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This paper addresses the state estimation in linear time-varying systems with several sensors with different
availability, randomly sampled in time, and whose measurements have a time-varying delay. The approach is
based on a modification of the Kalman filter with the negative-time measurement update strategy, avoiding
running back the full standard Kalman filter, the use of full augmented order models or the use of reorganization
techniques, leading to a lower implementation cost algorithm. The update equations are run every time a new
measurement is available, independently of the time when it was taken. The approach is useful for networked
control systems, systems with long delays and scarce measurements, and for out-of-sequence measurements.

Keywords: State estimation; scarce measurements; time varying delays

1. Introduction

In many industrial applications the control signal is updated at a fixed rate T , but the output
cannot be measured at that control period due to the use of slow measuring procedures such as
image processing or chemical or biochemical analysis, that limit the sampling rate and introduce
a (possibly varying) delay. Sometimes, the output variable is measured by various sensors, each
one having a different sampling rate, time delay and reliability. The use of communication
networks between sensors and controllers may also introduce time varying delays in the received
measurements and random data dropouts. As a practical example, consider an industrial ceramic
atomizer whose purpose is to produce ceramic powder with a predefined humidity content.
The humidity can be measured by infrared online sensors, but with a high noise and error.
As a consequence, the humidity is also measured precisely with an analytical procedure that is
performed scarcely in time by a human operator. The result is that there are two sets of available
measurements: a noisy one obtained at regular intervals with no delay, and another one, more
precise, obtained scarcely and irregularly on time with a varying delay (the time the operator
spends in the analytical procedure). A similar problem occurs in biological or chemical reactors,
where some concentrations can only be measured by analytical procedures that imply scarce and
delayed measurements availability.
It is well known that the Kalman filter Kalman (1960) is the tool that minimizes the state

prediction error variance when dealing with systems affected by gaussian disturbances and noises.
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Some modifications of the original Kalman filter have been developed in order to take into
account the existence of several measurable signals (states or outputs) that could be measured
with redundant sensors of different precision, sampling rates and delay, leading to a multisensor
system with possibly time disordered measurements. The goal of this work is to define a state
estimator that takes into account the random availability of samples (non-uniform sampling and
out-of-sequence measurements) and time-varying delays.
Several works have been published in order to adapt the original Kalman filter to any sampling

scenario when there are no delays in the system or measurement device. For example, in Sanchis
and Albertos (2002), the Kalman filter is applied to the sensorial fusion for output prediction
under any sampling scenario without delay (synchronous, asynchronous, periodic and random).
In Zhang et al. (2004) an optimal estimator is developed for systems that receive measurements of
different nature: continuous, multirate and random, but also without delay. In Li et al. (2005) the
Kalman filter equations are developed for the case of multirate control, where the measurements
and input updates follow a given pattern. In Gupta et al. (2005) a sensor scheduling is addressed
to minimize the state error covariance, assuming that only one sensor is active in every sampling
instant. This scheme it is not applicable if random availability and time delays are present on
the sensors or in the communication channel.
Also, different works have been developed trying to make use of the delayed measurements

in the Kalman filter. In that sense, Hsiao and Pan (1996) proposes an extended order model
when a reduced constant delay is present. In Larsen et al. (1998) the introduction of delayed
measurements is dealt with by extrapolating the delayed measurement to the actual instant
using the previous estimations of the Kalman filter, and calculating the optimum gain for that
extrapolated measurement. For that purpose, the covariance matrix is updated at the delayed
instant, i.e., at the instant where the sample was taken, and before the measurement is available.
For this reason the Kalman filter is suboptimal until the measurement arrives, and the authors
propose the computation of two parallel Kalman filters to avoid this fact. For this strategy to
be applied, the device that computes the Kalman filter needs to know when the samples of the
output occur, before the measurement is available, that in many cases is not a practical situation.
The methodology presented there do not address the existence of several sensors with different
delays and availability.
Reorganization technique of delayed measurements has been used to avoid the use of an ex-

tended order model leading in Lu et al. (2005) to d̄ Kalman filters (being d̄ the maximum discrete
delay) to be computed in parallel, and leading in Wang et al. (2005) to an algorithm that is only
updated when a set of d̄ measurements of every sensor is gathered, delaying the use of the avail-
able information in the Kalman filter, and leading to a complex and high computational cost
algorithm.
In Basin and Martinez-Zuñiga (2004), a continuous time optimum filter is derived for con-

tinuous time systems with multiple, but constant measurement delays. In Basin et al. (2005),
a Kalman filter is derived also for continuous time systems with constant state delay, while
in Zhang et al. (2007) an optimal state estimator for continuous systems with both continuous
and sampled measurements with delays is proposed.
In Julier and Uhlmann (2005), the fusion of delayed measurements is studied, but the assump-

tion is that the time delays are uncertain.
More recently, in Gopalakrishnan et al. (2011), a comparative review of different strategies

