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In this study, a robust backstepping approach for the control problem of the variable-speed wind turbine with a permanent
magnet synchronous generator is presented. Specifically, to overcome the negative effects of parametric uncertainties in both
mechanical and electrical subsystems, a robust controller with a differentiable compensation term is proposed. The proposed
methodology ensures the generator velocity tracking error to uniformly approach a small bound where practical tracking is
achieved. Stability of the overall system is ensured by Lyapunov-based arguments. Comparative simulation studies with a
standard proportional-integral-type controller are performed to illustrate the effectiveness, feasibility and efficiency of the
proposed controller.
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1. Introduction

The modern way of living enforces the consumption of elec-
trical energy to grow on a daily basis. Traditional power
generation technologies, such as using fossil fuel or nu-
clear fusion to generate electrical energy, bring about envi-
ronmental problems, making renewable energy conversion
methods more and more popular each day. When compared
to the other sources of electrical energy generation, wind
is attractive in terms of cost and energy security as it is
free and plentiful in supply. Partly due to this, electrical
energy generation from wind power using wind turbines is
a growing sector.

A significant amount of scientific research has been
conducted on the control of wind turbine systems, es-
pecially utilising sliding-mode control (Beltran, Ahmed-
Ali, and Hachemi Benbouzid 2008), proportional-integral-
derivative (PID) (Abdin and Xu 2000; Maureen and Balas
2002), fuzzy-adaptive control (Galdi, Piccolo, and Siano
2008), non-linear robust control (Iyasere, Salah, Dawson,
and Wagner 2008) and even wind-model-based predictive
control (Senjyu et al. 2006). In Beltran et al. (2008), authors
proposed a control strategy that is based on a sliding-mode
controller to maximise the power efficiency where the tur-
bine tip speed ratio must be maintained at its optimum value
despite wind variations. In Iyasere et al. (2008), authors ren-
dered their control strategy based on average wind speed
and standard deviation of wind speed and used a gener-
alised predictive controller. A PID controller using the pole
assignment technique was presented in Maureen and Balas
(2002). In Oguz and Guney (2010), authors performed the

∗Corresponding author. Email: e.zerger@gyte.edu.tr

dynamic modeling and simulation of the wind power gen-
eration system and control of blade pitch angle which was
validated by a neuro-fuzzy controller and a conventional
PID controller separately.

From the review of relevant work in the literature we
can conclude that there are two typical ways of operating
wind turbines: (1) at a constant speed or (2) at variable
speed. Constant-speed wind turbines can be operated by
means of active pitch control and/or stall-regulated con-
trol, and are typically connected directly to the power grid.
However, when the turbine is operated at nearly constant
speed, the aerodynamic torque control can be sensitive to
gust and might create spikes on the power grid. On the
other hand, variable speeds allows the wind turbine to oper-
ate at a higher efficiency, thus enabling extraction of more
power from the wind. As stated in Müller, Deicke, and
De Doncker (2002), variable-speed wind turbines are more
advantageous, as they increase energy capture, has the abil-
ity to operate at maximum power point, improve efficiency
and has power quality. The quality of power generation (and
output regulation) strongly depend on the control technique
employed (Muldaji, Pierce, and Migliore 1998), that is, the
effectiveness of the wind power generation relies mostly
on the control strategy. Therefore, for variable-speed wind
turbines, the wind power is truly cost effective via the use of
advanced control techniques, such as model-based control
design approaches. The main disadvantage of model-based
control designs is that mechanical and electrical param-
eter values of wind turbines in most cases are not avail-
able. The effects of uncertainties in the turbine dynamics
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become more apparent in practical applications in which
the unknown system parameters limit the efficient energy
capture of a wind turbine. To overcome the aforemen-
tioned problems, a vast number of control strategies have
been proposed for variable-speed wind turbines. In Mul-
daji et al. (1998), authors have evaluated a variable-speed,
stall-regulated strategy that eliminates the need for ancillary
aerodynamic control systems. In Boukhezzar and Siguer-
didjane (2005), a cascade structure, non-linear controller
was proposed; however, parametric uncertainties of the sys-
tem were not taken into account. In Song, Dhinarakaran, and
Bao (2000), authors presented two non-linear controllers:
(1) an exact model knowledge controller that assumes the
system parameters are available and (2) an adaptive con-
troller which compensates for the uncertainties in the me-
chanical subsystem parameters but requirs exact knowl-
edge of the parameters of the electrical subsystem for the
controller implementation. In Ozbay, Zergeroglu, and Sivri-
oglu (2008) and Sivrioglu, Ozbay, and Zergeroglu (2008),
the control design in Song et al. (2000) was extended to
compensate for the uncertainties in both electrical and me-
chanical subsystems. In Sivrioglu et al. (2008), the issues
of external disturbances and modeling errors were also ad-
dressed. Recently high–order sliding-mode controllers have
also been applied to variable-speed wind turbines (Bel-
tran, Ahmed-Ali, and Hachemi Benbouzid 2009; Morfin,
Loukianov, Canedo, and Castellanos 2010). In Beltran et al.
(2009), authors applied a second-order sliding-mode con-
troller for the power generation control in variable-speed
wind turbines. The proposed sliding-mode methodology
was effective in terms of power regulation despite the para-
metric uncertainties in the turbine and the generator. In
Morfin et al. (2010), a robust non-linear controller based on
block linearisation combined with a second-order sliding-
mode technique was applied to a wound rotor induction
generator.

