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In this paper, robustness to model uncertainties are analyzed in the context of discrete predictor-based state-
feedback controllers for discrete-time input-delay systems with time-varying delay, in an LMI framework.The
goal is comparing robustness of predictor-based strategies with respect to other (sub)optimal state feedback
ones. A numerical example illustrates that improvements in tolerance to modelling errors can be achieved by
using the predictor framework.
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1. Introduction

Time delays are often encountered in practical control systems, such as aircraft, chemical or
process control systems Richard (2003), Normey-Rico and Camacho (2007). In many cases, such
delays are time-varying Yue. (2005), Pan et al. (2006), Gao et al. (2008), especially in networked
control systems Nilsson (1998).
The stability analysis and stabilization of delayed systems has been widely explored in the

literature under two main approaches:

(a) use of conventional controller schemes: static state feedback Pan et al. (2006), Valter et al.
(2008), Du et al. (2008), Yong et al. (2008), Guangdeng et al. (2009), and static output
feedback or dynamic controllers Gao et al. (2004), Liu et al. (2006).

(b) Dead-time compensation techniques (DTC), with the aim to eliminate the delay from the
characteristic equation by incorporating some sort of “prediction”. Two classical approaches
are worth mentioning: Smith Predictor Smith (1959), Palmor (1996), Normey-Rico and Ca-
macho (2007) (for time-constant delays) and the so-called finite spectrum assignment (FSA),
Manitius and Olbrot (1979), Wang et al. (1998), Yue. (2005), Zhong (2006). Experimental
applications of DTC techniques can be found in, for instance Hagglund (1996), Normey-Rico
and Camacho (2007).

This paper will compare static versus predictor-based controllers for discrete delay systems.
The more appealing characteristic of predictor-based control is that, without modelling error, its
performance approaches that of a delay-free system when delay is known Yue. (2005). However,
one of the widest criticisms to the predictor-control schemes is the high sensitivity to model
uncertainties and delay mismatches Michiels and Niculescu (2003). This fact can be explained
taking into account that modelling error tends to accumulate as model equations are integrated
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(or iterated in discrete-time) in order to obtain future state predictions. This motivates the
practical interest of analyzing the performance-robustness tradeoff of such predictor implemen-
tations. As most control applications are computer based, this paper will focus in studying the
differences in performance-robustness tradeoff of the two above paradigms, for a discrete-time
case.
Robustness of discrete non-predictor controllers have been addressed in, for instance, Boukas

(2006), Du et al. (2008), Yong et al. (2008), Zhang et al. (2008).
Some results concerning robustness analysis with FSA predictor-based controllers have been

proposed in the literature (see, for instance a time-varying delay case for continuous-time Yue.
(2005)). For the discrete version of FSA, known as predictor scheme Goodwin and Sin (1984)
some results (existence of a small-enough neighborhood) regarding model and delay variations
Lozano et al. (2004), Garcia et al. (2006) have been reported.
The objective of this paper is extending the ideas in the just cited references in order to analyze

robust stability of discrete predictor-based state-feedback controllers under time-varying delay,
only assuming knowledge of delay bounds. As a result, the paper will illustrate that a suitably
designed predictor scheme can improve the robustness margins with respect to a (sub)optimal
memoryless robust controller design in some cases.
The paper is organized as follows: next section discusses preliminary results, section 3 provides

the problem statement and auxiliary lemmas. Section 4 provides a robust stability analysis
theorem. Section 5 provides a numerical example comparing robustness of various predictor and
non-predictor designs and a conclusion section closes the paper.