to incorporate delayed and infrequent measurements in Extended Kalman Filter estimators is
developed. The first alternative described is the full filter recalculation every time a delayed
measurement arrives. This implies to store all past states, measurement updates, gains and
covariance matrices till the maximum possible delay. This strategy is optimum, but impractical
for long delays due to the high computational cost. The second approach is called Alexander’s
method, and consists of updating the gain and covariance matrices from the instant when the
measurement was taken, till the measurement is received, and then to add a correction term
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to the state estimate. The drawback of this strategy is that requires the algorithm to know
the instant when the measurement is taken before the measurement is available. The third
alternative is the same as the previous one, but adding a second Kalman filter that is computed
from the instant when the measurement is taken till it arrives, and has the same drawback as
the previous, the measuring instant must be known before the measurement is received. The
other algorithms studied in that work are based on the state augmentation. The first one is the
fixed-lag smoothing, that consists of augmenting the state with the past d̄ states (where d̄ is the
maximum delay). A conventional Kalman filter is applied to the resulting d̄n order model. This
filter is optimum, but it implies a high computational cost for long delays. If the measurements
dimension is lower than the state dimension, a lower cost alternative is to augment the state with
the estimates of the measurements. The resulting model order is lower, but it may still be large
for long delays. The lowest cost state augmentation approach is the sample-sate augmentation,
where the state is augmented only with the value of the state at the measuring instant, but the
time when the measurement was taken is needed before the measurement is received.
The most recent published work is Moayedi et al. (2011). In this work, a simplified state

augmentation approach is proposed. The state is augmented with the past d̄ states. The sim-
plification consists of only updating the current state when a measurement is available, leaving
unchanged the previous state estimates. The updating gain is then of order n, and not d̄n. The
size of the variance covariance matrix is d̄n × d̄n, but the computational cost of the updating
equation of this matrix is not so high due to the special structure of the updating gain, that has
only n nonzero rows. Of course, the approach leads to a suboptimal estimation, compared to the
full state augmentation schemes. This approach can be applied if the delay is only known when
the measurement is received, and admits out of sequence measurements.
In the present work, the authors propose a different approach for the state estimation in

systems with scarce measurements with time varying delays, that can be applied when the delay
is only known at the instant when the measurement is received, and also admits out of sequence
measurements (as can occur in networked control systems). As in Moayedi et al. (2011), the idea
is to reduce the computational cost of the state augmentation schemes. In this case, a small
(order n) variance covariance matrix is calculated and stored, but an augmented state of size d̄n
is used. The updating gain is also of order n, but the full augmented state vector is updated every
time a measurement is received. The approach is based on the use of negative-time measurement
update, and is first developed for general time variant systems, and then particularized for time
invariant systems. The approach is suboptimal, but the loss in performance is low compared to
the optimal filter, and the computational cost is much lower. The proposed algorithm can be
applied in any sampling situation: multisensor sets with different sampling rate, time-varying
sampling, random availability of measurements, different time-varying delays in each sensor
and out-of-sequence measurements. Compared with the approach in Moayedi et al. (2011), the
computational cost is similar, but the performance is better, especially if the system is unstable,
as it is shown in the comparative example developed.
The layout of this paper is as follows: In section 2 the plant and the sampling scenario are

described. In section 3 the proposed estimation algorithm is described. The particularization
of the algorithm for linear time invariant systems is detailed in in section 4. Some numerical
examples are analyzed on section 5, showing the validity of the proposal. Finally, on section 6
the main conclusions are summarized.
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2. Problem statement

The process is assumed to be a discrete-time linear time-variant system modeled by the equations

x[t+ 1] = A[t]x[t] +B[t]u[t] +w[t], (1a)

z[t] = Cz[t]x[t], (1b)

where x ∈ R
n is the state, u ∈ R

nu is the known input vector, w ∈ R
n is the unmeasurable

state disturbance vector and z ∈ R
nz is the targeted variables output vector.

As previously mentioned, the sensor measurements are assumed to be only available at discrete
instants of time t = tk, being a noisy and delayed function of the measurable outputs:

mi,k = ci,k x[tk − di,k] + vi,k, i = 1, . . . , nm (2)

where di,k is the discrete delay (measured in number of control periods) assigned to sensor i

in the k-th sampling (not all sensor measurements are available at each sampling time). The
elapsed time between the last two consecutive sampling instants is denoted by

Nk = tk − tk−1,

and d̄ is an upper bound of sensor delay. The availability factor αi,k defined as

αi,k =

{
1, if mi,k is available,
0, if mi,k is not available,

(3)

indicates which are the available measurements at the k-th sampling instant, and the number of
available measurements is denoted by µk.

3. State estimation algorithm

The problem to be solved is how to use the available measurements of the plant that are as-
sumed to be scarce, with different delays, availability and with the possibility of time-disordered
information. Time-tagged measurements are assumed in order to solve this problem, but the
time when the measurement was taken is only known after the measurement is received. This
assumption is realistic in networked control systems and with slow sensors that need some time
to give a measurement value from a taken sample.
The novelty of the proposed approach lies in the direct utilization of the delayed available

measurements in the correction of the state estimation, without the necessity of running the
Kalman filter backwards in order to introduce the measurements time ordered, and without the
necessity of waiting until a complete set of sensors measurements are available. This allows to deal
with all the available information and even dealing with measurements that arrive disordered
in time. This problem has been solved by other authors with a state augmentation strategy,
but the resulting computational cost is very high for long delays. In the presented approach, a
standard size variance covariance matrix is used, leading to a much lower computational cost,
at the expense of a slightly suboptimal estimation.
The Kalman filter is based on the computation of both an estimate of the system state x̂[t]

and the state estimation error covariance matrix defined as

P [t] = E{(x[t]− x̂[t])(x[t]− x̂[t])
ᵀ

}. (4)
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The computation is done by the propagation equation, where an initial estimation of state
(x̂[t|t − 1]) and covariance (P [t|t − 1]) is calculated using the process model, and by the up-
dating equation, where the available measurements information is used to update the previous
estimations (leading to x̂[t] = x̂[t|t] and P̂ [t] = P̂ [t|t] ).