In this paper,1 we have extended the previous results
given in Ozbay et al. (2008) and Sivrioglu et al. (2008) to
a more sophisticated variable-speed wind turbine model,
and present a novel robust backstepping approach for the
control problem of the variable-speed wind turbine with a
permanent magnet synchronous generator (PMSG). Specif-
ically, to compensate for the undesirable effects of para-
metric uncertainties, of both mechanical and electrical
subsystems, a differentiable robust controller is proposed.
Robust backstepping-type controllers for various classes
of non-linear systems have been proposed in the control
literature (Qu 1998). Some of the designs were used to
back up neural network (Jagannathan and Lewis 2000) and
fuzzy logic-type controllers (Kwan and Lewis 2000). When
compared to recently introduced high-order sliding-mode
observation techniques presented in Ferreira, Bejarano,
and Fridman (2012), robust backstepping-type controllers
present smoother controller action and can be applied to
a broader class of dynamical systems. The method used

in this work relays on a high-gain approach as opposed
to high-frequency techniques presented in Qu (1998) and
Dawson, Bridges, and Qu (1995). The proposed method-
ology ensures the generator velocity tracking error to uni-
formly approach a small bound where practical tracking is
achieved. Simulation studies are presented to illustrate the
efficiency and feasibility of the proposed controller.

2. Dynamical model

The mathematical equations describing the dynamics of a
variable-speed wind turbine with PMSG in d − q coordi-
nates are assumed to have the following forms (Abedini and
Nikkhajoei 2011):

J
dωg

dt
= −1.5P 2

4
λmid − BP

2
ωg + P

2
Tm, (1)

Ld

did

dt
= −Rsid − Lqiqωg + kgλmωg − vd, (2)

Lq

diq

dt
= Ldidωg − Rsiq − vq, (3)

where the first equation is for the mechanical subsystem
and the last two equations represent electrical subsystem
dynamics. Specifically, vd(t), vq (t) ∈ R, and id(t), iq (t) ∈
R are the general d − q terminal voltages and currents,
respectively, Rs ∈ R is the stator resistance, Ld, Lq ∈ R

are the d − and q −axis inductances, respectively; λm ∈
R is the permanent magnet flux, kg ∈ R is the generator
coefficient, Tm (t) ∈ R is the input mechanical torque of the
wind turbine, ωg (t) ∈ R is the generator velocity, P ∈ R is
the number of poles, J ∈ R is the rotor moment of inertia
and B ∈ R is the friction and windage coefficient. Terminal
voltages vd(t) and vq(t) are the control input signals in
Equations (1)–(3).

A schematic representation of the system under consid-
eration is presented in Figure 1. The main control objec-
tive is to ensure that the generator velocity, ωg(t), tracks a
smooth reference velocity profile denoted by ωd (t) ∈ R and
generates according to the operational modes of the wind
turbine, despite the lack of exact knowledge of both me-
chanical and electrical subsystem parameters of Equations
(1)–(3). The control objective will be achieved by properly
designing the controller system block given in Figure 1.

