches mentioned above
consider all possible events related to data association,
which makes MTT an expensive task in terms of

sensing, computation and communication. Concerning
the extremely stringent resource in WSNs, an energy-
aware distributed signal processing scheme is proposed
in this article. The idea is to reduce the MTT problem
to single target tracking when targets are far apart and
switch to MTT only when data association becomes
ambiguous. As targets can travel arbitrarily and no
a priori information on targets motion is provided,
a general state evolution model is proposed to describe
the hidden states. For energy efficiency, each target is
tracked by a cluster of sensors using a Variational
Filter (VF; Teng, Snoussi, and Richard 2007a, b; Teng,
Snoussi, Richard, and Zhou 2009). By adopting the VF
method, the inter-cluster information exchange for one
target is reduced to one single Gaussian statistic,
dramatically cutting down the resource consumption
of the whole network. Since the measurement incor-
poration and the approximation of the filtering distri-
bution are jointly performed by variational calculus, an
effective and lossless compression is achieved com-
pared to the classical particle filtering and other
approximation method. With respect to the clustering
rule, we simply assume that the sensors which have
detected the appearance of a same target form a
cluster. Once the targets move closer, their clusters
collide. Collision is flagged when ambiguous observa-
tion data are generated, which means that a sensor can
detect several targets at a time. To cope with this
situation, the tracking switches to MTT mode, and the
activated clusters merge into one cluster. The new
leader is elected based on the residual energy compar-
ison among the original activated cluster heads (CHs).
The SMCDA method is employed to assign the
ambiguous observations to specific targets or the clutter
based on the association probabilities. The variational
tracking is delayed after the SMCDA phase to incor-
porate the rest of observations. Owing to the implicit
compression of VF, the temporal dependence of each
target is reduced to a Gaussian distribution, which
dramatically cuts off the inter-cluster communication
during hand-off operations.

The rest of this article is organised as follows. In
Section 2, we provide a brief problem statement and
make some assumptions for MTT, in order to give an
overview of the proposed collaborative MTT scheme.
The VF algorithm for MTT is formulated in Section 3,
with a detailed description in Section 4. Section 5 is
dedicated to the probabilistic data association phase,
which is invoked once ambiguous data are observed.
By cluster merging, ambiguous data are collected and
then associated with specific targets or clutter by the
SMCDA method. Section 6 describes the hypothesis
test method used in case of arrival of new target and/or
disappearance of already tracked targets. Performance
of the proposed scheme is studied by simulations
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in Section 7. Finally, we conclude and suggest future
directions for research in Section 8.

2. Problem statement and overview

We assume the following properties of the WSN
for MTT:

. All the sensors are stationary and location-
aware.

. Sensors are randomly and uniformly deployed
with density �s. Their sensing ranges are
identically set to rs, and similarly, the radio
communication ranges rc are identical too. In
cluster-based target tracking, the CHs are
responsible for updating the target beliefs by
the VF algorithm with observations collected
from their slaves. To ensure that each sensor
in the WSN is capable of performing the task
of an active CH, all of them are assumed to
have an identical configuration with sufficient
battery and computational power. Each of the
sensors keeps an address list of its neighbour-
ing sensor IDs and locations by exchanging
information between each other.
Furthermore, all the sensors in the network
are synchronised for efficient data
communication.

Concerning the coverage problem, the deployment
of sensors must ensure a high probability of detecting
the appearance of a target. During the tracking phase,
at least three sensors are required to simultaneously
detect the target and to report their observations, in
order to generate enough information for further
processing. According to the network properties
described above, the distribution of the sensors in
any given area A is Poisson with the rate �sA.
Therefore, the probability for any arbitrary point in
the field to be sensed by at least three sensors is

ps ¼
P1

i¼3
e��s�r

2
s ð�s�r

2
s Þ

i

i! (Yang and Sikdar 2003).
Substituting a desirable value for ps, (e.g. ps¼ 0.99),
the optimal node density �s and sensing range rs can be
easily inferred.

At the initialisation step, all of the sensors are set to
the ‘Sensing’ mode to monitor the whole region. As
soon as an intrusion is detected, sensors within the
phenomenon of interest exchange information to form
a cluster dynamically. CH0 is randomly chosen among
these sensors since their residual energy are identical
initially. The other sensors in the activated cluster
consequently become the slave sensors, which commu-
nicate with the CH directly and report their observa-
tions. As the target travels through the sensing field,
the energy-intensive task of CHt is assigned to the

sensor with the most residual energy in the activated
cluster, to balance energy consumption. The size of an
activated cluster is determined by the relationship
between the communication range rc and the sensing
range rs (Chen, Hou, and Sha 2004). In order to ensure
tracking accuracy and energy efficiency, the commu-
nication range is assumed to be twice the sensing range,
namely rc¼ 2rs. Therefore, with respect to a single
target, only one cluster is formed, and the intra-cluster
communication is restricted to one-hop. In fact, it is
possible that several intrusions are detected at the same
time. If the intrusions are far apart, namely each sensor
in one cluster only gets one measurement related to the
well identified target, we assume that the cluster is
tracking a single target. Single target tracking algo-
rithms are parallelly performed in different CHs.
Otherwise, ambiguous measurements are observed,
which could be generated by either the clutter or by
the other targets. The configuration of the sensor
network guarantees that the distances between the
sensors detecting a same target are smaller than rc,
which means that they could communicate with each
other in one-hop. It is thus reasonable to assume that
the CH with data association ambiguity only needs to
communicate with its neighbouring CHs to collect a
complete set of ambiguous measurements. If the
number of ambiguous measurements Namb is smaller
than three and the rest of the observations are greater
than three, we simply discard the ambiguous observa-
tions and use the rest of the observations to track the
targets. Otherwise, the CH with the most residual
energy among the neighbouring CHs with data asso-
ciation ambiguity is elected to be the new leader. The
data association phases is performed on the set of
ambiguous observations by the new leader using the
SMCDA method proposed in Hue et al. (2002a).
Instead of propagating a large number of particles, the
particles for data association are only generated when
necessary and are sampled from the Gaussian distri-
butions kept by the VF single target tracking algo-
rithms performed in the original CHs. In fact, the
SMCDA associates and incorporates the ambiguous
measurements at the same time. The particles gener-
ated by the SMCDA phase are separated for each
target and are directly employed to incorporate the rest
of observations in respective CHs. After the run of the
VF algorithm, estimates of the targets locations are
refined. Especially, the distributions of the particles are
naturally approximated by a simple Gaussian distri-
bution for each target. To sum up, the MTT problem is
tackled by a collaborative scheme, where each target is
tracked by a VF, and the SMCDA phase is invoked
only when ambiguous measurements are collected. An
overview of the collaborative MTT scheme is illus-
trated by Figure 1.
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3. Problem formulation for VF

The VF algorithm for target tracking inherits many
desirable properties from the Bayesian Inference
framework. An important step in Bayesian multi-
target tracking is the recursive estimation of the
predictive distribution as follows,

pðXtjZ1:t�1Þ ¼

Z
pðXtjXt�1Þ pðXt�1jZ1:t�1ÞdXt�1,

where Xt ¼ fx
j
t g

M
j¼1,

and x j
t 2 R

nx , 8j ¼ 1, . . . ,M,

M is the number of targets :

ð1Þ

The conditional distribution p(XtjXt�1) is employed to
model the prior time evolution of the target state. By
incorporating the observation model p(ZtjXt), the new
estimate of the targets state Xt is updated based on the
predictive distribution p(XtjZ1:t�1):

pðXtjZ1:tÞ ¼
pðZtjXtÞ pðXtjZ1:t�1Þ

pðZtjZ1:t�1Þ
,

where pðZtjZ1:t�1Þ ¼

Z
pðZtjXtÞ pðXtjZ1:t�1ÞdXt:

ð2Þ

The observation model p(ZtjXt) depends on the sensing
mode employed by the sensors, while the state evolu-
tion model p(XtjXt�1) is always described by a para-
metric model. We describe these two models in the
following sections.

