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Abstract

This paper considers a class of deploy and search strategies for multi-robot
systems and evaluates their performance. The application framework used is
a system of autonomous mobile robots equipped with required sensors and
communication equipment deployed in a search space to gather information.
The lack of information about the search space is modeled as an uncertainty
density distribution over the search space. A combined deploy and search
(CDS) strategy has been formulated as a modification to sequential deploy
and search (SDS) strategy presented in our previous work. The optimal
deployment strategy using Voronoi partition forms the basis for these two
search strategies. The strategies are analyzed in presence of constraints on
robot speed and limit on sensor range for convergence of trajectories with cor-
responding control laws responsible for the motion of robots. SDS and CDS
strategies are compared with standard greedy and random search strategies
on the basis of time taken to achieve reduction in the uncertainty density
below a desired level. The simulation experiments reveal several important
issues related to the dependence of the relative performances of the strategies
on parameters such as number of robots, speed of robots, and their sensor
range limits.
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1. Introduction

In nature, we observe groups of animals performing a large number of
complex tasks by cooperating among themselves in a distributed manner.
Each member of the group performs a relatively simple task using informa-
tion available in its neighborhood leading to emergence of a collective behav-
ior. Flocks of birds, schools of fish, foraging of ants are a few examples of
this phenomena. Nature seems to solve complicated problems in simple and
elegant ways. Instead of increasing the complexity /intelligence of an individ-
ual to solve a complex problem, nature relies on a group of individuals with
nominal abilities. The outcome of such cooperation is more robust to failure
of a few of the group members. From a more philosophical perspective, the
focus is on a society rather than on an individual member.

The problem of searching for targets in unknown environments has been
addressed in the literature in the past |18],[31],[5], and [22]. Various search
strategies available in the literature have been surveyed in [5]. These fun-
damental works were mostly theoretical in nature and were applicable to a
single agent searching for single or multiple, static or moving, targets. It
is likely that the same task can be accomplished more effectively by multi-
ple searchers. But when multiple agents are involved, coordination between
them becomes an important issue. Although a centralized controller can
solve the problem, it has many shortcomings such as requirement of com-
plete connectivity, large communication effort, etc. Further, failure of the
central controller leads to failure of the entire system. As discussed earlier,
most biological systems such as ants, birds, fish etc., have distributed local
decision making capabilities which, in turn, lead to a useful collective be-
havior such as swarms, flocks, schools, etc. Agents taking decisions based
only on available local information and distributed control law (usually re-
ferred to as ‘behavior’ in biological systems), lead to coordination among
the agents and result in a meaningful collective behavior. Developments
in areas such as wireless communication, autonomous vehicular technology,
computation, and sensors, facilitate the use of large number of agents (UAVs,
mobile robots, or autonomous vehicles), equipped with sensors, communica-
tion equipment, and computation ability, to cooperatively achieve various
tasks in a distributed manner.



Distributed multi-agent systems have been shown to achieve and main-
tain formations, move as flocks while avoiding obstacles, etc., thus mimicking
their biological counterparts. They can also be used in applications such as
search and rescue, surveillance, multiple source identification, and coopera-
tive transportation. The major advantages of distributed systems are immu-
nity to failure of individual agents, their versatility in accomplishing multiple
tasks, simplicity of agents’ hardware, and requirement of only minimal local
information. At the same time it is important to design distributed con-
trol laws that guarantee stability and convergence to the desired collective
behavior under limited information and evolving network configurations.

1.1. Related Literature

One class of problems discussed in the literature is that, of optimally
locating agents or sensors in the domain of interest and belongs to the class
of locational optimization or facility location problems [10,24]. A centroidal
Voronoi configuration is a standard solution for this class of problems [11],
where each of the agents is located at the centroid of the corresponding
Voronoi cell. Cortes et al. [6, 7] use these concepts to solve a spatially
distributed optimal deployment problem for multi-agent systems. A density
distribution, as a measure of the probability of occurrence of an event, is
used, along with a function of the Euclidean distance providing a quantitative
assessment of how poor the sensing performance is, to formulate the problem.
Centroidal Voronoi configuration, with centroids of Voronoi cells computed
based on the density distribution within the cell, is shown to be the optimal
deployment of sensors minimizing the sensory error. The Voronoi partition
becomes natural optimal partitioning due to monotonic variation of sensor
effectiveness function with the Euclidean distance. Schwager et al. [29]
interpret the density distribution of [6] in a non-probabilistic framework and
approximate it by sensor measurements. Sujit and Beard [32] present an
exploration system for multiple unmanned aerial vehicles (UAVs) navigating
through a simulated unknown region that contains obstacles of unknown
shape, size, and initial position. They perform Monte-Carlo simulation to
analyze the effect on area coverage with changes in number of agents, sensor
range, and communication range.

Cooperative search by multiple agents has been studied by various re-
searchers. Enns et al. [12] use predefined lanes prioritizing them with the
target probability. The vehicles cooperate to ensure that the total path length



covered by them is minimized while exhaustively searching the area. A dy-
namic inversion based control law is used to make vehicles track the assigned
tracks or lanes while considering the maximum turn radius constraint. Spires
and Goldsmith [30] use space filling curves such as Hilbert curves to cover a
given space and perform exhaustive search by multiple robots. Vincent and
Rubin [33] address the problem of cooperative search strategies for UAVs
searching for moving, possibly evading, targets in a hazardous environment.
They use predefined swarm patterns with an objective of maximizing the
target detection probability in minimum expected time and using minimum
number of UAVs having limited communication range. Beard and McLain [4]
use dynamic programming methods to develop strategies for a team of coop-
erating UAVs to visit as many opportunities without collision while avoiding
hazards, in a search area which contains regions of opportunity and hazards.
The UAVs have the additional requirement that they should stay within
communication range of each other. Flint et al. [13] provide a model and
algorithm for path planning of multiple UAVs searching in an uncertain and
risky environment using dynamic programming approach. The search area
is divided into cells and in each cell the probability of existence of a target
defined. Pfister [25] uses fuzzy cognitive map to model the cooperative con-
trol process in an autonomous vehicle. In [26],[35], and [36] the authors use
distributed reinforcement learning and planning for cooperative multi-agent
search. The agents learn the environment online and store the information
in the form of a search map and utilize this information to compute their tra-
jectory. The agents are assumed to have limited maneuvering ability, sensor
range and fuel. In [35] the authors show a finite lower bound on the search
time. Rajnarayan and Ghose [27] use concepts from team theory to formu-
late the multi-agent search problem as a nonlinear programming problem in
a centralized perfect information case. The problem is then reformulated in
a Linear-Quadratic-Gaussian setting that admits a decentralized team theo-
retic solution. Dell et al. [8] develop an optimal branch-and-bound procedure
with heuristics such as combinatorial optimization, genetic algorithm and lo-
cal start with random restarts, for solving constrained-path problems with
multiple searchers. Jin et al. [17] address a search and destroy problem in a
military setting with heterogeneous team of UAVs. Altshuler et al. [2] ex-
amine the Cooperative Hunters problem, where a swarm of UAVs is used for
searching one or more evading targets, which are moving in a predefined area
while trying to avoid a detection by the swarm. Sathyaraj et al. [28] provide
a comparative study of path planning algorithm for multiple UAVs used in
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team for detecting targets and keeping them in its sensor range. Yatsenko et
al. [37] discuss problems dealing with cooperative control of multiple agents
moving in a region searching for targets.