3. Error system development

To quantify the control objective, we define error signals,
denoted by e(t), z1(t), z2 (t) ∈ R, as follows:

e � ωd − ωg, (4)

z1 � id,ref − id , (5)

z2 � iq,ref − iq, (6)
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Figure 1. Overall system.

where id,ref (t), iq,ref (t) ∈ R are reference signals that will
be designed subsequently. After taking the time derivative
of the tracking error term in Equation (4), pre-multiplying
with J, and then utilising Equation (1), we obtain

J ė = J ω̇d + BP

2
ωg + 1.5P 2

4
λmid − P

2
Tm. (7)

The above expression can be rewritten in the following
simpler form:

J ė = Yφ + f + φmid, (8)

where f (t) � −P
2 Tm ∈ R contains smooth time-varying

uncertainties, φm � 1.5P 2

4 λm ∈ R is an uncertain constant

parameter, Y (t) �
[
ω̇d ωg

] ∈ R
1×2 contains time-varying

functions and φ �
[
J BP

2

]T ∈ R
2 contains uncertain con-

stant parameters. Based on the definition of Y( · ), its desired
form is defined as Yd (t) �

[
ω̇d ωd

] ∈ R
1×2. After adding

and subtracting Ydφ to the right-hand side of the open-loop
mechanical subsystem dynamics, the following expression
can be obtained:

J ė = F + χ + φ̃mid + φ̂mid,ref − φ̂mz1, (9)

where φ̂m ∈ R is the best-guess estimate (nominal value)
of φm, φ̃m � φm − φ̂m ∈ R is the estimation error and F(t),
χ (t) ∈ R are defined as

F � Ydφ + f, (10)

χ � (Y − Yd ) φ. (11)

Based on the subsequent stability analysis, reference signals
id,ref (t) and iq,ref (t) are designed as

id,ref = −1

φ̂m

{
Ydφ̂ + f̂ + (

ke + knρ
2
1

)
e + vR1

}
, (12)

iq,ref = 0, (13)

where ke, kn ∈ R are positive control gains, φ̂, φ̂m, f̂ ∈
R are the constant best-guess estimates of the unknown
parameters φ, φm and f, respectively; the positive bounding
function ρ1 (e) ∈ R is designed to satisfy

ρ1 ≥ |χ | , (14)

and vR1 (t) ∈ R is a robust term designed in the following
form:

vR1 = eρ2
2 (|e|)
ε1

, (15)

where ε1 ∈ R is a positive constant and ρ2 (|e|) ∈ R is a
positive bounding function that is designed to satisfy

ρ2 (|e|) ≥ ∣∣F̃ ∣∣ , (16)

where F̃ (t) � F − Ydφ̂ − f̂ ∈ R.
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Remark 1: Note that the robust controller design enforces
the use of the values of the upper bounds of the uncer-
tain functions in the controller design, as ρ2(|e|) of Equa-
tion (16). In this work, it is assumed that for each bound-
ing function, say, ρ i, defined such that ρ i > | f(t)|, with the
function f(t) containing some uncertain parameters, a rough
estimate of the upper and lower bounds of the function con-
taining the uncertainties is available. Choosing the values
of these upper bounding functions extremely high to ensure
the validity of the inequalities might seem to be proper at
first. However, this would end up with unnecessary high
gains which in turn would result in high control actions and
in some cases even instability.

Remark 2: The backstepping procedure requires that the
auxiliary control in Equation (12) be differentiable; hence,
the high-gain robust control term in Equation (15) was
defined to ensure differentiability. The design of a differ-
entiable high-frequency robust term is also possible as il-
lustrated in Seker et al. (2012). However, our experience
with the simulation studies showed that using a high-gain
robust term as opposed to a high-frequency robust term re-
duced the chattering in the control signal for this particular
application.