3.1. General state evolution model

The targets to be tracked are modelled by independent
Markovian dynamics. Let M be the number of targets,
Xt ¼ fx

j
t g

M
j¼1 denotes the targets temporal positions,

where each component x j
t is assumed to evolve

according to a general state evolution model. This
model is more appropriate to the practical non-linear
and non-Gaussian situations, where no a priori infor-
mation on the target velocity or its acceleration is
available. The target position x j

t 2 R
nx at instant t is

assumed to follow a Gaussian model, where its
expectation l

j
t and the precision matrix k j

t are both
random. The randomness is used here to further
capture the uncertainty of the state distribution,
which leads to a probability distribution covering a
wide range of tail behaviours, allowing discrete jumps
in the target trajectory. A practical choice of these
distributions is a Gaussian distribution for the expec-
tation l

j
t and a nx-dimensional Wishart distribution for

the precision matrix k j
t . In an other word, the hidden

state x j
t is extended to an augmented state

a
j
t ¼ ðx

j
t , l

j
t , k

j
t Þ, yielding a hierarchical model as

follows,

x j
t � Nðx

j
t jl

j
t , k

j
t Þ

l
j
t � Nðl

j
t jl

j
t�1,

�k j Þ

k j
t � Wnxðk

j
t j

�V j, �n j Þ

8><
>: , 8j ¼ 1, . . . ,M, ð3Þ

where �k j is the initial precision matrix reflecting the
uncertainty of the target position expectation l

j
t with

respect to the previous one l
j
t�1. The state precision

matrix k j
t is modelled by the Wishart distribution, with

�V j and �n j denoting, respectively, its precision matrix
and degrees of freedom. Note that �� denotes initial
fixed parameter.

According to the general state evolution model
defined above, the probability of the state evolution
pðx j

t jx
j
t�1 Þ is obtained by integrating over the mean l

j
t

and the precision matrix k j
t :

pðx j
t jx

j
t�1 Þ ¼

ZZ
Nðx j

t jl
j
t , k

j
t Þ pðl

j
t , k

j
t jx

j
t�1 Þdl

j
t dk j

t :

ð4Þ

Deployment and initialisation

Unidentified intrusion(s)
detected?

Yes

Cluster activation VF

Cluster activation VF

.

.

.

.

.

.
Ambiguous measurements

detected?

Yes Neighbouring CHs 
information exchange

Number of 
ambiguous measurements

>3?

No

YesClusters merging

Discard
ambiguous observation

SMC
data association

Figure 1. Block diagram of the collaborative MTT scheme.
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3.2. Observation model

The observation model depends on the sensing mode
employed by the sensors. Considering data association
ambiguity, we adopt the range-based mode for tracking
precision, where the received signal strength indicator
(RSSI) technology is employed for energy efficiency
(He, Huang, Blum, Stankovic, and Abdelzaher 2003).
The RSSI determines the distance between a receiver,
namely a sensor s of ID i (si), and a transmitter, the j-th
target x j, based on the knowledge of a path-loss model
�. However, multi-path reflections, non line-of-sight
conditions, and other shadowing effects lead to errone-
ous distance estimates. Therefore, a white Gaussian
error �iy � Nð0, �

2
yÞ is introduced to model the shadow-

ing. In addition, due to the noisy wireless link, the
received signal at the CH is corrupted by a normally
distributed noise �i � Nð0, �2i Þ. The measurements are
formulated as follows:

yi, jt � Nð y
i, j
t j�

iðx j
t Þ, �

�2
y Þ,

where �iðx j
t Þ ¼ �0 � 10� log

ksi � x j
tk

d0
,

zi, jt ¼
�iyi, jt þ �

i, if yi, jt 5	 is
�i, otherwise

,

� ð5Þ

where �2y is the variance of the shadowing �iy. The
signal power �iðx j

t Þ is a one-to-one mapping to the
distance ksi� xtk traveled by the signal. The other
denotations are, respectively, d0 the reference distance,
�0 the known received signal power in dBm at d0, � the
known path-loss distance exponent, which takes value
in the range [2, 4] (�¼ 2 for propagation in free space,
�¼ 4 for relatively lossy environments and for the case
of full specular reflection from the earth surface
(Djurić, Vemula, Bugallo, and Mı́guez 2005)), �i the
attenuation coefficient associated with the sensor i.
	 is denotes the signal detection threshold of the sensor i,
which is assumed to be identical for all the sensors and
	 is ¼ �0 � 10� logðrs=d0Þ. Similarly, 	 ic is the signal
communication threshold of the sensor i, and
	 ic ¼ �0 � 10� logðrc=d0Þ. To update the estimate of
the target j, the Bayesian filtering framework requires
construction of an observation model pðZtjx

j
t Þ.

Assuming that the noise samples �i are independently
distributed, we have,

pðZtjx
j
t Þ ¼

Y
i

�
pðzi, jt jx

j
t,y

i, j
t 5	 isÞPðy

i, j
t 5	 isÞ

þpðzi, jt jx
j
t,y

i, j
t 5	 isÞPðy

i, j
t 5	 isÞ

�
¼
Y
i

�
Nðzi, jt j�

iyi, jt ,�
�2
z ÞPðy

i, j
t 5	 isÞ

þN ðzi, jt j0,�
�2
z ÞPðy

i, j
t 5	 isÞ

�
,

where Pðyi, jt 5	 isÞ ¼

Z 1
	 is

Nðyi, jt j�
iðx j

tÞ,�
�2
y Þdy

i, j
t ,

and Pðyi, jt 5	 isÞ ¼ 1�Pðyi, jt 5	 isÞ:

ð6Þ

The likelihood pðZtjx
j
t Þ is fused with the state evolu-

tion model (4) within the Bayesian framework to

estimate the temporal position of the target j.
An important problem introduced by the definition

of the observation model pðZtjx
j
t Þ is, the false alarm.