In [16] we have proposed a search strategy namely sequential deploy and
search (SDS) for multiple agents such as UAVs or mobile robots using Voronoi
partition with some preliminary results. In this work, an uncertainty density
was used to model the lack of information about the search area. Search
agents are deployed optimally maximizing a single step search effectiveness
and then perform search. Each agent performs search within its Voronoi
cell where it is most effective. The optimal deployment was shown to be
a variation of centroidal Voronoi configuration, where each agent is located
at the centroid of its Voronoi cell with perceived uncertainty density. The
material presented in this paper is based on the doctoral thesis [15].

In this paper, we provide a more detailed account of the SDS strategy
and propose a modification of the this strategy, named as combined deploy
and search (CDS) where, the mobile robots perform search in discrete steps,
as they move toward the centroids. We compare the performance of SDS and
CDS strategies with standard greedy and random search strategies based on
simulation experiments.

1.2. Contribution of the paper

We address a multi-robot search problem where N agents, equipped with
sensors, search the space (), a convex polytope in RY, the d-dimensional
Euclidean space. The lack of information about the search space is mod-
eled as an uncertainty density distribution ¢ : @ ~ [0,1]. We denote
P(t) = {p1,p2,-...pn}, pi € Q, with p; # p;, whenever i # j, as the robot
configuration at time t. We formulate a combined deploy and search (CDS)
strategy for multiple mobile robots as a modification to sequential deploy and
search (SDS) strategy proposed in our previous work [16]. The fundamental
concept is “deploy” and “search”. In each search step, the uncertainty is
reduced as

Pnt1(q) = On(q) min{B([lpi — qll)}

where, n is the search step count, and 5 : R ~— [0, 1] is the function acting
as a reduction factor for the uncertainty density ¢. The function 3 is such
that, 1 — [ is the sensor effectiveness function.



We consider following multi-center objective function, which when maxi-
mized, maximizes a single step effectiveness

Moo= > Sn(@)[1 = B(llpi — al]dQ

ief1,2,..,N} Vi

where, n is the search step count, V; is the Voronoi cell corresponding to the
i-th agent /robot. The critical points of the objective function for a given n is
shown to be centroids of Voronoi cells with perceived density. Unlike SDS, the
agents/robots do not wait till getting optimally deployed to perform search.
The critical points are used only to get a direction of motion for robots.
We show, that the CDS strategy can reduce the average uncertainty to any
arbitrarily small value in finite time. The optimal deployment strategy has
been analyzed in presence of some constraints on robot speed and limit on
sensor range for convergence of the robot trajectories with the corresponding
control laws responsible for the motion of robots.

Simulation experiments are carried out to validate and compare the per-
formance of SDS and CDS with two generic strategies, namely, greedy and
random search. The simulation results indicate that both the proposed search
strategies perform quite well even when the conditions deviated from the as-
sumed ones such as sensor range limitations and the CDS strategy leads to
somewhat shorter and smoother trajectories than those of the SDS strategy
with the same parameters.

1.3. Organization of the papers

The paper is organized as follows. We preview a few mathematical con-
cepts used in this work in Section 2. The multi-robot search problem is
discussed in Section 3. Section 4 discusses the combined deploy and search
(CDS) strategy. The objective function, instantaneous critical points, and
control law responsible for robot motion are presented in this section. In
Section 5 we impose a few constraints on robot speed and also limit on sen-
sor range, propose control laws and provide convergence results. The CDS
strategy is explained with help of illustrative examples in comparison with
the SDS strategy in Section 6. A few implementation issues are discussed in
Section 7. In section 8, we provide and discuss simulation results and the
paper concludes in section 9.



2. Mathematical preliminaries

In this section we preview mathematical concepts from Voronoi partition,
LaSalle’s invariance principle, and Liebniz theorem used in the present work.

2.1. Voronoi partition

Voronoi partition [34, 9] is a widely used scheme of partitioning a given
space and finds applications in many fields such as CAD, image processing
and sensor coverage. We use the Voronoi decomposition scheme to partition
the search space. Here we briefly preview the concept.

By a partition of a set X we mean a collection of subsets W; of X with
disjoint interiors such that their union is X itself. Let @ C R? be a convex
polytope in R?, the d-dimensional Euclidean space. We define the configura-
tion space as P = {P = {p1,p2,...,p~n}}, pi € Q, position of i-th node in Q.
The Voronoi partition generated by P € P with respect to Euclidean norm
is the collection {V;(P)}icq1,2,..,n) defined as,

Vi(P)={qe€Q|l¢—pi I<ll ¢ —pj |l,Vp; € P}

The Voronoi cell V; is the collection of those points which are closest to
p; compared to any other point in P. The boundary of each Voronoi cell is
the union of a finite number of line segments forming a closed C° curve. In
R2, The intersection of any two Voronoi cells is either null, a line segment,
or a point. In a general d-dimensional space, the boundaries of the Voronoi
cells are unions of convex subsets of at most d — 1 dimensional hyperplanes
in R? and the intersection of two Voronoi cells is either a convex subset
of a hyperplane or a null set. Each of the Voronoi cells is a topologically
connected non-null set.

2.2. LaSalle’s Invariance principle

Here we state LaSalle’s invariance principle |21, 3] used widely to study
the stability of nonlinear dynamical systems. We state the theorem as in [23]
(Theorem 3.8 in [23]).

Consider a dynamical system in a domain D

&= f(z), f: D—R? (1)

Let V : D — R be a continuously differentiable function and assume that

(i) M C D is a compact set, invariant with respect to the solutions of ().

7



(i) V <0in M.

(iii) E:{z: 2z € M, and V() = 0}; that is F is set of all points of M such
that V(z) = 0.

(iv) N is the largest invariant set in E.

Then every solution of (I]) starting in M approaches N as t — oo.

Here by invariant set we mean that if the trajectory is within the set at
some time, then it remains within the set for all time. Important differences
of the LaSalle’s invariance principle as compared to the Lyapunov Theorem
are (i) V is required to be negative semi-definite rather than negative definite
and (ii) the function V need not be positive definite (see Remark on Theorem
3.8 in [23], pp 90-91).