After inserting id,ref (t) back into the open-loop me-
chanical subsystem dynamics, the following expression is
obtained:

J ė = −kee − knρ
2
1e + χ − φ̂mz1 + F̃ + φ̃mid − vR1. (17)

Note that the term φ̃mid can be upper bounded as

ρ3(|z1|) ≥ ∣∣φ̃mid
∣∣ , (18)

where ρ3 (|z1|) ∈ R is a positive bounding function. The
backstepping design also requires the dynamics of the
auxiliary error signals z1(t) and z2(t). To obtain the dy-
namics for z1(t), first the derivative of Equation (5) is
taken, and then the time derivative of Equation (12) is in-
serted and the resulting expression is multiplied with Ld to
obtain

Ldż1 = −Ld

φ̂m

{
Ẏd φ̂ + 1

J

(
ke + 2knρ1e

∂

∂e
ρ1

+ knρ
2
1 + ∂

∂e
vR1

)
× (Yφ + f + φmid )

}
+Rsid + Lqiqωg + vd − kgλmωg, (19)

which can be rewritten in the following manner:

Ldż1 = W1θ1 + f1 + vd, (20)

where W1(·)θ1 ∈ R contains the linearly parameterisable
terms with W1 (t) ∈ R

1×8 and θ1 ∈ R
8 containing time-

varying functions and uncertain constant parameters (de-
tailed definitions are given in Appendix A), respectively,
and f1 (t) ∈ R contains the time-varying uncertainties,
which are explicitly defined as follows:

W1θ1 � −Ld

φ̂m

{
Ẏd φ̂ + 1

J

(
ke + 2knρ1e

∂

∂e
ρ1

+knρ
2
1 + ∂

∂e
vR1

)
× (Yφ + φmid )

}
+Rsid + Lqiqωg − kgλmωg, (21)

f1 � −Ld

φ̂m

1

J

(
ke + 2knρ1e

∂

∂e
ρ1 + knρ

2
1 + ∂

∂e
vR1

)
f. (22)

Based on the subsequent stability analysis, vd(t) is designed
in the following form:

vd = − (
k1 + knρ

2
3

)
z1 − W1θ̂1 + φ̂me − vR2, (23)

where θ̂1 ∈ R
8 is the constant best-guess estimate of the

unknown parameter vector θ1, vR2 (t) ∈ R is an additional
robust control term, k1 ∈ R is a positive constant control
gain and ρ3( · ) was introduced in Equation (18). In Equation
(23), the robust term vR2(t) is introduced to compensate for
the mismatch between the actual and estimated parameters,
and is explicitly designed as follows:

vR2 = z1ρ
2
4

ε2
, (24)

where ε2 ∈ R is a positive constant, and ρ4 (t) ∈ R is a
positive bounding function designed to satisfy

ρ4 ≥ ∣∣W1θ̃1

∣∣ + |f1| , (25)

where θ̃1 � θ1 − θ̂1 ∈ R
8 is the parameter estimation er-

ror. After substituting Equation (23) into Equation (20),
the closed-loop dynamics for z1(t) is obtained to have the
following form:

Ldż1 = −k1z1 − knρ
2
3z1 + W1θ̃1 + f1 + φ̂me − vR2. (26)

Similarly, the dynamics of z2(t) can be obtained to have the
following form:

Lqż2 = −Ldidωg + Rsiq + vq. (27)

After defining W2 (t) �
[−idωg iq

] ∈ R
1×2, which con-

tains time-varying functions, and θ2 �
[
Ld Rs

]T ∈
R

2, which contains uncertain constant parameters, the
right-hand side of Equation (27) can be rewritten as

Lqż2 = W2θ2 + vq. (28)
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Similar to the design of vd(t), the voltage input vq(t) is
designed in the following form:

vq = −k2z2 − W2θ̂2 − vR3, (29)

where k2 ∈ R is a positive constant control gain, θ̂2 ∈ R
2 is

the constant best-guess estimate of the unknown parameter
vector θ2 and vR3 (t) ∈ R is an additional robust control
term introduced to compensate for the mismatch between
the actual and estimated parameters, which is explicitly
defined as follows:

vR3 = z2ρ
2
5

ε3
, (30)

where ε3 ∈ R is a positive constant, and ρ5 (t) ∈ R is a
positive bounding function that is designed to satisfy

ρ5 ≥ ∣∣W2θ̃2

∣∣ , (31)

where θ̃2 � θ2 − θ̂2 ∈ R
2 is the parameter estimation error.

Substituting Equation (29) into Equation (28), the closed-
loop dynamics for z2(t) is obtained to have the following
form:

Lqż2 = −k2z2 + W2θ̃2 − vR3. (32)

4. Stability analysis

After obtaining the closed-loop error dynamics for the sig-
nals e(t), z1(t) and z2(t), the following theorem can now be
stated.