One can note from the formulation (5) that the

mapping between �iðx j
t Þ and yi, jt is not deterministic,

due to the shadowing effect of �iy. That is to say, if

�iðx j
t Þ, the one-to-one mapping to the true distance

ksi � x j
tk, is greater than the threshold 	 is, the observed

measurement yi, jt is not necessarily greater than 	 is. In
fact, Pð yi, jt 5	 isÞ can also be formulated by

Pð yi, jt 5	 isÞ ¼
�
pð yi, jt 5	 isj�

iðx j
t Þ5	

i
sÞPð�

iðx j
t Þ5	 isÞ

þ pð yi, jt 5	 isj�
iðx j

t Þ5 	 isÞPð�
iðx j

t Þ5 	 isÞ
�
,

as shown in Figure 2. According to the Equation (6),

the probability of false alarm pð yi, jt 5	 isj�
iðx j

t Þ5 	 isÞ
has already been naturally incorporated during the

integral of Equation (6). Similarly, the symmetric

probability of false alarm pð yi, jt 5 	 isj�
iðx j

t Þ5	 isÞ is

incorporated in the calculation of Pð yi, jt 5 	 isÞ.

4. Variational filtering for MTT

As the hidden state x j
t is extended to an augmented

state a
j
t ¼ ðx

j
t , l

j
t , k

j
t Þ by the Equation (3), the filtering

distribution to be estimated thus takes the form of the

joint posterior distribution pða j
t jZ1:tÞ. A Variational

Bayesian method is proposed for approximating the

intractable integrals arising in Equation (1) and (2).

Introducing a separable distribution qða j
t Þ, an analyt-

ical approximation to the posterior probability

pða j
t jZ1:tÞ is provided by minimising the Kullback-

Leibler divergence DKL:

DKLðqjj pÞ ¼

Z
qða j

t Þ log
qða j

t Þ

pða j
t jZ1:tÞ

" #
da

j
t ,

where qða j
t Þ ¼ qðx j

t Þqðl
j
t Þqðk

j
t Þ:

Figure 2. Probability model of the sensed observation yi, jt
with false alarms, where the dashed lines with arrows denote
the false alarms.
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To minimise DKL subject to the constraintR
qða j

t Þda
j
t ¼ 1, the Lagrange multiplier is used, yield-

ing the following approximate distribution (Vermaak,

Lawrence, and Pérez 2003b; Snoussi and Richard 2006;

Teng et al. 2007a),

qðx j
t Þ / exphlog pðZ1:t, atÞi

Q
qðl j

t Þqðk
j
t Þ

qðl j
t Þ / exphlog pðZ1:t, atÞi

Q
qðx j

t Þqðk
j
t Þ
,

qðk j
t Þ / exphlog pðZ1:t, atÞi

Q
qðl j

t Þqðx
j
t Þ

8>>><
>>>:

ð7Þ

where h�iq denotes the expectation operator relative to

the distribution q. Taking into account the separable

approximate distribution qða j
t�1 Þ at instant t� 1, the

predictive distribution pða j
t jZ1:t�1Þ and the filtering

distribution pða j
t jZ1:tÞ are sequentially approximated

according to the following scheme:

pða j
t jZ1:t�1Þ /

Z
pða j

t ja
j
t�1 Þqða

j
t�1 Þda

j
t�1

/ pðx j
t , k

j
t jl

j
t Þqpðl

j
t Þ

pða j
t jZ1:tÞ / pðZtjx

j
t Þ pða

j
t jZ1:t�1Þ

/ pðZtjx
j
t Þ pðx

j
t , k

j
t jl

j
t Þqpðl

j
t Þ,

where qpðl
j
t Þ ¼

Z
pðl j

t jl
j
t�1 Þqðl

j
t�1 Þdl

j
t�1:

ð8Þ

Therefore, through a simple integral with respect to

l
j
t�1, the predictive and the filtering distributions

involved in the Bayesian inference can be sequentially

updated. Considering the GSEM proposed in

Equation (3), the evolution of l
j
t�1 is Gaussian,

namely pðl j
t jl

j
t�1 Þ � N ðl

j
t�1,

�k j Þ. Defining qðl j
t�1 Þ �

N ðl
j,�
t�1, k

j,�
t�1Þ, qpðl

j
t Þ is also Gaussian, with the follow-

ing parameters,

qpðl
j
t Þ � N ðl

p, j
t ,k

p, j
t Þ,

where l
p, j
t ¼ l

j,�
t�1, and k

p, j
t ¼ ½ðk

j,�
t�1Þ
�1
þ ð�k

j
Þ
�1
�
�1
:

ð9Þ

The temporal dependence is hence reduced to the

incorporation of only one Gaussian component

approximation qðl j
t�1 Þ for the target j. The update

and the approximation of the filtering distribution

pða j
t jZ1:tÞ are jointly performed, yielding a natural and

adaptive compression (Snoussi and Richard 2006;

Teng, Snoussi, and Richard 2010). According to

Equation (7), variational calculus leads to closed-

form expressions of qðl j
t Þ and qðk j

t Þ, by substituting the

deduction Equations (9) into Equation (8):

qðl j
t Þ � N ðl

j,�
t , k j,�

t Þ, qðk j
t Þ � WnxðV

j,�, n j,�Þ,

Similarly, the expectations involved in the predictive
distribution pða j

t jZ1:t�1Þ also have closed forms:

qtjt�1ðx
j
t Þ / N ðhl

j
t iqtjt�1 , hk

j
t iqtjt�1 Þ

qtjt�1ðl
j
t Þ / N ðl

j,�
tjt�1, k

j,�
tjt�1Þ

qtjt�1ðk
j
t Þ /nx ðV

j,�
tjt�1, n

j,�
tjt�1Þ

8>><
>>: : ð10Þ

Therefore, the computational cost and the memory
requirements are dramatically reduced by the varia-
tional approximation in the prediction phase. In fact,
the expectations involved in the computation of the
predictive distribution have closed forms, avoiding the
use of Monte Carlo integration.

On the other hand, the update and the approxima-
tion of the filtering distribution pða j

t jZ1:tÞ are simulta-
neously performed. By combining the Equation (7)
and (8), we have the following form,

pða j
t jZ1:tÞ � qða j

t Þ ¼ qðx j
t Þqðl

j
t Þqðk

j
t Þ,

where

qðx j
t Þ / pðZtjx

j
t ÞN ðhl

j
t i, hk

j
t iÞ

qðl j
t Þ / N ðl

j,�
t , k j,�

t Þ

qðk j
t Þ /nx ðV

j,�, n j,�Þ

8><
>: ,

ð11Þ

where the state evolution model (3) and the observa-
tion model (5) are incorporated to update qðx j

t Þ.
However, due to the incorporation of observations,
the estimate of target state x j

t does not have a tractable
form, which immediately suggests an Importance
Sampling (IS) procedure:

x
j,ðkÞ
t � Nðhl

j
t i, hk

j
t iÞ, 8k ¼ 1, . . . ,N

w
j,ðkÞ
t /

pðZtjx
j,ðkÞ
t Þ,

if targets are far apart

pðZamb
t jx

j,ðkÞ
t Þ pðZt n Z

amb
t jx

j,ðkÞ
t Þ

otherwise

8>>><
>>>:

,

hx j
t i ¼

XN
k¼1

w
j,ðkÞ
t x

j,ðkÞ
t :

ð12Þ

Let Zamb
t denote the set of ambiguous observations.