3.1. Propagation

The propagation equations must be calculated at every sampling instant T . The state estimation
propagation equation is

x̂[t|t− 1] = A[t− 1] x̂[t− 1] +B[t− 1]u[t− 1], (5a)

and the state estimation error covariance matrix propagation equation is

P [t|t− 1] = A[t− 1]P [t− 1]A[t− 1]
ᵀ

+W ,

where P [t|t− 1] is defined as

P [t|t− 1] = E{(x[t] − x̂[t|t− 1])(x[t] − x̂[t|t− 1])
ᵀ

}.

When there is no measurement available, there is no possible update, and the best state and
covariance estimations are the previous (open loop) ones, leading to

x̂[t] = x̂[t|t− 1],

and

P [t] = P [t|t− 1].

3.2. Update

The updating equations are only applicable when there is some measurement available at t = tk.
The proposed state estimation updating equation is

x̂[tk] = x̂[tk|tk − 1] +

nm∑

i=1

`i,k (mi,k − ci,kx̂[tk − di,k|tk − 1])αi,k (5b)

where vector x̂[tk − di,k|tk − 1] is the best estimation of the state at instant tk − di,k with all
the information gathered until instant tk − 1 and assuming null disturbances from tk − di,k to
tk, fulfilling

x̂[tk|tk − 1] =





di,k∏

j=1

A[tk − j]



 x̂[tk − di,k|tk − 1] +

di,k∑

l=1





l−1∏

j=1

A[tk − j]



B[tk − l]u[tk − l],

and then, can be computed as

x̂[tk−di,k|tk−1] =





di,k∏

j=1

A[tk − j]





−1

x̂[tk|tk−1]−

di,k∑

l=1





di,k∏

j=l

A[tk − j]





−1

B[tk− l]u[tk− l]. (5c)
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Vector `i,k is the updating gain for the i-th sensor (there only exists vector `i,k at tk if αi,k = 1).
As a result of the analysis developed in theorem 3.1, the state estimation error covariance matrix
is proposed to be updated as

P [tk] = (I −LkMkCd,k)P [tk|tk−1] +LkMkC̄d,kW̄ Ā
ᵀ

k. (5d)

where Lk is the matrix formed with gains corresponding to available sensors, and Mk is the
µk × nm matrix formed with the rows of an identity matrix that correspond to the position of
the elements mi,k available at instant tk. Therefore, vector `i,k corresponds to the i-th row of
matrix LkMk. Note that, if there is no information available from sensor j, then `j,k = 0. Cd,k

is the nm × n matrix whose i-th row is given by

[Cd,k]{i,:} = ci,k





di,k∏

j=1

A[tk − j]





−1

,

and C̄d,k the nm × nd̄ matrix whose i-th row is given by

[C̄d,k]{i,:} = ci,k

[(
∏di,k

j=1A[tk − j]
)−1 (∏di,k

j=2A[tk − j]
)−1

· · · A[tk − di,k]
−1 0 · · · 0

]

.

If there is no measurement of sensor i, or if there is no delay associated to the i-th sensor in the
k-th measurement, then, the i-th row of both Cd,k and C̄d,k are null. Matrix Āk contains the
product of delayed state matrices

Āk =
[

I A[tk − 1] A[tk − 1]A[tk − 2] · · ·
∏d̄−1

j=1 A[tk − j],
]

(5e)

and matrix W̄ is the matrix of the state disturbance for all possible delays:

W̄ = diag{W , . . . ,W }nd̄×nd̄.

Finally, the process output is estimated at every sampling time as

ẑ[t] = Cz[t] x̂[t]. (5f)

The next theorem defines the matrix gain that leads to the optimal estimation of the state with
the state updating equation (5b).

Theorem 3.1 : Assume that the disturbance w[t] in system (1) is a white noise with covariance
matrix W , and that the sensors noises in (2) are white noises with variances σi (i = 1, . . . , nm).
Define V = diag{σ1, . . . , σnm

}. Assume also that the measurements are received time ordered.
Under these assumptions, the gain matrix Lk that minimizes the error variance of the algo-
rithm (5) is defined by

Lk =
(
P [tk|tk − 1]C

ᵀ

d,k − Sk

)
M

ᵀ

k ·

·
(
Mk

(
Cd,kP [tk|tk − 1]C

ᵀ

d,k + V + C̄d,kW̄ C̄
ᵀ

d,k −Cd,kSk − S
ᵀ

kC
ᵀ

d,k

)
M

ᵀ

k

)−1
, (6)

with

Sk = ĀkW̄ C̄
ᵀ

d,k.
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Proof : The state at instant tk can be related with the state at instant tk − di,k as

x[tk] =





di,k∏

j=1

A[tk − j]



x[tk − di,k] +

di,k∑

l=1





l−1∏

j=1

A[tk − j]



 (B[tk − l]u[tk − l] +w[tk − l]) ,

and then, measurement mi,k can be written as

mi,k = ci,k





di,k∏

j=1

A[tk − j]





−1

x[tk]−ci,k

di,k∑

l=1





di,k∏

j=l

A[tk − j]





−1

(B[tk − l]u[tk − l] +w[tk − l])+vi,k.