2.3. Leibniz Theorem and its generalization

The Leibniz Theorem is widely used in fluid mechanics [20], and shows
how to differentiate an integral whose integrand as well as the limits of inte-
gration are functions of the variable with respect to which differentiation is
done. The theorem gives the formula

d W boF db da
— F de = | ——d F by) — —F 2
i ) (z,y)dz rr z+ - (b,y) a0 (a,y) (2)

Eqn. (2)) can be generalized for a d-dimensional Euclidean space as

d OF

@ o) F(x,y)dV = a—de+/s n(z).u(z)Fds (3)

where, V C R? is the volume in which the integration is carried out, dV is
the differential volume element, S is the bounding hypersurface of V, n(x)
is the unit outward normal to S and u(z) = 98 (z) is the rate at which the

dy
surface moves with respect to y at z € S.

3. Multi-robot search

In this section we discuss the problem addressed in this paper. N robots
perform search operation in an unknown environment. The lack of informa-
tion is modeled as an uncertainty density distribution over the search space
. The problem addressed in this paper is that of deploying N robots in ()
to collect information, thereby reducing the uncertainty density distribution
over (). The problem formulation is stated formally as
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. Q C R?is a convex polytope and is the search space.

DO

. ¢ : @+ [0,1] defines the uncertainty density function representing lack
of information.

3. N robots, equipped with sensors and communication equipment, deploy
themselves in (), and gather information, thus reducing the uncertainty.

4. P(t) = {p:1(t),p2(t),...,pn(t)} C Q, with p; # p; whenever i # j,
denotes the configuration of the multi-robot system at time ¢, p;(t) de-
notes the position of the i-th robot at time ¢. In future, for convenience,
we drop the variable ¢ and refer to the positions by just p;.

5. Sensor’s effectiveness at a point reduces with distance from the sensor.

6. Ideally, we are looking for an optimal way of utilizing the robots to

acquire complete information about ), and thus have ¢(q) = 0, Vq € Q.

During the search operation, sensors gather information about @), reduc-
ing the uncertainty density as,

Pnt1(q) = dnlq) min{5((lpi — al)} (4)

where, ¢,(q) is the density function at the n-th iteration; 8 : R — [0, 1] is
a function of Euclidian distance of a given point in space from the robot,
and acts as the factor of reduction in uncertainty by the sensors; and p; is
the position of the i-th sensor. At a given ¢ € @, only the robot with the
smallest 5(||p; — ¢l|), that is, the robot which can reduce the uncertainty by
the largest amount, is active. If any robot searches within its Voronoi cell,
then the updating function () gets implemented automatically, That is, the
function min{5(||p; — ¢||)} is simply B(||p; — q||), where p; € V;.

In the SDS strategy proposed in [16], the agents get optimally deployed
before performing search. In order to maximize the search effectiveness in
each search step, following objective function was considered to be maxi-
mized.

Ho = [y Adal0)dQ
= Jomaxieq 2, n{(|on(a) — Blpi — all)dn(q)])}dQ 5)
= Jo(@n(9) —minicp o m{B(llpi — al)}6n(9))d@Q
= Zi€{1,2,...,N} fvi Pn(@)(1 = B(|[pi — ¢l)d@Q

where, n is “deploy” and “search” count, V; is the Voronoi cell corresponding
to the i-th agent, and p; € () is the position of the i-th agent.



The search effectiveness function 5 : R + [0, 1] is a non-decreasing func-
tion capturing effectiveness of the sensor. Consider

Br)y=1—ke™", ke(0,1) anda>0

Here, ke—o" represents the effectiveness of the sensor which is maximum
at r = 0 and tends to zero as r — oo and [ is minimum at r = 0 (effecting
maximum reduction in ¢) and tends to unity as r — oo (Figure [Il) (change
in ¢ reduces to zero as r increases). Most sensors’ effectiveness reduces over
distance as the signal to noise ratio increases with the distance. Thus §,
which is upside down Gaussian, can model a wide variety of sensors with two
tunable parameters k and «.

Figure 1: The sensor effectiveness and updating function

The optimal deployment configuration was shown to be a variation of
centroidal Voronoi configuration, where each robot is located at the centroid
of its Voronoi cell computed with a density ¢,(q) = ¢,(q)ke "%, which is
the density as perceived by the sensor, with 5(r) =1 — ke’ k e (0,1),
and a > 0, as search effectiveness function.

We use Voronoi partition in formulating the search strategies which along
with advantages can cause some computation overhead (see [1] and references
therein for time complexity of computing Voronoi partitions). This issue has
been addressed in the literature (see [6] and references therein) and there are
a few algorithms that efficiently implement Voronoi partition related compu-
tations. Also, Voronoi based strategies result in collision free trajectories in

a natural way, which is an added advantage.
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3.1. Optimal deployment strategy

We have shown that the uncertainty reduction will be maximized in a
single step of search, if the agents are located at the centroids of respective
Voronoi cells. In SDS, the agents get deployed optimally in this sense before
performing search. In this section we will provide the control law to make
the agent move toward the centroids and achieve the optimal deployment
configuration. Though we have discussed the control law in [16], we provide
it here for the sake of completeness and clarity.

Typically search problems do not consider dynamics of search agents as
the focus is more on the effectiveness of search, that is, being able to identify
region of high uncertainty and distribute search effort to reduce uncertainty.
Moreover, it is usually assumed that the search region is large compared to
the physical size of the agent or the area needed for the agent to maneuver. In
this paper, we assume that the agents are modeled as simple first dynamical
systems as

Pi =y (6)

Consider the control law

Ui = _kpm:n(pi - C'Vz) (7)

Control law () makes the agents move toward Cy, for positive control
gain, kprqp.

We have shown in |16], using LaSalle’s invariance principle, that the tra-
jectories of the agents governed by the control law (), starting from any
initial condition P(0) € QY, will asymptotically converge to the critical
points of H,,.

4. Combined deploy and search (CDS) strategy

In the SDS strategy, The robots first get optimally deployed and then
search is performed. The “deploy” and “search” steps continue till the un-
certainty density is reduced below a desired value. Here the optimal deploy-
ment strategy ensures that the uncertainty density reduction is maximized
in each search step. But it does not guarantee optimal trajectories of the
robot. During the deployment stage, the robots move without utilizing the
sensors. Intuitively, it seems that the trajectories will be closer to optimal if|
as the robots are moving toward the respective éw , they also simultaneously
perform the search operation in discrete steps. We define the latency, ts, of
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the robots as the maximum time taken to acquire the information, process it,
and successfully update the uncertainty density. The time interval between
each search should be more than t,. Here we shall formulate such a strategy
and name it combined deploy and search (CDS) strategy.