2. Preliminaries

Let us consider the following discrete-time linear-time-variant input delayed system:

xk+1 = Axk +Buk−dk
, k = 0, 1, . . . (1)

ul = φu(l), −dM ≤ l < 0 (2)

where φu(l) represents some initial conditions for the input control action u−dM
, . . . , u−1 and

A ∈ Rm×m, B ∈ Rm×n are the nominal plant parameter matrices. This kind of models arise
in, for instance, computer-controlled industrial reactors or vessels where some components flow
around feed pipelines (mass and energy transport): the delay would be a function of the pipe
length and fluid speed, so if the latter is not constant, the delay would be varying.
The delay dk > 0 is assumed not measurable, but known to vary randomly in an interval

dm ≤ dk ≤ dM . The lower and upper delay bounds (dm and dM , respectively), are assumed
known.
To simplify the further developments and without loss of generality, φu(k) = 0 will be assumed

on the sequel.
As previously discussed, most approaches to control of input-delay systems are based on either

direct static state-feedback or a predictor-based feedback.

Static state feedback. If a static state-feedback control law is proposed

uk = Kxk (3)

where K ∈ Rn×m is the control gain matrix. The closed loop realization yields

xk+1 = Axk +BKxk−dk
(4)
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The memoryless feedback has as an advantage the fact that stability analysis and controller
synthesis have been explored in the context of discrete Lyapunov-Krasovskii functionals Gao
and Chen (2007), Zhang et al. (2008). However, it seems clear that there is an inherent con-
servativeness because: (1) the feedback considers only partial information about the true state
of the delayed process (in fact, x can no longer be regarded as the “state” vector as more past
input information is needed for future predictions), (2) The Lyapunov-Krasovskii functionals do
not usually represent with full generality the class of Lyapunov functions possibly needed.

Prediction-based control. As an alternative, consider the state-feedback prediction-based con-
trol law

uk = Kx̄k+h (5)

where x̄k+h is the future state prediction h-step ahead, being h an user-defined parameter (the
expected delay). The basic intuitive argumentation is the fact that uk−h = Kx̄k+h−h so, if x̄
correctly approximates the true state x, then the term Buk−h would equal BKxk which is the
same than that of a delay-free state feedback law. Obviously, the idea works, in principle, with
constant and known delay. The objective of this paper is exploring the performance/robustness
tradeoff of these ideas in a varying delay case, as discussed in next section.
Assuming xk+1 = Axk +Buk−h, then xk+2 = A2xk +ABuk−h +Buk−h+1 and similar expres-

sions can be obtained for xk+3 and so on. Hence, the predictor x̄ in (5) can be computed as
Goodwin and Sin (1984), Lozano et al. (2004):

x̄k+h = Ahxk +
h−1
∑

i=0

Ah−i−1Buk+i−h (6)

Note that the control actions used in the above expressions are uk−h, . . . , uk−1, so indeed this
prediction is a causal expression.
For constant delays dk = d, the resulting closed-loop expression is Garcia et al. (2006):

xk+1 = (A+BK)xk +BKAh (xk−d − xk−h) (7)

which, indeed, recovers a delay-free closed loop if d = h, as intuitively expected.
Uncertainty plays a significant role in the practical applications of predictor schemes. Indeed,

as mentioned in the introduction, prediction accumulates such model uncertainty over time.
How to characterize such uncertainty and the robustness of the designs against it has been

preliminarily considered in literature. When the actual delay d is close to the designed predictor
delay h, the closed loop behavior has been shown to be robustly stable: in Lozano et al. (2004)
sampling period jitter and small delay variations (significantly less than one nominal sample
period), as well as small modelling errors, are approximately transformed to uncertainty in
the discrete-time input delay model (1); the authors show that stability is preserved in a small
enough neighborhood around the nominal system matrices. In Garcia et al. (2006) the framework
is extended allowing for a predictor delay h different to d, but considering both h and d to be
constant. In summary, in these references the size of the robustness neighborhood is not computed
and the results are only valid for constant delay in the discretized model.
As discussed in the introduction, this paper has two goals: first, extending the ideas in the just

cited references in order to analyze robust stability of discrete predictor-based state-feedback
controllers under time-varying delay and, second, to show that in some cases there is a perfor-
mance/robustness improvement with respect to a non-predictor static feedback control scheme.
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3. Problem formulation