Introducing this expression in update equation (5b) and subtracting x[t] in both sides of the
resulting expression, it leads to

x̃[tk] = (I −LkMkCd,k) x̃[tk|tk − 1]−LkMkvk +LkMkC̄d,kw̄d,k, (7)

being x̃[t] = x[t] − x̂[t] the state estimation error, and where Mkvk is the vector containing
the noises of available sensors (size µk), and w̄d,k is extended disturbance vector containing the
history of signal w[t] from tk − d̄ till tk − 1:

w̄d,k =






w[tk − 1]
...

w[tk − d̄]






Using expression (7) in the definition of covariance matrix (4) at sampling instants t = tk, it can
be written

P [tk] = (I−LkMkCd,k) E{x̃[tk|tk−1] x̃[tk|tk−1]
ᵀ

} (I−LkMkCd,k)
ᵀ

+LkMkE{vk v
ᵀ

k}M
ᵀ

kL
ᵀ

k +LkMkC̄d,kE{w̄d,k w̄
ᵀ

d,k}C̄
ᵀ

d,kM
ᵀ

kL
ᵀ

k

+ (I−LkMkCd,k) E{x̃[tk|tk−1]w̄
ᵀ

d,k}C̄
ᵀ

d,kM
ᵀ

kL
ᵀ

k

+LkMkC̄d,kE{w̄d,kx̃[tk|tk−1]
ᵀ

} (I−LkMkCd,k)
ᵀ

(8)

where it has been considered that E{w[tk−a]w[tk−b]
ᵀ

} = 0, a 6= b. As estimation error x̃[tk|tk−
1] is affected by the disturbances w[tk − j] for j = 1, . . . , d̄, the expectation E{x̃[tk|tk−1]w̄

ᵀ

d,k}

and its transposed must be calculated. In order to do this, the estimation error x̃[tk|tk − 1] is
written as a function of x̃[tk − d̄|tk − 1] and all the disturbances from tk − d̄ to tk − 1, taking
into account the assumption of time ordered measurements, leading to

x̃[tk|tk − 1] =





d̄∏

j=1

A[tk − j]



 x̃[tk − d̄|tk − 1] +

d̄∑

l=1





l−1∏

j=1

A[tk − j]



w[tk − l], (9)

and, therefore, the expectation E{x̃[tk|tk−1]w̄
ᵀ

d,k} is given by

E{x̃[tk|tk−1]w̄
ᵀ

d,k} = ĀkW̄ , (10)
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as x̃[tk − d̄|tk − 1] is not affected by w̄d,k. With this expectation, the covariance matrix reduces
to

P [tk] =P [tk|tk−1]−LkMkCd,kP [tk|tk−1]−P [tk|tk−1] (LkMkCd,k)
ᵀ

+LkMkCd,kP [tk|tk−1]C
ᵀ

d,kM
ᵀ

kL
ᵀ

k +LkMkV M
ᵀ

kL
ᵀ

k +LkMkC̄d,kW̄ C̄
ᵀ

d,kM
ᵀ

kL
ᵀ

k

+ SkM
ᵀ

kL
ᵀ

k +LkMkS
ᵀ

k −LkMkCd,kSkM
ᵀ

kL
ᵀ

k −LkMkS
ᵀ

kC
ᵀ

d,kM
ᵀ

kL
ᵀ

k. (11)

To minimize the estate estimation error variance, the trace of matrix P [tk] must be minimized.
Calculating the matrix derivative of the trace of (11) with respect to Lk, it is obtained that

∂tr(P [tk])

∂Lk

= −2
(
P [tk|tk − 1]C

ᵀ

d,k −AkW̄ C̄d,k

)
M

ᵀ

k (12)

+ 2Lk

(
Mk

(
Cd,kP [tk|tk − 1]C

ᵀ

d,k + V + C̄d,kW̄ C̄
ᵀ

d,k −Cd,kSk − S
ᵀ

kC
ᵀ

d,k

)
M

ᵀ

k

)
. (13)

The matrix gain that makes zero this expression is the updating gain (6) defined on theorem.
If this gain is substituted in equation (11), it leads to the covariance updating equation (5d)
exposed in the proposed algorithm. �

Remark 1 : The previous theorem is valid (and the estimate is then optimum) if the measure-
ments are assumed to be received time ordered. Nevertheless, the resulting algorithm can also
be applied if this is not the case (i.e. if an older measurement is received after a newer one). In
that case, the gain defined by the theorem is suboptimal. However, the low performance loss due
to this suboptimality, together with the high reduction in computational load with respect full
filter recalculation or full state augmentation approaches, makes the proposed algorithm very
useful in practice.

Remark 2 : The proposed algorithm requires the inversion of matrices A[t]. This is only pos-
sible if the matrix is non singular, i.e., if there are no eigenvalues on the origin for any A[t]. The
system will have as many delays from input to state as eigenvalues on the origin so, in order to
avoid singularity, the delay must be transmitted to the inputs, that are assumed to be known
and, therefore, can be stored in a new delayed variable u′[t] = u[t−σ], being σ the input to state
delay. With this, matrix A[t] will be non-singular and the previous algorithm will be applicable.