When the targets to be tracked are far apart, namely
Zamb

t ¼ ;, observations Zt are directly incorporated to
update target estimates. Otherwise, the SMCDA phase
is invoked to compute pðZamb

t jx
j,ðkÞ
t Þ, 8j ¼ 1, . . . ,M,

whereas the other observations Zt n Z
amb
t are directly

incorporated by the VF. During the execution of the
VF, the update and the approximation of the filtering
distribution pða j

t jZ1:tÞ are jointly performed, yielding a
natural and adaptive compression of a Gaussian distri-
bution for each target. One can note that the main
advantage of the variational approach is the compres-
sion of the statistics required to update the filtering
distribution between two successive instants. Thanks to
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the variational calculus, communication between

CHt�1 and CHt is limited to simply sending the mean

and the covariance of q(
t�1)
j, despite of the non-closed

form of q(xt�1)
j. On the contrary, the classical SMC

algorithm maintains and propagates a large number of

particles and their corresponding weights. What is more

important, since approximation of the filtering distri-

bution is performed during the measurement incorpo-

ration, the error propagation is dramatically reduced by

the VF. This implicit compression makes the VF

algorithm much more adapted to distributed imple-

mentation in WSNs. The pseudo-code of the extended

VF for multi-target tracking is listed in Algorithm 1.

Algorithm 1: Extended variational filter for multi-

target tracking

Input: Zt, f�k
jgMj¼1, f

�V jgMj¼1, f �n
jgMj¼1, fqðl

j
0 Þg

M
j¼1 �

fN ðl
j,�
0 , k j,�

0 Þg
M
j¼1

Output: hXti

for t¼ 1, 2, . . . do
for j¼ 1, . . . ,M do

Predict pða j
t jZ1:t�1Þ / pðx j

t , k
j
t jl

j
t Þqpðl

j
t Þ;

while not converge do

Calculate the hyper parameters involved in

Equation (10):

l
j,p
t ¼ l

j,�
t�1, k

j,p
t ¼ ðk

j,��1
t�1 þ

�k j�1Þ
�1, n j,�

tjt�1 ¼ �n j þ 1,

l
j,�
tjt�1 ¼ k

j,��1
tjt�1 ðhk

j
t iqtjt�1hx

j
t iqtjt�1 þ k

j,p
t l

j,p
t Þ,

k
j,�
tjt�1 ¼ hk

j
t iqtjt�1 þ k

j,p
t ,

V j,�
tjt�1 ¼ ðhx

j
tx

j
t

T
iqtjt�1 � hx

j
t iqtjt�1hl

j
t i

T
qtjt�1

� hl
j
t iqtjt�1hx

j
t i

T
qtjt�1
þ

D
l
j
tl

j
t

T
E
qtjt�1
þ �V j�1Þ

�1;

end

The predicted expectation hx j
t iqtjt�1 ¼ hl

j
t iqtjt�1 ;

if hand-off then
Select the new CH j

t by residual energy

comparison;
Communicate qðl j

t�1 Þ to the new CH j
t ;

else

CH j
t ¼ CH j

t�1, replace the storage of particles

by qðl j
t�1 Þ;

end

end

if Namb4 3 then

Cluster merging;
SMCDA to incorporate pðZamb

t jXtÞ, and

X̂t ¼
PN

k¼1 Ŵ
ðkÞ
t X

ðkÞ
t ;

end

for j¼ 1, . . . ,M do

if Namb4 3 then

l
j,�
t ¼

PN
k¼1 ŵ

j,ðkÞ
t x

j,ðkÞ
t , the component j of

estimate in SMCDA;

else

l
j,�
t ¼ l

j,p
t , k j,�

t ¼ 2k
j,p
t ;

end

while not converge do

Calculate the hyper-parameters to update
pða j

t jZ1:tÞ:

hl
j
t i ¼ l

j,�
t , hk j

t i ¼ n j,�V j,�

l
j,�
t ¼ k j,�

t

�1
ðhk j

t ihx
j
t i þ k

j,p
t l

j,p
t Þ,

k j,�
t ¼ hk

j
t i þ k

j,p
t , n j,� ¼ �n j þ 1,

V j,� ¼ ðhx j
tx

j
t

T
i � hx j

t ihl
j
t i

T � hl
j
t ihx

j
t i

T

þ hl
j
tl

j
t

T
i þ �V j�1Þ

�1;

end

Sample fx
j,ðkÞ
t ,w

j,ðkÞ
t g

N
k¼1 from qðx j

t Þ according to
Equation (12);
if N̂eff ¼

1PN

k¼1
ðwj,ðkÞ

t Þ
2
5Nthreshold then

Resampling;
end

Compute the expectation hx j
t i ¼

PN
k¼1 w

j,ðkÞ
t x

j,ðkÞ
t ;

end

Return hXti ¼ fhx
j
t ig

M
j¼1;

end

5. Probabilistic data association

As mentioned above, for the sake of resource effi-
ciency, the data association phase is only invoked when
dealing with ambiguous observations Zamb

t . Since each
target is tracked by a cluster of sensors, cluster merging
is necessary to incorporate ambiguous measurements
when targets are moving closely. A new and larger
cluster is thus formed to process the measurements
generated by the encountering targets. In the follow-
ing, a detailed description of the probabilistic data
association phase is given.

5.1. Cluster merging

The cluster merging phase is independent of the
clustering protocol employed for MTT. In fact, the
new CH leader for data association is selected based on
residual energy comparison of the neighbouring CHs.
We assume that each CH is capable of detecting its
own residual energy level. The comparison of residual
energy is performed by information exchange among
the neighbouring CHs. Figure 3(a) and (b) illustrate
the tracking of two crossing targets in a WSN. The
field under surveillance is covered by sensors marked
with small circles. Each sensor measures the signal
energy from any target within its sensing range rs,
together with some random background noises
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modelled by independent white Gaussian noises.
Initially, the targets are well separated and are tracked
by different clusters, visualised in red and blue colors,
respectively in Figure 3. Sensors within the sensing
range rs, shown as disks centred at the target locations,
transfer their observations to the corresponding CHs
(CHA

t�� and CHB
t��). The CHs are in charge of

collecting measurements from the cluster members,
updating the estimate and maintaining the cluster
structure. When the two targets move closely, their
clusters collide. The collision is flagged when a sensor
finds itself led by two distinct CHs (see the sensor
identified by the number ‘1’ in Figure 3(b) for
example). To demonstrate the collision, the colour of
the overlapped sensors is also blended to purple. At
this time, tracking switches to MTT mode, and the two
clusters merge into one cluster, denoted by the purple
ellipse in Figure 3(b). The CH of the more residual
energy in the original two clusters is elected to be the
new leader. In the specific case illustrated in
Figure 3(b), the new leader is the original CHA