4.1. Density update

Here we provide the problem formulation for the combined deploy and
search strategy. Assume that the index n represents the intermediate step
at which the search is performed and uncertainty density is updated. Using
the uncertainty density update rule () discussed earlier we can get,

And(q) = Pnt1(q0) — &n(q) = dn(q) min(l — 5| p; — q [])) (8)

o, = /Q bul(0)dQ (9)

Integrating (&) over @,

AG, = Y / on(@) (1~ B(| i —  1))dQ (10)

i€{1,2,...N}

4.2. Objective function

The objective function (fl), used for SDS strategy [16], is fixed for each
deployment step as ¢,(q) is fixed for the n-th iteration. In combined deploy
and search, the search task is performed as the robots move. Now an objective
function to be maximized in order to maximize the uncertainty reduction at
the n-th search step is

Ha=8l= Y [ o@-8ln-alpiQ ()

ie{1,2,.,N} 7 V2

Note that the above objective function is same as (Bl except for the fact that
n in this case represents the search step count, whereas in (fl) it represents
‘deploy and search’ step count. For g(r) =1— ke~ the objective function

(II) becomes,
Ho= > Sn(q)ke " dQ (12)

ief{1,2,..,N} 7 Vi
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It can be noted that for a given n, the uncertainty density ¢,(q) at any
q € @ is constant. The gradient is given as (see Theorem A.1 in Appendix),

T Y [ sul@he e (C20) - @
api ) v
ie{1,2,..,N} 7 Vi
— —2ally,(p; - Cv) (13)

where My, and Cy, are the mass and the centroid of V; with respect to ¢y (q) =
gbn(q)ke_o”i2 , which is the density as perceived by the sensor. The critical
points are same as those obtained for SDS. But the uncertainty changes
in every time step and hence the critical points also change. Hence, the
corresponding critical points are only the instantaneous critical points. It
should be noted that the above treatment is valid for any non-decreasing
continuously differentiable 5(-) with ¢(-) depending on exact nature of the
function (). We use the control law

U; = _kprop(pi - C’Vz> (14>

Control law (7)) makes the robots move toward Cy, for positive control gain,
Eprop-

The instantaneous critical points and the gradient (I3]) are used in control
law ([I4]) only to make the robots move toward the instantaneous centroids
rather than deploying them optimally. Thus, it is not possible to prove any
optimality of deployment and we do not prove the convergence of the trajec-
tories here in case of CDS. In CDS, compared to SDS, robots perform more
frequent searches instead of waiting till the optimal deployment maximizing
per step uncertainty reduction.

To implement the control law, centroid of each Voronoi cell needs to be
computed. The computational overhead of computing the centroid can be
reduced at the cost of slower convergence using methods reported in the
literature such as random sampling and stochastic approximation [19, [14].
In addition, we discretize the search space into grids while implementing the
strategy. This simplifies the computation of the centroid of Voronoi cells.
The main focus of this paper is design and demonstration of the multi-robot
search strategy and finer issues such as computation complexities are beyond
the scope of this paper.

It can be shown that he combined deploy and search strategy is spatially
distributed over the Delaunay graph Gp. Here by spatially distributed we
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mean that information from neighboring robots is sufficient for computation
of control input. A Delaunay graph Gp is an undirected graph, where two
agents/robots are said to be neighbors (connected by an edge) if the corre-
sponding Voronoi cells are adjacent.

Theorem 1. The combined deploy and search strategy can reduce the aver-
age uncertainty to any arbitrarily small value in finite time.

Proof. Consider the uncertainty density update law () for any ¢ € @,

On(q) = (1 — ke )pn1(q) = Y-16n-1(q) (15)

where, 7; is the distance of point ¢ € () from the i-th robot, such that ¢ € V;,
the Voronoi cell corresponding to it and, 7,1 = (1 — k:e_a”Q).

Applying the above update rule recursively, we have,

(@) = Yn-1Vn-2 - - - M17090(q) (16)

Let D(Q) := max, 4e0(|| p — ¢ ||). We note that

W) 0<k<l1
(ii) 0 <r; < D(Q). D(Q) is bounded as the set @ is bounded.
(i) 0 <~; <1 — ke P@} =] (say), j € N;and | < 1

Now consider the sequence {I'} |

Lo ="Yn-1--- 1% < [
Taking limits as n — oo,

lim T, < lim "' =0
n—oo n—oo

Thus,
lim 6,(g) = lim Ty 160(g) = 0

n—oo

As the uncertainty density ¢ vanishes at each point ¢ € () in the limit, the
average uncertainty density over () is bound to vanish as n — oco. Thus, the
average uncertainty density can be reduced to arbitrarily small value in finite
time. 0]
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It can be observed that the above proof does not depend on the control
law. The theorem depends only on the outcome of the choice of the updating
function (@), along with the fact that there is no sensor range limitation, and
that the search space Q is bounded. In addition, the theorem does not
address the issue of optimality of the strategy which, in fact, depends on the
control law which is responsible for the motion of the robots. Further, unlike
SDS, maximal uncertainty reduction is also not guaranteed in each search
step. In case of SDS, the reduction in the uncertainty in each step in SDS is

M= 3 [ ontake 00 ag (1)

which is the maximum possible reduction in a single step. The deployment
is such that uncertainty will be reduced to a maximum possible extent in a
step, given by the above formula. whereas in CDS the uncertainty reduction
in n-th search step is given by

" = Z /V 00 ke~pi=al)? g0y (18)

where it is not required that p; = é’v while performing search. Though the
uncertainty reduction in a given search step n in CDS is less than that in
SDS, ss will be seen in later sections, the CDS performs better compared to
SDS in terms of faster uncertainty reduction due to more frequent searches.

5. Constraints on robot speed and sensor range

In previous sections we have formulated the multi-robot search strategies
under ideal conditions and provided a few useful analytical results for conver-
gence and spatial distributedness providing an analytically sound platform
for analysis. But in a practical situation these conditions may be violated. It
is more likely that the robots will have limit on maximum speed or they may
be constrained to move with a constant speed. Further, the sensors could
have limit on their range. In this section we analyze the proposed strategies
in the presence of speed and sensor range limitations.

5.1. Mazximum speed constraint

Let the robots have a constraint on maximum speed of U,,4.;, for i =
1,...,n. Now consider the control law
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_kprop(pi - CYVZ) If U; S Umam’
U = U (pi—Cv;,)

mare|(p;—Cv,)||

19
Otherwise (19)

The control law (I9) makes the robots move toward their respective cen-
troids with saturation on speed.

Theorem 2. The trajectories of the robots governed by the control law (19),
starting from any initial condition P(0) € QV, will asymptotically converge
to the critical points of H,.

Proof. Consider V(P) = —H,,.

V(P) = —dfft” = Zi€{1,2,...,N} aaHT:pi
B 20 Zi€{1,2,...,N} My, (pi — C%)(_kprop)(pi - g\/l))a If uj < Upnaa
- = = bi— ; .
200 Zie{Lz,...,N} My, (p; — CW)(_Umami)i(Hpi_éZ:”), otherwise

_2akp7“0p Zie{l,l...,N} M%(sz - C‘/z ||)2’ It u; < Umam'

o ~ (lpi—Cv; 1I)? .
—2a Zie{l,z...,N} Uma:viMW(ﬁ;i_ié\;mv otherwise

(20)
We observe that

L.V : @~ R is continuously differentiable in @ as {V;} depends at
least continuously on P, and V' is continuous as w is continuous if not
smooth.

M = @ is a compact invariant set.

V is negative definite in M.

B =V10) = {Cv.}.

E itself is the largest invariant subset of E by the control law (I9]).