Remark 3 : If the process is state delayed with model equations

x[t+ 1] = A[t]x[t] +Aσ[t]x[t− σ] +B[t]u[t], (14)

an extended order notation must be used in order to apply the approaches in this work. The
model equations must be written as








x[t+ 1]
x[t]
...

x[t− σ + 1]







=








A[t] 0 . . . Aσ[t]
0

I
...
0








︸ ︷︷ ︸

A′[t]








x[t]
x[t− 1]

...
x[t− σ]








︸ ︷︷ ︸

x′[t]

+






B[t]
0
...






︸ ︷︷ ︸

B′[t]

u[t]. (15)

This equation can be rewritten as

x′[t+ 1] = A′[t]x′[t] +B′[t]u[t] (16)
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where x′[t], A′[t] and B′[t] are the matrices and vectors that would apply in the algorithm
explained in this work.

Remark 4 : If there is a non-zero mean disturbance modeled by a random walk (a constant
disturbance would be a particular case), an extended order model including the disturbance as
a new state can be written. Let w1 the gaussian disturbance with zero mean, and w2 a random
walk. Then, the system equations can be written as

x[t+ 1] = A[t]x[t] +B[t]u[t] +w1[t] +w2[t],

z[t] = Czx[t].

As w2 is a random walk, it can written that

w2[t] = w2[t− 1] + ∆w2[t− 1],

where ∆w2[t− 1] is a Gaussian zero-mean variable. The system equations can be written as

[
x[t+ 1]
w2[t+ 1]

]

=

[
A[t] I
0 I

]

︸ ︷︷ ︸

A′[t]

[
x[t]
w2[t]

]

︸ ︷︷ ︸

x′[t]

+

[
B

0

]

︸︷︷︸

B′[t]

u[t] +

[
w1[t]
∆w2[t]

]

︸ ︷︷ ︸

w′[t]

,

z[t] =
[
Cz 0

]

︸ ︷︷ ︸

C′

z[t]

[
x[t]
w2[t]

]

.

Using the new state vector x′[t] =

[
x[t]
w2[t]

]

, and the new state disturbance vector w′[t] =
[
w1[t]
∆w2[t]

]

, the model is reduced to a system affected by Gaussian disturbances, where the pro-

posed approach can be directly applied.

Remark 5 : The previous representation is also valid when some of the sensors have a non
negligible dynamic. To demonstrate it, take the process difference equations

xp[t+ 1] = Ap[t]xp[t] +Bp[t]u[t] +wp[t], (17)

y[t] = Cp[t]xp[t], (18)

where y are the signals connected to the different sensors, and the difference equations associated
to the sensors

xs[t+ 1] = As[t]xs[t] +Bs[t]y[t] +ws[t] (19)

mi,k = cs,i,k xs[tk − di,k] + dy,i,k y[tk − di,k] + vi,k, i = 1, . . . , nm. (20)
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Grouping both equations it can be expressed

[
xp[t+ 1]
xs[t+ 1]

]

=

[
Ap[t] 0

Bs[t]Cp[t] As[t]

]

︸ ︷︷ ︸

=A[t]

[
xp[t]
xs[t]

]

+

[
Bp[t]
0

]

︸ ︷︷ ︸

=B[t]

u[t] +

[
wp[t]
ws[t]

]

︸ ︷︷ ︸

=w[t]

(21)

y[t] =
[
Cp[t] 0

]

︸ ︷︷ ︸

=Cy[t]

[
xp[t]
xs[t]

]

(22)

mi,k =
[
dy,i,kCp[tk − di,k] cs,i,k

]

︸ ︷︷ ︸

=ci,k

[
xp[tk − di,k]
xs[tk − di,k]

]

+ vi,k. (23)

Taking the state of the whole plant (process plus sensors) as the one that joints the process state

plus the sensors state x[t] =

[
xp[t]
xs[t]

]

, the representation (1) is reached.

3.3. Implementation of the estimator

In this section an alternative way of implementing the proposed estimator is addressed. The idea
is to use an extended state in order to avoid the multiple matrix inversions that are needed in
the algorithm exposed in the previous section.
Let us define the extended state vector and system matrices as

X̂[t|t− 1] =








x̂[t|t− 1]
x̂[t− 1|t− 1]
...
x̂[t− d̄|t− 1]







; A[t] =






A[t] 0 · · · 0

Id̄n

...
0




 ; B[t] =








B[t]
0
...
0







;

and a matrix D[t] containing all the inverse matrices needed in the implementation

D[t] =









A[t− 1]−1 0 · · · 0

A[t− 2]−1A[t− 1]−1 A[t− 2]−1
...

...
. . .

(
∏d̄

j=1A[t− j])−1 (
∏d̄

j=2A[t− j])−1 · · · A[t− d̄]−1









.