Theorem 4.1: The robust controller given by Equations
(23) and (29) and the auxiliary control inputs (12) and
(13) with the robust terms (15), (24) and (30) guarantee
uniformly ultimate boundedness of the generator velocity
tracking error signal e(t) in the sense that

‖e(t)‖ ≤
√

a

b
‖x(0)‖2 exp (−βt) + 2ε

bβ
(1 − exp (−βt)),

(33)

where x �
[
e z1 z2

]T ∈ R
3 is the combined error signal

and a, b, β, ε ∈ R are positive constants defined as

a � max
{
J,Ld, Lq

}
, (34)

b � min
{
J,Ld, Lq

}
, (35)

β �
2 min

{(
ke − 1

4kn

)
, k1, k2

}
max

{
J,Ld, Lq

} , (36)

ε � ε1 + ε2 + ε3 + 1

4kn

, (37)

where ε1, ε2, ε3, ke, k1, k2 and kn were previously defined.

Proof: Consider the following non-negative scalar
function,

V � 1

2
Je2 + 1

2
Ldz

2
1 + 1

2
Lqz

2
2, (38)

which can be lower and upper bounded in the following
form:

1

2
b ‖x‖2 ≤ V ≤ 1

2
a ‖x‖2 . (39)

Taking the time derivative of Equation (38) along Equations
(17), (26) and (32), and then cancelling the common terms,
yields

V̇ = −kee
2 − k1z

2
1 − k2z

2
2

+ [
χ − knρ

2
1e

]
e

+
[
F̃ − eρ2

2 (|e|)
ε1

]
e

+ [
φ̃mide − knρ

2
3z1

]
z1

+
[
W1θ̃1 + f1 − z1ρ

2
4

ε2

]
z1

+
[
W2θ̃2 − z2ρ

2
5

ε3

]
z2. (40)

After using Equations (14), (16), (18), (25) and (31),
the right-hand side of Equation (40) can be upper bounded
as follows:

V̇ ≤ −kee
2 − k1z

2
1 − k2z

2
2

+ [
ρ1 |e| − knρ

2
1e

2
]

+ ρ2 |e|
[

1 − ρ2 |e|
ε1

]
+ [

ρ3 |z1| |e| − knρ
2
3z2

1

]
+ ρ4 |z1|

[
1 − ρ4 |z1|

ε2

]
+ ρ5 |z2|

[
1 − ρ5 |z2|

ε3

]
. (41)

After adding and subtracting 1
4kn

and then completing the
squares of the first and third bracketed terms of Equation
(41), it can further be upper bounded as

V̇ ≤ − min

{(
ke − 1

4kn

)
, k1, k2

}
‖x‖2

+ ρ2 |e|
[

1 − ρ2 |e|
ε1

]
+ ρ4 |z1|

[
1 − ρ4 |z1|

ε2

]
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+ ρ5 |z2|
[

1 − ρ5 |z2|
ε3

]
+ 1

4kn

, (42)

where the following was used:

ρ3 |z1| |e| − knρ
2
3z

2
1 ≤ e2

4kn

. (43)

Finally, upper bounding the terms in the brackets allows us
to place an upper bound on the right-hand side of Equation
(42) as shown below,

V̇ ≤ − min

{(
ke − 1

4kn

)
, k1, k2

}
‖x‖2 + ε, (44)

where the bounding property,

ρi+2 |zi−1|
[

1 − ρi+2 |zi−1|
εi

]
< εi, (45)

with i = 1, 2, 3 and z0 = e, has been utilised and ε was
previously defined in Equation (37). From the upper bound
on v(t) given in Equation (39), the upper bound V̇ (t) in
Equation (44) can now be shown as

V̇ ≤ −βV + ε, (46)

where β was previously defined in Equation (36). Notice
that, to ensure the positiveness of β, the control gain kn has
to be selected to ensure kn > 1

4ke
. The differential inequality

of Equation (46) can now be solved to yield (Dawson et al.
1995)

V (t) ≤ V (0) exp (−βt) + ε

β
(1 − exp (−βt)) . (47)

After applying the bounds of Equation (39) to Equation
(47), the following upper bound for x(t) is obtained:

‖x(t)‖ ≤
√

a

b
‖x(0)‖2 exp (−βt) + 2ε

bβ
(1 − exp (−βt)) ,

(48)
where a and b were previously defined in Equations (34) and
(35), respectively. Based on Equation (48) and the definition
of x(t), the generator velocity tracking error e(t) can be
shown to be bounded as given by Equation (33) (Dawson,
Hu, and Burg 1998). Due to the boundedness of e(t), z1(t),
and z2(t), standard signal chasing arguments can be utilised
to show that all the signals in the closed-loop systems in
Equations (17), (26) and (32) are bounded. �

5. Simulation results

To demonstrate the performance of the proposed robust
controller, two different simulation studies were performed

similar to that of Song et al. (2000). For the first simulation,
the reference generator velocity ωd(t) was selected as

ωd (t) = 2 + sin (t) , (49)

and for the second one, a more realistic reference generator
velocity was selected as

ωd (t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, u (k) < uc,

xm

(
1 + sin

(
π
2

(u(k)−s1)
d1

))
, u (k) < ur,

xm, u (k) < uF ,

xm

(
1 + sin

(
π
2

(u(k)−s2)
d2

))
, u (k) < us,

0, u (k) > us,
(50)

where u(k) is an auxiliary function used in the desired tra-
jectory generation with

s1 = 1

2
(ur + uc) , d1 = 1

2
(ur − uc) ,

s2 = 1

2
(ur + uF ) , d2 = 1

2
(ur − uF ) ,

us = 36.3 [m/ sec] , xm = 4.1 [rad/ sec] ,

uc = 9.3 [m/ sec] , ur = 12.7 [m/ sec] ,
uF = 32.9 [m/ sec] ,

(51)

where the parameter xm was specified according to the al-
lowable generator velocity.

Simulations were performed on a Matlab/Simulink sim-
ulation platform on a standard PC. The controller algo-
rithms were implemented using C-Mex S-function blocks
and the control frequency was selected as 1 KHz. A block
diagram representation of the simulations are given in
Figure 2. The system parameters used in the simulations
were

Ld = 0.002, Lq = 0.002, Rs = 0.18, kg = 100, (52)

J = 0.48, B = 0.001, λ = 0.8, p = 8.

To compare the performance of the proposed robust method
with the performance of a standard controller, two simula-
tions on a proportional-integral-type (PI-type) controller of
the following form were also performed:

id,ref = kP,ee + kI,e

∫ t

0
e (σ ) dσ,

vd = kP,z1z1 + kI,z1

∫ t

0
z1 (σ ) dσ − wgLdid,ref,

vq = kP,z2z2 + kI,z2

∫ t

0
z2 (σ ) dσ + wg

(
Lqiq,ref + λm

)
,

where the gains (i.e., kP, e, kI, e, kP,z1 , kI,z1 , kP,z2 , kI,z2 ∈
R) were tuned until the best tracking performance was
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Figure 2. Block diagram representation of controller implementation.

obtained. The controller gains were calculated as

kP,e = 571.1, kI,e = 0.46,

kP,z1 = 184.0164, kI,z1 = 0.0002,

kP,z2 = 36.515, kI,z2 = 0.005236.

(53)

It is important to highlight that the implementation of the
PI-type controller required the knowledge of the system
parameters Ld, Lq and λ.

Similar to the PI-type controller, the controller gains
of the proposed robust method were tuned until the best
tracking performance was obtained and the controller gains

were chosen as

ke = 3, kn = 9, k1 = 1, k2 = 35,

ρ1 = 1.6, ρ2 = 1, ρ3 = 14, ρ4 = 30, ρ5 = 10, (54)

ε1 = 0.0004, ε2 = 0.1, ε3 = 0.01.

The best-guess estimates of the system parameters were set
to 80% of their actual values.

The results of the first set of simulations (i.e., sinusoidal
tracking) are presented through Figures A1–A4. The data
obtained from the simulations are then illustrated in Table 1.
The desired and actual generator velocity profiles for the
PI-type and proposed robust backstepping controllers are
given in Figure A1, with the tracking error performances

Table 1. The results of the first simulation.