Ol

Thus, by LaSalle’s invariance principle, the trajectories of the robots gov-
erned by control law (T9), starting from any initial configuration P(0) € Q¥
will asymptotically converge to the set £, the critical points of H,,, that is,
the centroidal Voronoi configuration with respect to the density function as
perceived by the sensors. O
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5.2. Constant speed control

The robots may have a constraint of moving with a constant speed Us;.
But we let the robots slow down as they approach the critical points. For
1 =1,...,n, consider the control law

( i_é 1) . 2
S Rl ||(;-—é;>||’ if [lps — Cvil] = 0

i (21)
—U;(pi — Cy;) /90, otherwise

where, § > 0, predefined value, such that the control law (2I)) makes the

robots move toward their respective centroids with a constant speed of U;

when they at a distance greater than ¢ from the corresponding centroids and

slow down as they approach them.

Theorem 3. The trajectories of the robots governed by the control law (21]),
starting from any initial condition P(0) € QV, will asymptotically converge
to the critical points of H,.

Proof. Consider V(P) = —H,,.

~ (lpi—=Cv;, |1)?
—2« Zie{1,2,...,N} Ui My, TS

o (lpi=Cy; 1)
—2a Zie{l,z,...,N} UiMy, (pi — Cv;) /6,
otherwise

We observe that

1. V : @ — R is continuously differentiable in @) as {V;} depends at
least continuously on P, and V is continuous as w is continuous if not
smooth.

M = (@) is a compact invariant set.

V is negative definite in M.

E=V=0) = {Cy}.

E itself is the largest invariant subset of E by the control law (21]).

U o

Thus, by LaSalle’s invariance principle, the trajectories of the robots gov-
erned by control law (2])), starting from any initial configuration P(0) € Q¥
will asymptotically converge to the set E, the critical points of H,, that is,
the centroidal Voronoi configuration with respect to the density function as
perceived by the sensors. O
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5.3. Effect of sensor range limits

In reality, it is likely that the sensors will have limitations on their range.
The sensors, in addition to having a monotonically decreasing effectiveness
with Euclidean distance, might be totally insensitive to signals at distances
larger than R, the sensor range limit. It can also be thought of as follows:
when the effectiveness falls below, say, a certain threshold value, for all prac-
tical purposes, it can be assumed to be ineffective.

In order to incorporate the sensor range limit, we need to modify the
objective function (B). We do so by modifying 5 suitably.

Proposition 1. Let 3(r) and 3(r) = ¢+ B(r), where ¢ is a real constant, be
two sensor detection functions. The corresponding objective functions H(P)
and H(P), respectively, have the same critical points.

Proof. The objective function with sensor detection function Bis

HP) = Yicpo..wvy Ju &a(@)(1 = B(pi — ql]))dQ

= Zie{1,2 ..... N} fw (@)1 = B(l[pi — ql]) — ¢)d@Q

- Zie{1,2 ..... N} fw Pn(q)(L = B(llpi — ql)))dQ — Czie{m ..... N} fw Pn(q)dQ
= H- CZie{1,2 ..... N} f\/; ¢n(Q)dQ

The second term not being a function of p;, we have,

OH) .y _ O(H)
O
Consider the objective function with a saturation on 3. Let
~ pB(r),if r <R
= 23
Br) {B(R), otherwise (23)

The sensor detection function is shown in Figure 2] with dotted curve for
R = 6. For r > 6, the sensor detection function remains fixed at 5(6).
Consider the objective function

A= Y @A) e

i€{1,2,...N}
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It is easy to show that the gradient of the objective function with the new
update function [ is given by,

O(H)
Ip;

where, the mass M and the centroid C' are now computed within the region
(Vi N B(p;, R)), that is, the region of Voronoi cell V;, which is accessible to
the i-th robot. The critical points are p; = é(wm B(ps,R)-

However, in reality, the detection function should become one beyond the
range R (that is there is no reduction in uncertainty at points which are at
a distance more than R from the sensor. To achieve this, let

(P) = 2M(V¢I’WB(IJ¢,R))(é(%ﬂB(pi,R)) — i) (25)

p(r)

A _ {5(7’) +(1=B(R)=1—k(e ™ —e*F*) ifr <R (26)

1, otherwise
= B(r)+(1-B(R))

Figure 2] shows the sensor detection function £ in solid line for R = 6. After
r = 6, the limit on sensor range, the sensor is ineffective indicated by the
value 1. There will not be any reduction in uncertainty density in this region
r > 6.

Now by Proposition [I] 7:[(73), the objective function corresponding to the
detection function B , has the same critical points as those of the objective
function H(P).

The control law making robots move toward the new critical point is

U = —k’prop(pi - C~1(Vz‘ﬁB(JDi7R))) (27)

Remark 4. The control law (27) is spatially distributed under the r-limited
Delaunay graph Gy p, for any robot configuration P.

Theorem 4. The trajectories of the robots governed by the control law (27),
starting from any initial condition P(0) € QN, will asymptotically converge
to the critical points of H.

Proof.  The proof is based on LaSalle’s Theorem similar to those of The-
orems [2] and Bl with V' = —H(P). It can be shown that V' is continuously
differentiable using Theorem 2.2 in [7]. O
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Limit on sensor range

Figure 2: Tlustration of B and B in presence of the limit on sensor range. The dotted curve
represent the sensor detection function S and solid curve is the actual sensor detection

function B(r) = B(r) + (1 — B(R))
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6. Illustrative examples

In this section we show some simulation results to illustrate the CDS
strategy in comparison with SDS [16]. More detailed simulation results will
be presented in a later section.

Figure [3] (a) and (b) compares the trajectories of robots with SDS and
CDS strategies. The trajectories with CDS are much smoother and shorter.
The instances of search are indicated by ‘o’ along the trajectories. It can be
seen that the search is performed at every discrete step in CDS, whereas the
search is performed only after each optimal deployment SDS. Though there
are 8 “deploy and search” steps in SDS, only 5 ‘o’s are visible. In two of
steps, multiple searches have been performed as the centroids in successive
steps were closer than some tolerance limit d;,; = 0.3. Thus, there was no
movement in corresponding deployment step.

FigureBl(c) compares the history of uncertainty density of SDS and CDS,
and it can be observed that the CDS reduces uncertainty relatively faster than
SDS, in terms of number of time steps. Figure 3 (d) shows the reduction in
average uncertainty density with number of searches for SDS and CDS. It can
be observed from this figure that SDS reduces the uncertainty in relatively
fewer steps. This is apparent by very concept of optimal deployment in SDS.
CDS takes about 4 searches to reduce uncertainty below 0.1, whereas SDS
does this in only 3 searches. If SDS requires over 30 time steps to achieve
this reduction, CDS needs 4 time steps. We can observe a tradeoff between
the number of searches and and number of time steps required to accomplish
in CDS and SDS. Once the uncertainty reduces to a large extent in initial
search steps, by nature of the uncertainty density update rule (), amount
of reduction in subsequent searches is less in both SDS and CDS.