This paper will consider a robustness analysis for the above-considered delay systems and con-
trollers. In particular, let us consider the discrete-time linear-time-variant input delayed system
depicted in (1) with norm-bounded uncertainties:

xk+1 = (A+∆Ak
)xk + (B +∆Bk

)uk−dk
(8)

ul = φu(l), −dM ≤ l < 0 (9)

The system uncertainties ∆Ak
,∆Bk

are assumed to satisfy the following constraints

[∆Ak
,∆Bk

] = ᾱG∆k[Ha,Hb] (10)

∆k
T∆k ≤ I (11)

where G,Ha,Hb are known matrices of appropriate dimensions.
The objective of the following sections is to present a set of LMI constraints able to quantify

the trade-offs involved in predictor-based schemes: nominal performance versus robustness to
time-varying delay and model uncertainty. In this setting, ᾱ will be considered an overall size
parameter to be later optimized.

Notation and auxiliary lemmas. The following well-known lemma is given here to develop
some of the main results presented

Lemma 3.1: Given appropiate matrices X and Y and a symmetric matrix Z,

Z +X∆Y + Y T∆TXT < 0 (12)

holds for all ∆ satisfying ∆T∆ ≤ I if and only if there exists a scalar ǫ > 0 such that

Z + ǫXXT + ǫ−1Y TY < 0 (13)

In the example section, the following result, obtained from minor modifications to (Gao and
Chen 2007, lemma 2) will be used for comparation purposes.

Lemma 3.2: The closed-loop system (4) is robustly asymptotically stable if there exists matri-
ces P,Q,R,Z1 > 0, a scalar value ρ > 0 and some matrices M,N,S,W of suitable dimensions
satisfying the convex optimization problem depicted below.
minimize ρ s.t

















−P 0 φ4 0
√
dMG 0

(∗) −P φ3 0 G 0
(∗) (∗) φ1 +Ψ2 +ΨT

2 Ψ4 0 φ2

(∗) (∗) (∗) Ψ5 0 0
(∗) (∗) (∗) (∗) −ρI 0
(∗) (∗) (∗) (∗) (∗) −I

















< 0 (14)

Ψ2 =
(

M +N, S −M, −S −N
)

(15)
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Ψ4 =
(

M
√
dM , S

√
dM − dm, N

√
dM

)

(16)

Ψ5 = diag(−Z1,−Z1,−P + Z1) (17)

φ1 =





−P + τQ+R 0 0
(∗) −Q 0
(∗) (∗) −R



 (18)

φ2 =
(

HaP, HbW, 0
)T

(19)

φ3 =
(

A0P, B0W, 0
)

(20)

φ4 =
(√

dM (A0 − I)P,
√
dMB0W, 0

)

(21)

Furthermore, the suboptimal controller gain can be obtained directly as K = WP−1 guaran-
teeing stability for model uncertainties ∆Ak

and ∆Bk
fulfilling (10) with ᾱ =

√

1/ρ. This is the
reason of searching for the minimum ρ.

Proof The result is obtained in a straightforward way by setting P = Z1+Z2 in Theorem 2, Gao
and Chen (2007) and applying a congruence transformation by pre-and post-multiplicating by
diag(P−1, P−1, P−1, P−1, P−1, P−1, P−1, P−1, I, I). Note that P in (14)–(21) actually denotes
the inverse of the decision variable P in Gao and Chen (2007). �

More recent results improve over Gao and Chen (2007) in stability analysis Zhang et al. (2008),
and also including model uncertainty Guo and Li (2009). However, regarding controller design,
the first work poses the problem as a BMI to be solved by CCL El Ghaoui et al. (1997) and the
second one does not improve upon Gao and Chen (2007) when adaptations in order to get LMI
synthesis conditions analogue to Lemma 3.2 are implemented (memoryless controller). In this
paper, only LMI approaches will be considered.