Making use of these matrices, the resulting algorithm can be implemented with the propagation
equations

X̂[t|t− 1] = A[t− 1] X̂[t− 1] +B[t− 1]u[t− 1], (24a)

P [t|t− 1] = A[t− 1]P [t− 1]A[t− 1]
ᵀ

+W , (24b)

Ā[t] =
[
In 0

]
+A[t− 1]Ā[t− 1]

[
0 Id̄n
0n 0

]

(24c)

D[t] =

[
0 0n
Id̄n 0

]

D[t− 1]

([
A[t− 1]−1 0

0 0d̄n

]

+

[
0 Id̄n
0n 0

])

+

[
A[t− 1]−1 0

0 0d̄n

]

(24d)
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plus the updating equations

Lk =
(
P [tk|tk − 1]C

ᵀ

d,k − Sk

)
M

ᵀ

k ·

·
(
Mk

(
Cd,kP [tk|tk − 1]C

ᵀ

d,k + V + C̄d,kW̄ C̄
ᵀ

d,k −Cd,kSk − S
ᵀ

kC
ᵀ

d,k

)
M

ᵀ

k

)−1
(24e)

X̂[tk] = X̂[tk|tk − 1] + Γk ·

nm∑

i=1

`i,k (mi,k − ci x̂[tk − di,k|tk − 1])αi,k (24f)

P [tk] = (I −LkMkCd,k)P [tk|tk−1] +LkMkS
ᵀ

k. (24g)

Matrices Cd,k and C̄d,k are obtained from D[t] as

[C̄d,k]{i,:} = [

n·(di,k−1)
︷ ︸︸ ︷

0 · · · 0 In 0 · · · 0 ] ·D[tk]

[Cd,k]{i,:} = [C̄d,k]{i,:} ·

[
In
0

]

,

and Sk is computed by

Sk = Ā[tk]W̄ C̄
ᵀ

d,k.

Matrix Γk is defined as

Γk =








I

A[tk − 1]−1

...

(
∏d̄

j=1A[tk − j])−1








that can be computed, to avoid the matrix inversions, as

Γk =





In

D[tk]

[
In
0

]



 .

The delayed state estimation needed in the update equation can be directly extracted from the
extended state as

x̂[tk − di,k|tk − 1] = [

n·di,k

︷ ︸︸ ︷

0 · · · 0 I 0 · · · 0 ] · X̂[tk|tk − 1].

Note that with this algorithm implementation, the computational cost due to matrix inversions is
drastically reduced, but at the expense of an increment of the memory needed in the computing
system.
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4. State estimator for LTI systems

In the case of dealing with LTI systems, the matrices that define the behavior of the system (1)
reduce to the constant ones

A[t] = A, ,B[t] = B, ,Cz[t] = Cz, ci,k = ci (i = 1, . . . , nm),

Using this equations, the previous algorithm is reduced to the propagation equations

x̂[t|t− 1] = Ax̂[t− 1] +Bu[t− 1], (25a)

P [t|t− 1] = AP [t− 1]A
ᵀ

+W , (25b)

plus the update equations

Lk =
(
P [tk|tk − 1]C

ᵀ

d,k − Sk

)
M

ᵀ

k ·

·
(
Mk

(
Cd,kP [tk|tk − 1]C

ᵀ

d,k + V + C̄d,kW̄ C̄
ᵀ

d,k −Cd,kSk − S
ᵀ

kC
ᵀ

d,k

)
M

ᵀ

k

)−1
, (25c)

x̂[tk] = x̂[tk|tk − 1] +

nm∑

i=1

`i,k (mi,k − cix̂[tk − di,k|tk − 1])αi,k, (25d)

P [tk] = (I −LkMkCd,k)P [tk|tk−1] +LkMkS
ᵀ

k, (25e)

that are applied when any sensor is available at t = tk, being `i,k the i-th column of matrix
LkMk and the matrices Cd,k and C̄d,k (of size nm × nd̄) defined by its rows

[Cd,k]{i,:} = ciA
−di,k ,

[C̄d,k]{i,:} = ci
[
A−di,k A−di,k+1 · · · A−1 0 · · · 0

]
.

Note that these rows are null if there is no delay in the sensor measurement. The delayed state
estimation is computed as

x̂[tk − di,k|tk − 1] = A−di,k x̂[tk|tk − 1]−

di,k∑

l=1

A−di,k+l−1Bu[tk − l]. (26)

Sk is the matrix given by

Sk = ĀW̄ C̄
ᵀ

d,k,

with Ā

Ā =
[

I A A2 · · · Ad̄−1
]
.

4.1. Extended state implementation

In order to avoid matrix inversion in the implementation of the state estimator, an extended state
based implementation is now addressed. The idea is to store the delayed state estimations and to
updated them when a new set of measurements arrives, i.e., to avoid calculating x̂[tk−di,k|tk−1]
with (26). On the other hand, there should be enough memory to allocate A−j (j = 1, . . . , d̄).
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With this modification the resulting algorithm is implemented with the propagation equations

X̂[t|t− 1] = AX̂[t− 1] +Bu[t− 1], (27a)

P [t|t− 1] = AP [t− 1]A
ᵀ

+W , (27b)

plus the updating equations

Lk =
(
P [tk|tk − 1]C

ᵀ

d,k − Sk

)
M

ᵀ

k ·

·
(
Mk

(
Cd,kP [tk|tk − 1]C

ᵀ

d,k + V + C̄d,kW̄ C̄
ᵀ

d,k −Cd,kSk − S
ᵀ

kC
ᵀ

d,k

)
M

ᵀ

k

)−1
, (27c)

X̂[tk] = X̂[tk|tk − 1] + Γ ·

nm∑

i=1

`i,k (mi,k − ci x̂[tk − di,k|tk − 1])αi,k (27d)

P [tk] = (I −LkMkCd,k)P [tk|tk−1] +LkMkS
ᵀ

k (27e)

where X̂[t− 1] = X̂[t− 1|t− 1], and

X̂[t|t− 1] =








x̂[t|t− 1]
x̂[t− 1|t− 1]
...
x̂[t− d̄|t− 1]







; A =






A 0 · · · 0

I
...
0




 ; B =








B

0
...
0







; Γ =








I

A−1

...