Figure [f(a) illustrates ‘robot 2’ moving toward centroid corresponding to
its Voronoi cell with SDS strategy. Robot’s positions are marked with ‘+’
while ‘0" marks the centroids at successive time instances. Positions of robot
in first two time steps are marked as 1 and 2, while those of centroids marked
with 1" and 2’. It can be observed that the robot is tracking the centroid,
which is changing as the Voronoi cell is changing. Deployment stops and
search is performed when the robot is sufficiently close to the corresponding
centroid. One of the search instances is also marked, where, after search, in
order to track the next centroid, the robot takes an abrupt turn. This leads
to a non-smooth trajectory. Figure[l (b) illustrates one of the robots moving
toward centroid corresponding to its Voronoi cell with CDS strategy. It can
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Figure 3: Trajectories of robots with N=>5 and without limit on the sensor range for (a)
SDS strategy and (b) CDS strategy. In both cases the points marked ‘+’ indicate the
starting locations of robots and ‘o’ indicate the end of deployment and points in space
where search is being performed. In SDS, at a few places the search is performed more than
once. This is indicated in trajectory of ‘robot 1’. The reduction in average uncertainty
density is shown in (c) against the number of time steps and (d) against the number of
searches, for SDS and CDS. Even in (c) and (d), ‘o’ indicate the search instances.
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Figure 5: The final uncertainty density distribution for (a) SDS and (b) CDS strategies,
with N = 5 and without sensor range limits
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be observed that the robot is tracking the centroid, which is changing as the
Voronoi cell and the uncertainty density are changing.

7. Implementation Issues

Here we discuss some of the theoretical and implementation issues in-
volved in combined deploy and search strategy.

7.1. Spatial distributedness

Here we discuss the implication of spatial distributedness of the proposed
search strategies from a practical point of view. We have seen that both
the search strategies are spatially distributed in the Delaunay graph. These
results imply that all the robots need to do computations based on only
local information, that is, by the knowledge about position of neighboring
robots. Also, the robots should have access to the updated uncertainty map
within their Voronoi cells. This can be achieved in several ways. One such
way is that all the robots communicate with a central information provider.
But it is not necessary to have this global information. The i-th robot can
communicate with its Voronoi neighbors ((Ng(7)) and obtain the updated
uncertainty information in a region Up; ;) V;i. As the Voronoi partition {Vi}
depends at least continuously on P, the robot configuration [6], in an evolving
Delaunay graph, the communication within the neighbors is sufficient for
each robot to obtain the uncertainty within its new Voronoi cell. The issues
related to communication of uncertainty information are not addressed in
the paper except to assume that uncertainty information is available to the
robots. It is also possible that the robots can estimate the uncertainty map
as done in [29].

In practical conditions, the robots can communicate with other robots
only when they are within the limits of the sensor range. The Delaunay
graph does not allow sensor range limitations to be incorporated. We need
to use r-Delaunay graph Gpp to incorporate the sensor range limitations.
The scenario changes with incorporation of sensor range limitations into the
search strategies. The updating of uncertainty density will also be within
the sensor range limits (in fact, it is within the region V; N B(p;, R)). The
centroid that is computed will also be within the new restricted area. For an
optimal deployment problem, from the perspective of sensor coverage, it has
been observed that the corresponding control law is still spatially distributed
(in r-limited Delaunay graph) and globally asymptotically stable.
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7.2. Synchronization

Synchronization plays an important role in multi-agent systems. Here we
discuss this issue for both SDS and CDS strategies. In the case of SDS, the-
oretically all the robots reach the respective centroid at infinite time. But in
a practical implementation, the robots are required to be sufficiently close,
where the closeness is suitably defined, to the respective centroids before
starting the search operation. It is possible that at any point in time, differ-
ent robots are at different distances from the corresponding centroid. The
robots need to come to a consensus as to when to end the deployment and
perform search operation. We have implemented the strategy in a single
centralized program using MATLAB. In a practical situation, synchroniza-
tion can be attained by robots communicating a flag bit indicating if a robot
has reached its centroid or not. When all the robots have reached the re-
spective centroid within a tolerance distance, the search can be performed.
We also assume that sensing and communication are instantaneous. In our
simulation experiments we assume such a communication exists. Since the
objective of this work is to evaluate the effectiveness of the search strate-
gies, we make assumptions that simplify implementation without affecting
the search effectiveness.

CDS operates in a synchronous manner by design. If all the robots start
at the same instant of time and have synchronized clocks, the search task is
performed by every robot after the same interval of time. Given an accurate
global clock, synchronization is not a major issue in case of CDS.

Further in [6], authors provide an asynchronous implementation for cov-
erage control which can be suitably modified for CDS to operate asyn-
chronously.

8. Results and Discussion

In this section we present simulation experiment results to compare the
performance of SDS and CDS strategies with greedy search and random search
tailored to suit the problem setting addressed in this work. Random and
greedy are generic strategies which can be tailored to suit any problem setting.
We restrict the robots to move at a constant speed and also discretize the
heading direction of robots at 1 degree resolution. Below, we discuss simple
strategies used for the purpose of comparing the performance.

Typically search problems do not consider dynamics of search robots as
the focus is more on the effectiveness of search, that is, being able to identify
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region of high uncertainty and distribute search effort to reduce uncertainty.
Moreover, it is usually assumed that the search region is large compared to
the physical size of the robot or the area needed for the robot to maneu-
ver. We assume a first order dynamics for the robots for the purpose of
simulations.

Greedy search

We discuss two simple greedy strategies. In the CDS, the i-th robot moves
toward the centroid of V;N B(p;, R)) with ¢ as density. The Voronoi partition
takes care of the coordination among the neighboring robots. In greedy
search we simply let the i-th robot move toward corresponding centroid of
B(p;, R). Thus there is no cooperation between robots.

According to the update rule (), only the robot which is most effective
will perform search task at any given point ¢ € (). This leads to the idea of
each robot performing search task within its own Voronoi cell. We call such
a greedy strategy as Voronoi greedy search (VGS) strategy. In this strategy,
only the control law is greedy whereas the search is performed in a cooperative
manner. In case of cooperative search, each robot discards information about
the area which is better accessible to its neighboring robots.

In a true greedy search strategy we expect no cooperation among robots
at any point in time. A true greedy strategy (TGS) can be achieved if each
robot performs search task independently at every point within B(p;, R),
leading to duplication of the search task. The update law takes the form,

bnii(@)=on(@)  []  BUlp—al) (28)

{ilpieB(q,R)}

It should be noted that the idea of collecting information by all sensors in
contrast to using the information from the most effective sensor is problem
dependent. If the sensor is a camera, then many cameras taking picture of
the same area may not add to the information.

Random search
Random search (RS) is probably the simplest search strategy. Here we
assume the robots move with a constant speed and the direction of the robots
is generated randomly. The uncertainty density updating can be given either
by @) or by (28). We have used the update law given by () in this case.
In TGS, VGS, and RS strategies, the search task is performed in every
time step as in CDS.