4. Robust Stability Analysis of predictor-based state feedback

In this section LMI constraints are provided to check stability in a discrete-time predictor control
law on a time-varying input delay system in presence of norm-bounded uncertainties.
In order to establish robust stability results in delay systems, some state transformations are

needed, as pointed out in Yue. (2005). The following lemma proposes the needed transformation
for the discrete-time case.

Lemma 4.1:

If A is invertible1, the closed-loop realization of model (8) with the control law (5) can be
expressed as

1Note that in the discretization of continuous-time systems with state matrix Ac, the resulting A = eAcT is always non-
singular.
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zk+1 = A1zk +Bdzk−dk
+Bhzk−h +

h−1
∑

i=1

Bizk−i (22)

A1 = A+BK +Ah∆Ak
A−h (23)

Bd = Ah(B +∆Bk
)K (24)

Bh = −Ah(I +∆Ak
A−1)BK (25)

Bi = −Ah(∆Ak
A−h+i−1)BK i = 1, . . . , h− 1 (26)

Proof Let us define the new state zk

zk = Ahxk +

h−1
∑

i=0

Ah−i−1Buk−h+i (27)

being zk the prediction of xk+h, i.e., zk = x̄k+h using the nominal model with no uncertainties.
The one-step ahead zk+1 is

zk+1 = Ahxk+1 +

h−1
∑

i=0

Ah−iBuk−h+i+1 (28)

Substituting xk+1 from the system model (1) we obtain

zk+1 = Ah[(A+∆Ak
)xk + (B +∆Bk

)uk−dk
] + (29)

+
h−1
∑

i=0

Ah−iBuk−h+i+1 (30)

From (27) the state xk can be obtained depending on zk and the last h control actions as

xk = A−hzk +
h−1
∑

i=0

A−1−iBuk−h+i (31)

By replacing xk in (29) and making the suitable operations the following is obtained

zk+1 = (A+Ah∆Ak
A−h)zk +Buk −Ah(I +∆Ak

A−1)Buk−h+

+Ah(B +∆Bk
)uk−dk

−
h−1
∑

i=1

Ah(∆Ak
A−h+i−1)Buk−i (32)

Finally, taking into account the control law uk = Kzk the proof is completed. �

Once the above realization is available, the following theorem presents the main robust stability
analysis result, using the well known augmented delay-free realization of discrete delay systems.
For convenience, the notation δ = dM − dm + 1 will be introduced. Also, di = dm + i− 1 for

i ∈ {1, . . . , δ}.

Theorem 4.2 :
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The closed-loop system (22) is asymptotically stable for some previously-designed K and h if
there exists δ matrices P̄i and δ2 scalars ǫij > 0 for i,∈ {1, . . . , δ} and j ∈ {1, . . . , δ} such that

P̄i > 0 ∀i ∈ {1, . . . , δ} (33)

and, for all i, j ∈ {1, . . . , δ} × {1, . . . , δ}




P̄i + ǫijH̄(di)
T H̄(di) (∗) (∗)

P̄jĀ(di) −P̄j (∗)
0 ḠT P̄j −ρǫijI



 < 0 (34)

where

Ā(di) =













A+BK Γ1(di) Γ2(di) · · · · · · ΓdM
(di)

I 0 0 · · · · · · 0
0 I 0 · · · · · · 0
· · · · · · · · · · · · · · ·
0 0 0 · · · I 0













being

Γl(di) = γ(di, l)A
hBK − γ(h, l)AhBK (35)

for 1 ≤ l ≤ dM and

Ḡ =
(

AhG 0 · · · 0
)T

(36)

H̄(di) =

























HaA
−h

−HaA
−hBK + γ(di, 1)HbK

−HaA
−h+1BK + γ(di, 2)HbK

· · ·
−HaA

−1BK + γ(di, h− 1)HbK
γ(di, h)HbK

· · ·
γ(di, dM )HbK

























T

(37)

where the scalar function γ(x, y) is defined here as

• γ(x, y) = 1, if x = y

• γ(x, y) = 0, otherwise

Moreover, a bound for model uncertainties in (10), ᾱ, can be found by setting an objective
function over ρ in such way that the proposed robust analysis task can be solved as:
minimize ρ subject to constraints (33), (34)
If feasibility is achieved, the proved size of model uncertainties keeping stability can be obtained

as ᾱ =
√

1/ρ.