t . The
observations collected at CHB

t are transferred to the
new leader for further processing. As mentioned in
Section 2, the configuration of the sensor network
guarantees that the distances between the sensors
detecting a same target are smaller than rc, as shown
in Figure 3(b). It is therefore reasonable to assume that
the CH with data association ambiguity only needs to
communicate with its neighbouring CHs to collect a
complete set of ambiguous measurements. All the
measurements of the instant t, denoted by Zt, are

collected at the new leader. As shown in Figure 3(b),
only the sensors within the overlapped area (denoted
by the small purple circles) can detect both targets at
the same time. Their observations are also much more
vulnerable to collisions and clutters in the wireless
links. We use Zamb

t to denote the set of measurements
observed by these sensors. If the number Namb of
measurements in Zamb

t is smaller than three and the
number of Zt n Z

amb
t is greater than three, we simply

discard the ambiguous observations for energy effi-
ciency. In this case, the targets are tracked respectively
using the rest observations Zt n Z

amb
t , since they can be

simply distinguished and assigned to the specific
targets. On the other hand, if Namb4 3, the data
association phase is invoked in the new CH to assign
the ambiguous measurements using the SMC method.
Besides the SMCDA phase, the rest of the observations
Zt n Z

amb
t are incorporated by the VF algorithm to

refine the target estimates.

5.2. SMC data association

The ambiguous observation vector Zamb
t is composed

of detection measurements and clutter measurements,
where the latter are assumed to be uniformly distrib-
uted in the observation area. In addition, some
assumptions are commonly made for the data associ-
ation problem (Bar-Shalom and Fortmann 1988):

(1) One measurement can originate from one
target or from the clutter.

1

2

xA
t−τ

xB
t−τCHA

t−τ

CHB
t−τ

rs

1

2

Mobile target A
Trajectory of target A
Mobile target B
Trajectory of target B
New leader
Sensor

xA
t

xB
t

CHA
t

CHB
t

rc

(a) (b)

Figure 3. Example of tracking two crossing targets. (a) Snapshot of Multi-target tracking scenario at instant t� �. The target A
and the target B are far apart, and are tracked, respectively, by different clusters and (b) Snapshot of Multi-target tracking
scenario at instant t. The target A and the target B are moving closer, resulting data association ambiguity.
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(2) One target can produce zero or one signal at

one time. Since one target is sensed by at least

three sensors at a time, measurements observed

by different sensors could be generated by the

same signal of a target. On the contrary, the

measurements observed by a single sensor at

one time come from different targets or

clutters.

As the origin of each measurement is unknown, a vector

Kt is introduced to describe the associations between the

measurements and the targets. Each component of Kt is

a random variable taking its values in {0, . . . ,M}, where

0 is dedicated to the clutter. Assuming the total amount

of ambiguous observations is Namb, the set of ambig-

uous observations is denoted by Zamb
t ¼ fZiamb

t g
Namb

iamb¼1
.

Accordingly, Kamb
t ¼ fKiamb

t g
Namb

iamb¼1
, where Kiamb

t ¼ j indi-

cates that Ziamb
t is associated with the target j. In this

case, Ziamb
t is a realisation of the stochastic process:

Ziamb
t ¼ Hj,iamb

t ðx j
t , �

iamb
t Þ if Kiamb

t ¼ j: ð13Þ

The noise �iamb
t is assumed to be a white noise

independent of the other observation noises. We

assume that the hypothesis Hj,iamb
t can be associated

with a functional form FðZiamb
t ;x j

t Þ such that,

FðZiamb
t ;x j

t Þ / pðZiamb
t jx

j
t ,K

iamb
t ¼ j Þ: ð14Þ

If Kiamb
t ¼ 0, the measurement Ziamb

t is associated with

the clutter. As the indexing of the ambiguous mea-

surements is arbitrary, all the measurements have the

same a priori probability to be associated with a given

target j. For each ambiguous measurement, a vector

�t ¼ f�
j
t g

M
j¼0 2 ½0, 1�

Mþ1 is defined for the association

probability, where � j
t is a discrete probability that any

measurement is associated with the target j. With
respect to the two general assumptions mentioned

above, the first one expresses that the association is

exclusive and exhaustive. Accordingly,
PM

j¼0 �
j
t ¼ 1.

The second assumption implies that Namb may differ

from M and that the association variables Kiamb
t for

iamb¼ 1, . . . ,Namb are dependent.
The number of clutter measurements is assumed to

be distributed according to a Poisson distribution of

parameter aS, where S is the size of the observation

area, and a is the number of clutter measurements per

area unit. The association probability �0t that a
measurement is associated with a clutter is a constant

and can be computed as follows,

�0t ¼
XNamb

l¼0

PðKiamb
t ¼ 0jN0

t ¼ l ÞPðN0
t ¼ l Þ

¼
XNamb

l¼0

l

Namb
exp ð�aSÞ

ðaSÞl

l!
, ð15Þ

where N0
t is the number of measurements arising from

the clutter at time t. Assuming that there are l clutter
measurements among the Namb measurements, the
a priori probability that any measurement comes from
the clutter is equal to l/Namb. Thus, we get the equality
PðKiamb

t ¼ 0jN0
t ¼ l Þ ¼ l=Namb. The distribution of clut-

ter follows a Poisson distribution of parameter aS, thus
PðN0

t ¼ l Þ ¼ exp ð�aSÞ ðaSÞ
l

l! .
The data association phase is initialised by gener-

ating a set of N particles Xt ¼ fx
ðkÞ
t ,w

ðkÞ
t g

N
k¼1. For all

k¼ 1, . . . ,N, the likelihood of the particles are formu-
lated as:

pðZamb
t jx

ðkÞ
t Þ ¼

YNamb

iamb¼1

pðZiamb
t jx

ðkÞ
t Þ

/
YNamb

iamb¼1

�0t
S
þ
XM
j¼1

FðZiamb
t ;x

j,ðkÞ
t Þ�

j
t

" #
: ð16Þ

The vectors Xt, Kt and �t are random variables with
known prior distributions. Samples are then obtained
iteratively from their joint posterior using a proper
Markov Chain Monte Carlo (MCMC) technique,
namely, the Gibbs sampler (Hue et al. 2002a).
Denoting as ?t¼ (Xt,Kt,�t), the Gibbs algorithm
consists of generating a Markov chain that converges
to the distribution pð?tjZ

amb
t Þ, which cannot be sam-

pled directly. In order to implement the Gibbs sampler,
we choose the following partition:

�iamb
t ¼ Kiamb

t , for iamb ¼ 1, . . . ,Namb

�Nambþj
t ¼ � j

t , for j ¼ 1, . . . ,M

�NambþMþj
t ¼ x j

t , for j ¼ 1, . . . ,M

8><
>: : ð17Þ

The initialisation of the Gibbs sampler consists of
assigning uniform association probabilities, i.e.
��t ¼ f�

j
t ¼ ð1� �

0
t Þ=Mg

M
j¼1, and using the predictive

target positions Equation (10) to initialise
�Xt ¼ fhx

j
t iqtjt�1g

M
j¼1. The Kt variables do not need

initialisation as they are sampled conditioned on �t

and Xt at the first step of the Gibbs sampler. After a
finite number of iterations, estimations of the random
variables are obtained, namely ?̂t ¼ ðX̂t, K̂t, �̂tÞ.
Therefore, the ambiguous observations are assigned
by K̂t, and are incorporated to update the target
estimates X̂t. The particles fX

ðkÞ
t , Ŵ

ðkÞ
t g

N
k¼1 generated by

the data association phase are directly employed to
incorporate the rest of observations Zt n Z

amb
t , accord-

ing to Equation (12). Each particle X
ðkÞ
t is a vector of

dimension nx�M, where we denote by x
j,ðkÞ
t the j-th

component of particle X
ðkÞ
t . The estimation

x̂ j
t ¼

PN
k¼1 ŵ

j,ðkÞ
t x

j,ðkÞ
t is used to initialise the VF of the

target j. After the run of the VF algorithm, estimates
on the targets are refined, especially the distributions of
the particles are naturally approximated by a simple
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Gaussian distribution for each target. The pseudo-code

of the collaborative MTT scheme is summarised in the

Algorithm 2.

Algorithm 2: Collaborative multi-target tracking

scheme
Input: Zt, f�k

jgMj¼1, f
�V jgMj¼1, f �n

jgMj¼1, fqðl
j
0 Þg

M
j¼1 �

fN ðl
j,�
0 , k j,�

0 Þg
M
j¼1

Output: hXti

for t¼ 1, 2,. . . do
for j¼ 1, . . . ,M do

Predict pða j
t jZ1:t�1Þ / pðx j

t , k
j
t jl

j
t Þqpðl

j
t Þ;

while not converge do

Calculate the hyper parameters involved in

qtjt�1ða
j
t Þ of Equation (10);

end

Predictive expectation hx j
t iqtjt�1 ¼ hl

j
t iqtjt�1 ;

if hand-off then
Select the new CH j

t by residual energy

comparison;
Communicate qðl j

t�1 Þ to the new CH j
t ;

else

CH j
t ¼ CH j

t�1, replace the storage of particles

by qðl j
t�1 Þ;

end

end

if Namb4 3 then

New leader election by residual energy compari-

son among fCH j
t g

M
j¼1;

Cluster merging to collect the complete set of

observations Zt;
Initialise of the Gibbs sampler:

��t ¼ f ��
j
t g

M
j¼0, where ��0t ¼

XNamb

l¼0

l

Namb
exp ð�aSÞ

ðaSÞl

l!
,

�� j
t ¼ ð1� ��0t Þ=M

�Xt ¼ f �x
j
t g

M
j¼1 ¼

�XN
k¼1

x
j,ðkÞ
t w

j,ðkÞ
t

�M

j¼1

¼ fhx j
t iqtjt�1g

M
j¼1,

where x
j,ðkÞ
t � Nðhl

j
t iqtjt�1 , hk

j
t iqtjt�1Þ,

W
ðkÞ
t ¼ fw

j,ðkÞ
t g

M
j¼1 ¼ f1=ðNMÞgMj¼1

Run of Gibbs sampler to estimate random vari-

ables ?̂t ¼ ðX̂t, K̂t, �̂tÞ;
Incorporation of the ambiguous observations by

SMCDA:

X̂t ¼
XN
k¼1

Ŵ
ðkÞ
t X

ðkÞ
t ¼

XN
k¼1

pðZamb
t jX

ðkÞ
t ÞX

ðkÞ
t ;

end

for j¼ 1, . . . ,M do

if Namb4 3 then

Initialise l
j,�
t ¼ x̂ j

t ¼
PN

k¼1 ŵ
j,ðkÞ
t x

j,ðkÞ
t ;

Recursively update the hyper parameters of VF;
Directly employ the particles of SMCDA to
incorporate Zt n Z

amb
t

x
j,ðkÞ
t � Nðx̂ j

t , hk
j
t iÞ, w

j,ðkÞ
t ¼ ŵ

j,ðkÞ
t pðZt n Z

amb
t jx

j,ðkÞ
t Þ,

8k ¼ 1, . . . ,N;

else

Initialise l
j,�
t ¼ l

j,p
t , k j,�

t ¼ 2k
j,p
t ;

Recursively update the hyper parameters of VF;
Generate new particles fx

j,ðkÞ
t ,w

j,ðkÞ
t g

N
k¼1 to incor-

porate Zt n Z
amb
t

x
j,ðkÞ
t � Nðhl

j
t i, hk

j
t iÞ, w

j,ðkÞ
t ¼ pðZt n Z

amb
t jx

j,ðkÞ
t Þ,

8k ¼ 1, . . . ,N;

end

Compute the expectation hx j
t i ¼

PN
k¼1 w

j,ðkÞ
t x

j,ðkÞ
t ;

end

Return hXti ¼ fhx
j
t ig

M
j¼1;

end

6. Hypothesis testing for varying number of targets

The number of targets M is assumed to be known and
constant until now. However, this assumption is not
always true in real world situations. In fact, by
assuming the number M of targets to be tracked is a
discrete variable, the above collaborative MTT scheme
can be extended to much more general situations. As
far as the proposed distributed scheme is concerned,
this extension consists of updating M and adding/
removing the components of the particles related to the
arrival/disappearance of targets. If the targets are far
apart, the appearance of a new target can be simply
detected by the number of new measurements gener-
ated at the same instant. As the three-coverage
requirement has been guaranteed by the deployment
of sensors, if more than three sensors in the neighbour-
hood report the detection of a new target at a time, a
new VF is initialised to track the target. Similarly, the
number of measurements Nj

t related to a known target
j is used to confirm its disappearance. If Nj

t drops
sharply for successive sampling instants, we assume the
target j disappears from the surveillance area.