26



Simulation results for performance comparison

The comparison is based on the number of time steps required to reduce
the average uncertainty below a specified value.

The parameters which were varied during the simulations are the number
of robots (N), the sensor range limit (R), and the speed of robots (U). It
was desired that the average uncertainty density should be reduced to a value
below 0.002.

Table I compares the performance of the search strategies discussed in this
paper in terms of the number of searches performed before the termination
condition is reached. The first column gives the parameters N, R, and 100x U
as N.R.100U. Thus, 20.4.10 means N = 20, R = 4, and U = 0.1. From
Table I, it can be observed that in most cases, the combined deploy and
search strategy performs better followed by true greedy strategy, Voronoi
greedy strategy, and random search in order of degrading performance as
indicated by the number of time steps. In terms of the number of searches
being performed, sequential deploy and search strategy performs better than
combined deploy and search strategy.

The numbers in Table I indicate that with an increase in N and R the
performance of all the strategies improves. Figure [6l(a) illustrates this. In
this figure, the points have been interpolated using a shape preserving inter-
polation scheme.

Performance of CDS strategy deteriorates at higher speeds and lower limit
on sensor range as illustrated in Figure [6l(b) for combined deploy and search.
The robots do not move if the centroid of respective V; N B(p;, R) is closer
than U/2, the tolerence set in the program. With large U and small R, quite
often this condition restricts the motion of robots. The condition adversely
affects the performance of CDS as the region V; N B(p;, R) is always smaller
than the region B(p;, R), which is used by greedy strategies for computing
the centroid. That is, in case of CDS, it is more likely that the centroids
are closer than U/2 to robots. In case of greedy strategies, the robots need
to move toward the centroids of corresponding B(p;, R). This region being
relatively larger, it is less likely that the robots will be closer to centroids. It
has been observed during simulations, particularly with CDS, that many of
the robots do not move during the entire search operation. When number of
robots is lower, difference in areas of above two regions is more likely to be
higher.

Figures [7 (a) and (b) show the time history of the average uncertainty
density distribution for combined deploy and search, true greedy, Vorono:
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CDS | TGS | VGS SDS RS
search steps (time)

5.1.10 427 615 1115 193 (1207) 2000+
5.1.25 338 541 1416 192 (520) 2000+
5.1.50 1292 1150 1856 193 (261) 1931
5.2.10 264 285 250 53 (850) 2000+
5.2.25 99 217 251 53 (359) 1188
5.2.50 81 179 267 53 (164) 814
5.2.100 112 96 209 2 (82) 246
5.3.10 100 202 538 25 (532) 2000+
5.3.25 76 97 193 26 (239) 1645
5.3.50 2| 66| 177 25 (115) 127
5.3.100 35 | 49 | 127 5 (52) 252
5.3.150 42 39 144 25 (34 7) 46
5.3.200 2| 43| 57 5 (26) 54
5.3.300 132 63 83 (17 34) 56
5.4.10 61 61 73 17 (404) 2000+
5.4.25 29 74 87 7 (141.6) 509
5.4.50 33 39 99 7 (77.25) 230
5.4.100 20 24 80 17 (41.5) 74
5.4.150 26 | 43 | 216 17 (27.6) 52
5.4.200 28 30 72 7 (20.74) 54
5.4.400 34 36 47 7 (10.37) 31
20.1.10 124 264 429 8 (397.6) 2000+
20.1.25 79 200 846 8 (163.5) 2000+
20.1.50 96 92 909 48 (81.7) 2000+
20.2.10 70 71 109 5 (217.6) 2000+
20.2.25 31 43 65 15 (86.0) 375
20.2.50 23 31 123 15 (45.0) 305
202.100 | 25 | 23| 135 15 (22.5) 73
20.2.150 33 22 56 15 (15.0) 50
20.3.10 61 58 64 9 (131.1) 2000+
20.3.25 28 28 56 9 (52.6) 398
20.3.50 17 17 70 9 (25.8) 254
20.3.100 14 12 76 9 (12.8) 48
20.3.150 16 11 30 9 (8.5) 29
20.3.200 20 11 22 9 (6.4) 26
20.3.300 38 13 46 9 (4.2) 20
20.4.10 54 50 58 8 (120) 1599
20.4.25 2% | 24| 31 8 (38.7) 615
20.4.50 15 15 94 8 (22.2) 160
20.4.100 11 10 7 8 (11.2) 45
20.4.150 11 0] 98 8 (6.3) 30
20.4.200 13 12 a7 8 (48) 18
20.4.400 95 9 30 8 (2.4) 11

Table 1: Comparison of performance of various multi-robot search strategies (CDS: Com-
bined deploy and search; SDS: Simultaneous deploy and search; VGS: Voronoi greedy
search; TGS: True greedy search; RS: Random search. The first column gives the param-
eter of simulation experiments as (N).(R).(100U). The numbers indicate the number of
search tasks performed before reaching the termination condition. The maximum number
of steps was restricted to 2000. The figures within parentheses for the case sequential
deploy and search are the actual times required for achieving the task.
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Figure 6: (a) Number of time steps vs. sensor range R for combined deploy and
search with a speed of 0.25 for different number of robots (b) Number of time steps
versus robots’ speed U for combined deploy and search for 20 robots with sensor
range R = 3 (¢) Number of time steps vs. robots’ speed U for random search for

20 robots with sensor range R = 4.

greedy, and random search strategies for two different sets of parameters, one
with N =5, R = 2 units, and U = 0.5 units and another with N =20, R =4
units, and U = 0.5 units. Both the figures illustrate that the combined deploy
and search takes minimum time steps while true greedy, Voronoi greedy, and
random search strategies follow in order of degrading performance in terms
of number of time steps. It should be noted though all these strategies
perform search task in every time step, CDS performs better because of
better coverage of the search space due to cooperation among the robots
through the Voronoi partition. The CDS reduces uncertainty, in most cases,
more than the other strategies (TGS, VGS, and RS) for same number of

searches.

Figures [§ (a) and (b) show the trajectories of robots for the above sets
of parameters. Figures [QHIT]show the robot trajectories with Voronoi greedy,
true greedy, and random search strategies, respectively, for the same sets of

parameters.

With the greedy strategies, when the parameters are such that the con-
vergence is slower, it is more likely that robots start moving together in
clusters. This happens due to lack of cooperation between robots and each
of them moving toward points with higher uncertainty density. Once this
happens, the robots move together, and in case of Voronoi greedy search
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Figure 7: Average uncertainty density distribution with R = 2, U = 0.5 and (a) with 5

robots and (b) with 20 robots.

where only one of the robot is active at a given point, the basic purpose
of deploying multiple robots for search is defeated, leading to a much slower
convergence. The strategy is equivalent to a single robot searching the space.
With true greedy search strategy, though all the robots perform search within
their sensor range, only in a very few cases, the performance is comparable
to combined deploy and search. Cooperation among robots in combined de-
ploy and search and sequential deploy and search strategies ensure a better
coverage of the space and sharing of search load among robots.