A−d̄








being A, B and Γ constant matrices of sizes n(d̄+1)×n(d̄+1), n(d̄+1)×nu and n(d̄+1)×n,
respectively. With this notation, the delayed state estimation is obtained as

x̂[tk − di,k|tk − 1] = [

n·di,k

︷ ︸︸ ︷

0 · · · 0 I 0 · · · 0 ] · X̂[tk|tk − 1],

where no matrix inversion is needed to compute (26).
The propagation equation of the state is equivalent to the standard propagation equation of

order n plus storing the old past state estimates (as in Moayedi et al. (2011)). As a difference with
the approach in Moayedi et al. (2011), the size of the variance-covariance matrix is n×n, instead
of d̄ n× d̄ n, therefore, the computing cost associated with the covariance matrix update is much
lower. On the other hand, the augmented state update equation has a higher computational cost
than the one in Moayedi et al. (2011), because here, all the past states are updated every time
a measurement is received, while in Moayedi et al. (2011), the past states are simply stored,
but only the current state is updated. Taking into account the sizes of all the matrices in the
algorithm, it is easy to calculate the approximate number of products that must be computed
every step. The resulting number of products is d̄(n2+n2nm+n2

mn)+3n3+2n2nm+4n2
mn+n2+

n2
m+2nmn, that represents the same computer cost order (o(d̄)) than the algorithm in Moayedi

et al. (2011). The behaviour of both algorithms is very similar if the system is stable. However, for
unstable systems, the performance of the proposed algorithm is much better than the algorithm
described in Moayedi et al. (2011). The next examples show the comparative behaviour of both
approaches.
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5. Examples

5.1. Example 1

To evaluate the performance of the proposed algorithm, and to compare it with the proposal
of Moayedi et al. (2011), the state estimation of three different SISO systems is addressed.
Systems G1 and G2 are both stable, but with very different damping rate: 0.7 for G1 and 0.05
for G2. On the other hand, system G3 has an integrator and thus, it is unstable.

G1(s) =
1

(s + 2)2 + 22

G2(s) =
1

(s+ 0.1)2 + 22

G3(s) =
1

s(s+ 1)

For the simulation study the ZOH discrete-time models are obtained with sampling-time of
0.1 second, resulting in the following state-space models with C = [0 1] in all cases.

A1 =

[
0.640 −0.651
0.081 0.965

]

A2 =

[
0.960 −0.394
0.098 0.980

]

A3 =

[
0.905 0
0.095 1.000

]

B1 =

[
0.0813
0.0044

]

B2 =

[
0.0983
0.0050

]

B3 =

[
0.0952
0.0048

]

A measurement noise with variance of V = 0.08 and a process noise with covariance matrix

W =

[
0.08 0.01
0.01 0.08

]

are assumed. With respect the sampling scenario, an average of 50% of packet dropout is consid-
ered, while a random delay between 0 and 5 samples is assumed for the available measurements.
The previous measurement pattern, used in the simulations, is depicted in Figure 1. It must be
pointed out that this sampling scenario includes the reception of time disordered measurements,
and, therefore, the proposed approach is suboptimal, as explained in remark 1.
The state estimation error variances are presented in Table 1. These values are first compared

with the full augmented state algorithm described in Gopalakrishnan et al. (2011), and secondly
with the algorithm proposed in Moayedi et al. (2011). As can be noted, for system G1 the results
are very similar. For system G2 the behaviour of the proposed algorithm is also similar to the
full augmented state one, however the performance of the algorithm described in Moayedi et al.
(2011) is clearly worse. For system G3 the performance of the proposed algorithm is worse than
the augmented state optimal, but it is still reasonable, while the algorithm in Moayedi et al.
(2011) results in a very poor performance, as it is shown in Figure 2. This wrong behaviour
for unstable systems is due to the fact that the older states of the extended state vector are
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Figure 1. Measurement pattern used in the simulation study. Values below zero represent time instants when packets
dropout occur

Algorithm G1 G2 G3

new proposal [0.1000 0.0848] [0.7571 0.2042] [0.4205 1.2428]
augmented state [0.1001 0.0848] [0.7543 0.2036] [0.4110 0.4977]

proposal in Moayedi et al. (2011) [0.1013 0.0771] [1.5566 0.3875] [6.9800 229.1900]
Table 1. State estimation error variances ([var(x1 − x̂1) var(x2 − x̂2)])

not updated when a measurement is received. If the system is unstable, the estimation error
of those older states increases rapidly, and hence, the corrections made with those wrong state
estimates do not improve the estimation. Only when a measurement without delay is received,
the estimation is improved significantly, as can be seen in Figure 2, where the estimation error
(especially in state 2) only decreases in the instants with zero measurement delay.
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)

0 100 200 300 400 500
−50
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50
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x 2(k
)−

^x
2(k

)

Figure 2. State estimation errors for system G3. Solid line: new proposal; dashed line: proposal in Moayedi et al. (2011)
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5.2. Example 2