The difficulty arises when the number of targets
varies in the joint space of targets, where the targets are
in close proximity to each other. If a new target
appears in the joint space of crossing targets, there is a
great chance that the new target is considered as
the clutter by the data association phase. Hue et al.
(2002a) proposed to use the values of the assignment
variables Kt to make decision on the appearance
of a new target. They assume that the arrival
of a new target might be related to an

1436 J. Teng et al.

D
ow

nl
oa

de
d 

by
 [

U
N

SA
] 

at
 0

9:
11

 0
2 

A
pr

il 
20

13
 



ambiguous observation Ziamb
t of low likelihood, what-

ever the target is associated with. As a result, the

assignment variable Kiamb
t of the observation Ziamb

t

simulated by the Gibbs sampler might be more often

equal to 0, namely the clutter. A �2 test is adopted to

measure the adequation between the assumed Poisson

law and the empirical law of the clutter estimated by

N0
t ¼ ]fK

iamb
t ¼ 0g. However, Hue et al. have admitted

that the initialisation of the new target based on the

observation set is a tricky problem that they have not

solved yet (Hue et al. 2002a). Generally speaking, the

targets to be tracked are of distinct velocities and

trajectories, leading to rare occurrence and short

duration of joint target tracking. It is thus reasonable

to assume that only one new target arrives at a time

when the targets are crossing. As far as the assump-

tions proposed in Section 5.2 are concerned, we can

detect the arrival of a new target by simply re-checking

the assignment of measurements made in the SMCDA

phase. As mentioned above, the data association phase

only performs on the ambiguous observations Zamb
t for

energy efficiency. In the Section 5.2, the set of ambig-

uous observations is defined as Zamb
t ¼ fZiamb

t g
Namb

iamb¼1
,

where Namb denotes the number of the observations in

the set. With respect to the sensors, Zamb
t can also be

defined as Zamb
t ¼ fzi

0

t jz
i 0

t ¼ fz
i 0
1
t , z

i 0
2
t , . . .gg

Ns
t

i 0¼1, where Ns
t

denotes the number of sensors with several observa-

tions at instant t. According to the assumptions made

in the Section 5.2, the measurements zi
0

t could be

generated by either the targets or clutter. Assuming

that a subset of observations z
i 0target
t are assigned to the

targets, the other observations zi
0

t n z
i 0target
t are associated

with clutter. With respect to all the assumptions

mentioned above, we assume that a new target appears

in the joint space of the crossing targets, if and only if

the following conditions are satisfied:

. The number of measurements N
i 0
clutter
t in the set

zi
0

t n z
i 0target
t is greater than a threshold Nclutte

threshold,

namely N
i 0
clutter
t 4Nclutter

threshold.
. The number of sensors with the same situation

Ns 0

t ¼ ]fi
0jN

i 0
clutter
t 4Nclutter

thresholdg is more than

three, namely Ns 0

t 4 3. As the deployment of

sensors guarantees the three-coverage require-

ment, the newly arrived target could also be

detected by at least 3 sensors at a time.

Therefore, a simple and effective comparison instead of

the hypothesis test of Hue et al. (2002a) is employed in

our strategies, for deciding a new arrival in the

intersection space of target trajectories. If a new arrival

is confirmed, the SMCDA process has to be performed

once again on the set of observations Zt to handle

potential confusions between all the Mþ 1 targets and

the clutter. Concerning the initialisation stage of the

SMCDA process, �xnewt is assumed to be the centroid of
the sensors used for its detection.

On the other hand, the disappearance of an
identified (tracked) target j in the WSN is decided by
the number of measurements Nj

t related to it. When the
targets are far apart, Nj

t is simply equal to the number
of sensors in the corresponding cluster implementing
the tracking of the target j. In the case when the targets
are close to each other, Nj

t is calculated by the data
association phase. If Nj

t drops sharply for successive
sampling instants, we assume the target j disappears
from the surveillance area. We employ the hypothesis
testing method proposed in Hue et al. (2002a) to detect
disappearance of a target with data association ambi-
guity. As defined in Section 5.2, � j

t describes the
discrete probability that any measurement is associated
with the target j. Thus, the disappearance of the target j
from the surveillance area could be detected by a drop
in the corresponding � j

t component. However, the drop
of the value of � j

t may also be due to the failure of
sensor detection, which is assumed to occur with a
probability pfail. Therefore, the detection of the target j
can be viewed as a variable Dj

t distributed according to
a binomial law of parameters (1� pfail, pfail). By defin-
ing a threshold Dthreshold, the value of D

j
t can be simply

assigned as follows:

D̂ j
t ¼ 1, if �̂ j

t5Dthreshold

D̂ j
t ¼ 0, otherwise

(
,

where D̂ j
t ¼ 1 means the target j has been successfully

detected at instant t. A �2 test is defined, consisting of
computing the distance between the expected value and
the obtained value of Dj

t . If the �
2 test result suggests

disappearance of the target j, as far as the collaborative
MTT scheme is concerned, this reduction only leads to
reduce the number of targets M and to remove the
component j of maintained Gaussian distributions.

7. Simulation results

We evaluate and compare the performance of the
proposed MTT scheme on a challenging synthetic
tracking problem. The simulated WSN had 400
sensors, which were assumed to be uniformly deployed
in a 2-dimensional field (100� 100m2), and their
sensing ranges were identically fixed to 10m in order
to ensure the three-coverage condition. The range-
based observation model formulated in Equation (5)
was adopted. The involved communication noise,
defined by �i, was assumed to be identical and white
Gaussian distributed, with covariance �2i ¼ 0:05. After
the deployment step, the network field is under the
surveillance of all the sensors, in order to detect
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any intrusion. The initial configuration of the WSN is

illustrated in Figure 4.
To establish a baseline performance evaluation, the

synthetic example is demonstrated by Figure 5, where
the target trajectories are denoted by their coordinates
in the sensor field. At instant t¼ 1, two targets,

denoted by a blue circle (target A), and a red diamond
(target B) respectively, intrude into the surveillance
field. The sensors that detect their appearances com-
municate with each other to form signal processing

clusters. As the two targets are far apart till t¼ 40, they
are separately tracked by their corresponding sensor
clusters, leading to a simple extension of single target

tracking with the VF. At instant t¼ 40, a new target
denoted by a black star (target C) is detected in the
WSN. In fact, the new target C is close to the old target
B, leading to data association ambiguity. The method

proposed in Section 6 is adopted to detect the
appearance of the new target C. The SMCDA phase
is thus invoked to assign the ambiguous observation
data and to track the target B and C together with the

VF algorithm. The target A is separately tracked by its
corresponding cluster at that time. The three targets
move closely between the instant t¼ 45 and the
instant t¼ 80, and are thus tracked together by

the collaborative MTT scheme using the SMC and
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Figure 5. Synthetic multi-target tracking example.

Figure 4. Demonstration of the initialiSation state of the
sensor field. Sensors are randomly and densely deployed in
the surveillance field, denoted by the small black rectangles.
The sensor of ID 1 is denoted by s1, and with the sensing
range rs¼ 10m represented by a grey disk, which is identical
to that of the other sensors.
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the VF methods. At instant t¼ 80, the target C

disappears. At this time, all the three targets are close

to each other. The hypothesis testing method is thus

employed in the merging CHt to detect the disappear-

ance of target C. Whereas the disappearance of the

target B is simply detected as the targets are scattered

and tracked separately. From the instant t¼ 90, no

sensor in the network has detected the target B any

more. Finally, the target A leaves the surveillance field

at instant t¼ 100. Therefore, all the exception cases are

involved in the synthetic example to evaluate the

proposed scheme.
Despite of distinct velocities and trajectories of the

three targets, they are all described by the general state

evolution model. The initial parameters are identically

set for all the targets as follows:

�k j ¼
1=100 0

0 1=100

� �
, �V j ¼

10 0

0 10

� �
, �n j ¼ 10,

8j ¼ 1, . . .M:

However, the initial value of the expectation l
j
0 is not

identical for all the targets. It is initialised with the

centroid of the sensors which have detected the target j.