As expected, random search does not perform well when the speed is
less. But as the robot speed is increased, the random search performs better.
Unlike in other strategies, in case of the random search strategy, the perfor-
mance always increases with speed as illustrated in Figure[6lc). We compute
the average length of the trajectory of a robot by multiplying the time, which
is equal to the number of steps with the speed. Figure [6c) also shows the
average trajectory length of robots indicating that after a speed of 1 unit,
average trajectory length is almost a constant value. It is interesting to note
that the random search strategy performs better than all other strategies at
high robot speeds. This is due to better coverage of the search space by
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Figure 8: Trajectories of robots with combined deploy and search strategy for U = 0.5
and (a) 5 robots with sensor range R = 2, (b) 20 robots with R = 4. ’+’, indicate initial
positions of robots.

robots. Motion of robots are restricted by the specified control law in case
of other strategies, which does not happen in case of random search.

In the case of sequential deploy and search strategy, as the robots ap-
proach the optimal deployment, we allow partial stepping to enable robots
to move to as close as possible the respective centroids. Figure[I2]shows robot
trajectories for the sequential deploy and search strategy. With a small sen-
sor range, the time required for completing search is more than that for the
rest. But as the sensor range is increased, there is a continuous improvement
in the performance leading to the fastest convergence amongst the compared
strategies. Note that in the case of the rest of the strategies, the time taken
is the same as the number of search steps. The performance of sequential
deploy and search strategy seems to monotonically increase with N, R and
U.

In our formulation of the objective function, we do not attach any cost
to the search operation. This is the basic motivation for strategies such
as combined deploy and search. In such a situation we observe that the
combined deploy and search is best suited for reducing uncertainty. But in a
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Figure 9: Trajectories of robots with Voronoi greedy strategy for (a) N =5, R = 2 and
U=0.5 ()N =20, R=4and U = 0.5. ’+’, indicate initial positions of robots.
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Figure 10: Trajectories of robots with true greedy search strategy for (a) N =5, R = 2
and U = 0.5 (b)N =20, R =4 and U = 0.5. ’+’, indicate initial positions of robots.
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Figure 11: Trajectories of robots with random search strategy for (a) N =5, R = 2 and
U=0.5(b)N =20, R=4 and U = 0.5. The initial positions of robots are as in Figure
B The number of points in each trajectory is 814.
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Figure 12: Trajectories of robots with sequential deploy and search strategy for (a) N = 5,
R=2and U = 0.5 (b)N =20, R = 4 and U = 0.5. ’+’, indicate initial positions of
robots and ’o’ indicate end of deployment and points along the trajectories where search
is performed.
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practical situation, some cost may be associated with each search operation,
in which case sequential deploy and search strategy is more efficient. True
greedy is effective in certain parameter ranges and when in a situation where
the duplication of information by more than one sensor is beneficial. Voronoi
greedy is always below both combined deploy and search and true greedy in
performance in terms of total time.

It can be noted that, though the Voronoi partition based strategies pro-
posed in this paper are computationally complex, their performance is bet-
ter than the simple strategies such as true greedy and random search. The
Voronoi based strategies result in collision free trajectories in a natural way,
whereas non-Voronoi based search strategies need additional collision avoid-
ance schemes and require additional computation.

9. Conclusion and future work

The problem of multi-robot search in an unknown environment with a
known uncertainty probability distribution function is addressed in this pa-
per. A multi-robot search strategy namely combined deploy and search (CDS)
was presented as a modification of sequential deploy and search (SDS) strat-
egy proposed in our previous work. We have shown that the centroidal
Voronoi configuration with respect to the density as perceived by the sensors
are the instantaneous critical points of the objective function maximizing
the single step search effectiveness, if the robots are located at corresponding
centroids. It was shown, that the CDS strategy can reduce the average uncer-
tainty to any arbitrarily small value in finite time. The optimal deployment
strategy has been analyzed in presence of some constraints on robot speed
and limit on sensor range for convergence of the robot trajectories with the
corresponding control laws responsible for the motion of robots. The pro-
posed CDS strategy was explained with help of a illustrative example, in
comparison with SDS strategy.

Based on a set of simulation experiments, the performance of SDS and
CDS strategies have been compared with standard strategies such as greedy
and random search with a constant speed constraint on robots and sensor
range limit. The parameters /N, the number of robots, R, the sensor range
limit and U, the speed of robots were varied to compare the performance
of different strategies. The simulation results indicated that the combined
deploy and search strategy is best suited when search task does not involve
any cost. The true greedy search strategy performed well in a few parameter
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ranges and is acceptable only in a situation where gathering of information
by more than one sensor in an area makes sense. When a cost is associated
with the search task, sequential deploy and search strategy was found to be
more suitable.

Though the Voronoi partition based strategies such as SDS and CDS
are computationally complex, their performance is better than the simple
non-Voronoi based strategies such as true greedy and random search. The
Voronoi based strategies result in collision free trajectories in a natural way,
whereas non-Voronoi based search strategies need additional collision avoid-
ance schemes and require additional computation.
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Theorem A.1: The gradient of the multi-center objective function ([

with respect to p; is given by

(92% /¢

H= >

i€{1,2,...N}

where H' = fv q)dQ. Now,

B(ri))dQ

where 7; =|| p; — q |-
Proof. Rewrite (f]) as

where, f(-) =1—5(-).
Applying the general form of the Leibniz theorem ([20])

T =y 9@z (la- sz)dQ

+ deNi fAij n;;(q).w;(q)o(q) f(llg — pil])dQ
+ 3 jen Ja,, (@) wi(@)d(a) f(lla — ps1))dQ

where,

(29)

(31)

(32)

1. N; is the set of indices of agents which are neighbors of the i-th agent

in the Delaunay graph Gy p.

2. A;; is the part of the bounding surface (line segment in two dimensional

case) common to V; and V.

3. n;j(q) is the unit outward normal to A;; at ¢ € A;;. Note that n;;(¢) =

—ny(q), Vq € Ay;.

4. w;(q) = 4 (q), the rate of movement of the boundary at ¢ € A;; with

dp;
respect to p;. Note that u;;(¢) = u;i(q).

5. Note also that f(llg—pill) = f(llg=p;ll), Va € Ay, as [lg=pill = llg=p;];

by definition of the Voronoi partition.
By (3)-(5) above, it is clear that for each j € N;,

/A n;(q)-ui;(q)9(q) f(llg — pil)dQ = —/ n;i(q)-w;i(q)o(q) f(llg — psl))dQ

ij Aji
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Hence,

of
Op;

oH, .
o= [ o5t~ piao

It can be observed that necessary smoothness conditions are valid as

(i) ¢, f € C".

(ii) At the boundaries of the Voronoi cells, the objective function does not
have any jumps as f(r;) = f; at the boundary, by definition of the
generalized Voronoi partitions.

O

(iii) The Voronoi partition itself varies smoothly with P.
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