The aim of this example is to illustrate the application of the proposed algorithm to systems
with the features addressed in Remarks 2 to 5. Consider the following system:

xp[t+ 1] = Ap1xp[t] +Ap2xp[t− 1] +Bp(u[t− 2] +w1[t]) +w2[t],

yp[t] = Cpxp[t].

where Ap1, Ap2, Bp and,Cp are known matrices, w2[t] is a white noise signal with known covari-
ance matrix W2. It is assumed that w1[t] is a slow disturbance affecting the input that fulfils
the equation

w1[t+ 1] = w1[t] + ∆w1[t], (28)

being ∆w1[t] a zero mean white noise signal with known covariance matrix W1. Furthermore,
the input signal u is stored such that a new variable can be defined as

u′[t] = u[t− 2] (29)

in order to avoid extending the state to include input delays.
The output y is measured through a sensor modeled by the dynamic equation

xs[t+ 1] = As[t]xs[t] +Bs[t]yp[t] +ws[t] (30)

m1,k = cs,1,k xs[tk − dk] + dy,1,k y[tk − dk] + v1,k, i = 1, . . . , nm. (31)

where As, Bs, cs,1,k and dy,1,k are known matrices, and ws[t] and v1,k are white noise signals
with known covariance matrices Ws and V.
Taking into account the Remarks 2, 3 and 4, an extended order model can be defined as





xp[t+ 1]
xp[t]

w1[t+ 1]



 =





Ap1 Ap2 Bp

I 0 0
0 0 I









xp[t]
xp[t− 1]
w1[t]



+





Bp

0
0



u′[t] +





I 0
0 0
0 I





[
w2[t]
∆w1[t]

]

(32a)

y[t] =
[
Cp 0 0

]





xp[t]
xp[t− 1]
w1[t]



 (32b)

Furthermore, according Remark 5, equations (32) and (30) can be gathered and expressed as







xp[t+ 1]
xp[t]

w1[t+ 1]
xs[t+ 1]







︸ ︷︷ ︸

x̄[t+1]

=







Ap1 Ap2 Bp 0
I 0 0 0
0 0 I 0

BsCp 0 0 As







︸ ︷︷ ︸

Ā







xp[t]
xp[t− 1]
w1[t]
xs[t]







︸ ︷︷ ︸

x̄[t]

+







Bp

0
0
0







︸ ︷︷ ︸

B̄

u′[t] +







I 0 0
0 0 0
0 I 0
0 0 I











w2[t]
∆w1[t]
ws[t]





︸ ︷︷ ︸

w̄[t]

(33a)

The proposed algorithm can now be applied replacing A and x by Ā and x̄, respectively. The
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gathered disturbance vector w̄ has the following covariance matrix

W̄ =







W2 0 0 0
0 0 0 0
0 0 W1 0
0 0 0 Ws







(34)

Figure 3 shows the results of an implementation of the proposed algorithm with the previous
assumptions compared with the full augmented state algorithm described in Gopalakrishnan
et al. (2011), that assumes white noise disturbances. The system is defined by the following
matrices

Ap1 =

[
0.3 0.5
0.4 0.1

]

, Ap2 =

[
0.1 0.3
0.4 0.2

]

, Bp =

[
0.4
0.3

]

, Cp =
[
0.3 0.2

]

As =

[
0.1 0.3
0.3 0.2

]

, Bs =

[
0.2
0.8

]

, cs,1,k =
[
0.4 0.3

]
, dy,1,k = 0.1

W1 = 0.08, W2 =

[
0.08 0.0
0.0 0.08

]

, Ws =

[
0.8 0.0
0.0 0.8

]

, V = 0.08

The sampling scenario is the same as in the example 1, depicted in Figure 1. It can be noted
that the proposed approach leads to an unbiased estimation, while a considerable estimation
error is observed for the augmented state algorithm due to the presence of the slow disturbance.
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C
p^x

p

Figure 3. Output estimation: Solid line: actual system output; dashed line: new proposal; doted line: full augmented state
algorithm
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6. Conclusions

The paper presents a state estimation algorithm for systems with scarce, irregular measurements,
with time varying delays, that can be applied when the delay is only known at the instant when
the measurement is received, and also admits out of sequence measurements (as can occur in
networked control systems). The algorithm is based on a modification of the discrete Kalman
filter, using negative-time measurement update, and is first developed for general time variant
systems, and then particularized for time invariant systems.
The computational cost of the proposed estimator is lower than the full state augmentation

Kalman filter schemes. This is mainly because in this case, a small (order n) covariance matrix
is calculated and stored, but an augmented state of size d̄n is used. The updating gain is also of
order n, but the full augmented state vector is updated every time a measurement is received.
The approach is suboptimal, but the loss of performance is low compared to the optimal filter,
and the computational cost is much lower. The proposed algorithm can be applied in any sam-
pling situation: multisensor sets with different sampling rate, time-varying sampling, random
availability of measurements, different time-varying delays in each sensor and out-of-sequence
measurements. Compared with the recently proposed approach in Moayedi et al. (2011), the
computational cost is similar, but the performance is better, especially if the system is unstable,
as it has been shown in the comparative examples developed.
An interesting future research line could be to solve the inverse problem, i.e. to decide when to

measure the different outputs to reach a given performance, minimizing the resources (number
of measurements or network bandwidth, for example). This could be formulated as an off line
scheduling problem, or as an on line algorithm that decides which are the measurements that
should be taken at each instant. The extension of the algorithm to non linear systems can also
be a future research line.
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