Owing to the flexibility of the general state evolution

model, the target states are successfully tracked despite

their distinct trajectory properties. The performance of

the proposed scheme after one typical run is shown in

Figure 6(a), where acceptable tracking performance is

achieved. The corresponding root mean square error

(RMSE) is shown in Figure 6(b), where one can note

that the VF succeeds in tracking the targets in the

separate case. When the new target C arrived at t¼ 40,

the two targets B and C are close to each other

(between t¼ 40 and t¼ 50) and the tracking perfor-

mance degrades because of data association ambiguity.

The tracking errors of target A remain quite low

during the same period, as it is far from the other two

targets and is separately tracked by its corresponding

cluster of detecting sensors. However, the maximal

estimation errors during the period between t¼ 40 and

t¼ 50 of the target B is 1.4083 and that of the target C

is 0.9164, which are still acceptable. During the period

t¼ 64 to t¼ 73, all the three targets encounter each

other. The data association becomes therefore more

difficult, leading to worse tracking performance of the

targets. The maximal estimation error for the target A

is max(ErrorA)¼ 1.8803, for the target B is

max(ErrorB)¼ 3.1348 and that of the target C is

max(ErrorC)¼ 1.5020. As can be expected and shown

in Figure 6(a), although the proposed collaborative

MTT scheme succeeds in distinguishing the three

targets, the tracking performance is not as good as

that when the targets are tracked separately. If there is

an ambiguity about the target state due to the clutter,

or if the measurements come from multiple-target,

multiple modes arise. Unfortunately, one important

shortcoming of particle filters, in general, is that they

yield poor results in maintaining the multi-modality of

the target distribution. In a practical particle filter

implementation, however, it often happens that all

the particles quickly migrate to one of the modes,

subsequently discarding all other modes. As a result,

the estimates of the three targets converge towards a

same mode, which is the centroid of their temporal

positions.
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Figure 6. Multi-target tracking performance: (a) Multi-target tracking scenery and (b) Root Mean Square Error of MTT.
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Monte Carlo simulations were performed on the
same configuration, where N¼ 200 particles were used.
The tracking results with respect to the targets are
reported in Table 1. The tracking accuracy is evaluated
by the average RMSE of the 100 runs of Monte Carlo
simulations. To calculate the energy expenditure
during the whole process, we adopt the following
hypotheses:

. the intra-cluster communication and the inter-
cluster communication between neighbouring
CHs are via single hops;

. the energy consumed in computation can be
neglected relative to energy consumed in
communication.

According to the energy consumption model proposed
in Chhetri, Morrell, and Suppappola (2005) and Wu
and Abouzeid (2005), the energy consumed in trans-
mission per bit is ET¼ �eþ �ad

3, where �e is the energy
consumed by the circuit per bit, �a is the energy
dissipated in Joules per bit per m3 and d is the
transmission distance (�a¼ 3.5� 10�3 pJ/bit/m3,
�e¼ 45 nJ/bit). The energy consumed when receiving
data is given by ER¼ �rN, where �r denotes the energy
expended on receiving one bit of data (�r¼ 135 nJ/bit).
Similarly, the energy consumed in detection is defined
by ES¼ �sN, where �s is the energy expended on sensing
one bit of data (�s¼ 50 nJ/bit). We calculate the overall
and the average energy consumptions of the CHs and
the slave sensors, respectively. Concerning the execu-
tion time, it is evaluated by the average time consumed
per sampling slot (1 s). As shown in the Table 2, the
average execution time of 0.2725 s guarantees the
on-line implementation of our scheme.

To benchmark the performance of our collabora-
tive MTT scheme against the classical SMC MTT
algorithm, we adopt the identical synthetic scenery
in Vermaak et al. (2005), which tracked three
slowly manoeuvring targets in the 2-D plane. Each
target were modelled with the near constant velocity
model. The example trajectories for M¼ 3 targets are
shown in Figure 7, where we run the algorithms
with an increasing number of particles, i.e. N¼ 100,
200, 400, 800. As expected, the estimated trajectories
of the proposed collaborative MTT scheme
become more accurate as the difficulty of the MTT
problem decreases compared with the synthetic
example above. Due to the collision of the targets,
both the algorithms were unable to disambiguate
all the targets, leading to degraded tracking
performances.

To get a statistical reflection of the behaviour of the
algorithms, we run Monte Carlo simulations of each
experiment for 20 times. As shown in the Table 3, the
RMSE generally decreases with an increase in the
number of particles. However, the performance does
not appear to upgrade significantly. With respect to the
RMSE of different targets, their estimated locations
are of different accuracies in the classical SMC MTT
algorithm, whereas similar tracking precisions are
illustrated for the proposed collaborative MTT
scheme. In fact, in the classical SMC MTT algorithm
(Vermaak et al. 2005), only two sensors are used.
Therefore, the target that is closer to the observer gets
more accurate estimations. On the other hand, they do
not consider the energy consumption in the two
sensors. Furthermore, in addition to the range obser-
vation, bearing information is also need for the
tracking, which thus necessitates additional hardware
configuration. The computational complexity is
reflected by the average execution time statistics in
the Table 3. Both the algorithms exhibit the same
trend, with the execution time increasing with the
increase in the number of particles. Acceptable error
performance are acheived while the average execution
time per time step is well within the limits of practically
reliable systems. However, due to the incorporation of
much more numbers of measurements, our scheme is
computationally more expensive, with better tracking
performance.

8. Conclusion and perspectives

A distributed VF solution to multi-target tracking is
proposed in the context of WSN. As the targets can
travel arbitrarily and no a priori information on the
targets motion is provided, a general state evolution
model is proposed to describe the hidden state.

Table 2. Evaluation of the collaborative MTT Scheme.

Evaluation

Overall energy consumption CHs: 9.71mJ
Slaves: 3.21mJ

Average energy consumption 100.67mJ/CH
25.14mJ/Slave

Execution time 0.2725 s

Table 1. Tracking accuracy of the collaborative MTT
Scheme.

Evaluation Target A Target B Target C

Average RMSE (m) 0.1743 0.6096 0.5455
Maximal estimate error (m) 1.8803 3.1348 1.5020
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To minimise the resource consumption in WSN, an
collaborative signal processing scheme is adopted. The
MTT problem is reduced to single target tracking when
targets are far apart, and probabilistic data association
is invoked only when ambiguous observations are
collected. In addition, the VF algorithm is executed on
a fully distributed cluster base. Only the sensors which
have detected the appearances of targets are activated
to form a data processing cluster for energy efficiency.
Furthermore, the variational method allows an implicit
compression of the exchanged statistics between clus-
ters. As shown in the simulations, estimates of the
targets are continuously updated on-line even with
data association ambiguity. Concerning the multi-
modality problem arisen in the data association
phase, we are thinking of integrating the method
proposed in (Vermaak, Doucet, and Pérez 2003a)
into the collaborative scheme, to maintain the

multi-modality property inherent to target tracking
problems.
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