Proof
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Consider a generic quadratic parameter-dependent Lyapunov functional involving the full-
augmented process state

Vk =

dM
∑

p=0

dM
∑

r=0

xT k−pP
p,r
dk

xk−r (38)

The matrices P p,r
dk

are defined such as the Lyapunov functional (38) is always positive definite,
Vk > 0, that is,

P̄di
:= P̄i =









P 0,0
i P 0,1

i · · · P 0,dM

i

P 0,1
i P 1,1

i · · · P 1,dM

i

· · · · · · · · · · · ·
P dM ,0
i P dM ,1

i · · · P dM ,dM

i









> 0

for every i ∈ {1, δ}. Without loss of generality we may consider that P p,r
i = (P r,p

i )
T

In such a way (38) can be rewritten as

V (k, dk) = ΦT
k P̄dk

Φk (39)

where Φk is defined as the augmented process state vector Φk = [xk, · · · , xk−dM
].

By suitable algebraic manipulations the augmented system (22) with Φk can be expressed as

Φk+1 = [Ā(dk) + Ḡ∆kH̄(dk)]Φk (40)

where Ā(dk), Ḡ and H̄(dk) are defined in (35), (36) and (37), respectively.
By imposing V (dk+1, k + 1) − V (dk, k) < 0 and making the usual Schur complement for

discrete-system stability analysis, it is easy to obtain the well-known LMI constraints for every
di = dk and dj = dk+1

(

−P̄i (∗)
P̄j [Ā(di) + ᾱḠ∆kH̄(di)] −P̄j

)

< 0 (41)

this last expression can be written as

Āu(di, dj) + ᾱḠu(dj)∆kH̄u(di) + H̄T
u (di)∆

T
k Ḡ

T
u (dj) < 0 (42)

where

Āu(di, dj) =

(

−P̄i (∗)
P̄jĀ(di) −P̄j

)

(43)

Ḡu(dj) =
(

0 P̄jḠ
)T

(44)

H̄u(di) =
(

H̄(di) 0
)

(45)

According to lemma 3.1, the inequality (42) holds for all dk satisfying ∆T
k∆k ≤ I if and only

if there exists a scalar ǫij > 0 such that
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Ā(di, dj) + ǫ−1
ij ᾱ2Ḡu(dj)Ḡ

T
u (dj) + ǫijH̄

T
u (di)H̄u(di) < 0 (46)

Substituting (43), (44) and (45) into (46) we have
(

−P̄i + ǫijH̄
T (di)H̄(di) (∗)

P̄jĀ(di) −P̄j + ǫ−1
ij ᾱ2P̄jḠḠT P̄j

)

< 0 (47)

By applying again the Schur complement, the above inequality is equivalent to




P̄i + (ǫij)H̄
T (di)H̄(di) (∗) (∗)

P̄jĀ(di) −P̄j (∗)
0 ḠT P̄j −(ǫij)ᾱ

−2I



 < 0 (48)

which completes the proof. �

Remark 1 : Note that if we make ǫij = ǫ theorem 4.2 is an LMI problem with the change of
variable P ′ = P/ǫ.

Remark 2 : For large values of the delay, the number of decision variables in (38) may exhaust
computational resources. Another option may be eliminating the dependence on the delay or
replacing the functional by:

Vk =

dM
∑

p=0

min(p+q,dM)
∑

r=max(0,p−q)

xT k−pP
p,r
dk

xk−r

with a complexity parameter, q, which transforms matrix (39) from a full matrix (q = dM ) to
a band one or even to a diagonal matrix (q = 0). In fact, many discrete Lyapunov-Krasovskii
proposals can be considered a particular case of the generic augmented-state Lyapunov function
discussed above.

5. Numerical Example

Consider the following system:

xk+1 = (A+∆Ak)xk + (B +∆Bk)uk−dk
(49)

with

A =

(

1.01 0
0 0.7

)

, B =

(

1
3

)

(50)

and the model uncertainties matrices defined at (10)

Gd =
(

1 1
)T

,Ha =
(

0.1 0.1
)

,Hb = 1 (51)

The following two design approaches will be compared with respect to robustness bounds:

• Static state-feedback: maximizing robustness via lemma 3.2, taking the delay bounds dm and
dM .

• Predictor scheme: dynamic feedback based on predictor scheme taking the predictor delay
h = dm. The controller gain K is designed via lemma 3.2 but replacing the values for dm and
dM with the new values d′m = 0 and d′M = dM − dm, respectively.
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Figure 1. Achieved robustness ᾱ obtained with the proposed predictor scheme vs controller designed via lemma 3.2.

Figure 1 compares the maximum tolerance to model errors in ᾱ obtained in both cases. In the
legend, the predictor-based design results are labeled as ’pred’ and the static state feedback are
labeled as ’no pred’, respectively.
The lower bound delay dm takes the value depicted on the abscissae-axis for every case. The

cyan lines (top) plot the proved uncertainty bound in case of constant delay dm = dM . The
other lines plot two different time-varying delay cases: (a) the red ones (middle) plot the case of
dM = dm + 1, and (b) the blue ones (bottom) present the case dM = dm + 3. When no value ᾱ
is provided for some dm it means that no feasible solution was found. The figure shows that, at
least for this example, the predictor-based feedback design strategy achieves a better tolerance
to modelling errors than the (sub)-optimal static design. As intuitively expected, the provable
model error bound decreases as both minimum delay and delay range increase.

Simulation results. As the LMI stability analysis and controller design techniques may be
conservative, in order to test whether the larger robustness bounds for the predictor approach
are actually confirmed in the time response, a simulation has been carried out.
The previous system has been simulated by considering time-varying input delay bounds of

dm = 4 and dM = 5, respectively, and a constant value of uncertainty ∆k = −0.5 at the system
model in expression (10). The state response for y = x1 is depicted in Figure 2, as follows:

• Delayed case without predictor (dash-dotted line). The static state feedback controller has been
designed to maximize ᾱ via lemma 3.2 with dm = 4, dM = 5 obtaining K = [−0.0419, 0.0147],
ᾱ = 0.442.

• Delayed case with predictor (solid line). The feedback gain has been designed by the aforemen-
tioned predictor-based design criterion (h = 4) obtaining K = [−0.1504,−0.0448], ᾱ = 0.952.

The referred figure shows that the predictor scheme has a much better performance under
modelling error and delay range settings than the non-predictor state-feedback approach: both
performance and robustness are improved by the sensible use of the predictor.
In summary, we have shown that the predictor scheme may improve the perfor-

mance/robustness trade-off for static state-feedback controllers with respect to a suboptimal
design tackled with some proposed recent results found in the literature, also allowing to ensure
closed-loop stability for a larger range of delay values.
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Figure 2. Comparison of the system response (state x1) achieved between the proposed predictor scheme vs controller
designed via lemma 3.2.

6. Conclusion

In this paper, a study of the robustness of discrete-time predictor-based state feedback control
loops has been carried out. A Lyapunov function on the augmented delay-free plant has been
used. If so wished, such Lyapunov function can be reduced to ordinary discrete Lyapunov-
Krasovskii expressions.
The result allows to extract information on how model iterations diminish tolerance to mod-

elling errors as prediction horizon h grows. It also enables comparative robustness analysis with
other non-predictor alternatives.
A numerical example has shown that, in some cases, predictor-based approaches are, for the

same performance levels, more robust than static feedback laws even if the latter consider the
actual minimum and maximum delay bounds.
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