Robust backstepping Standard PI type

T = 12.7 sec T = 22.9 sec T = 36 sec T = 12.7 sec T = 22.9 sec T = 36 sec

|e(T)| 0.015 0.05 0.05 0.024 0.05 0.081∫ T

0 |e (σ )| dσ 1.2 1.6 1.6 2.25 2.58 3.45
|vd(T)| 158 165 200 275 320 130∫ T

0 |vd (σ )| dσ 11,300 12,600 13,900 70,000 71,800 73,000
|vq(T)| 77.4 157.96 360 67.5 139.5 337.1∫ T

0

∣∣vq (σ )
∣∣ dσ 460 1600 4618 394 1400 4125

Table 2. The results of the second simulation.

Robust backstepping Standard PI type

T = 12.7 sec T = 22.9 sec T = 36 sec T = 12.7 sec T = 22.9 sec T = 36 sec

|e(T)| 0.013 0.0031 0.05 0.064 0.013 0.05∫ T

0 |e (σ )| dσ 0.84 0.85 1.07 0.54 0.85 1.07
|vd(T)| 225 14.43 3 6680 1500 4838∫ T

0 |vd (σ )| dσ 4967 4784 5350 48,500 81,800 10,000
|vq(T)| 110 157.96 360 95.62 200 360∫ T

0

∣∣vq (σ )
∣∣ dσ 923 1600 6786 768 2210 6265
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of both controllers given in Figure A2. The control inputs
vd(t) and vq(t) are displayed in Figures A3 and A4, respec-
tively. The absolute values of the tracking error e(t) and
the control inputs vd(t) and vq(t) and their integrals at three
predefined instances where the reference velocity profile
in Equation (50) settles to its desired maximum velocity
(at T = 12.7 sec), the midpoint (at T = 22.9 sec) and at
the end of the pattern (at T = 36 sec) are presented in Ta-
ble 1. As illustrated by Figures A3 and A4 and Table 1, the
proposed backstepping controller performs better tracking
with relatively smaller control energy.

The second set of simulations were then performed us-
ing the more realistic desired velocity profile in Equation
(50) with the same control gains obtained for the first simu-
lations. The results of the second simulations are presented
in Figures A5–A8 and Table 2. It is clear that the proposed
robust method achieved better tracking with a low-energy
profile, although it did not require the exact knowledge of
the overall system parameters.

6. Conclusions

In this paper, a robust backstepping controller scheme for
variable-speed wind turbines with PMSGs was presented.
Via the use of a high-gain continuous robust controller
in conjunction with backstepping, the proposed method
achieved practical tracking of the generator velocity er-
ror despite the presence of parametric uncertainty on both
the mechanical and the electrical subsystems, that is, the
generator velocity tracking error can be driven uniformly
to an adjustable small bound even when the dynamical sys-
tem parameters required for most other previously proposed
controller implementations are not available. The bounded-
ness of the system states and the stability of the closed-loop
system were guaranteed via Lyapunov-based techniques.
Comparative simulation studies were presented to illustrate
the performance, feasibility and effectiveness of the pro-
posed method.

Note

1. A preliminary version of this work appeared in Seker,
Zergeroglu, and Tatlicioglu (2012).
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Appendix A. Dynamic terms
The linearly parameterisable terms in Equation (20) are explicitly
defined in the following form:

W1 �
[

Ĵ

φ̂m

ẅd

B̂P

2φ̂m

ẇd
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φ̂m

ẇd

K
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]
, (A1)

θ1 �
[

−Ld −Ld −Ld −Ld
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]T

,

where the auxiliary time-varying term K contains known variables
and is defined as

K � ke + 2knρ1e
∂

∂e
ρ1 + knρ

2
1 + ∂

∂e
vR1. (A2)
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Figure A1. First simulation – reference generator velocity profiles (top), actual generator velocity profile of PI controller (middle) and
the robust controller (bottom).

Figure A2. First simulation – velocity tracking error signals, e(t), for PI- (top) and robust-type controllers (bottom).
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Figure A3. First simulation – PI-type controller: voltages applied to the generator, vd(t) (top) and vq(t) (bottom).

Figure A4. First simulation – robust backstepping controller: voltages applied to the generator, vd(t) (top), vq(t) (middle) and the auxiliary
control input idref (bottom).
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Figure A5. Second simulation – reference generator velocity profiles (top), actual generator velocity profile of PI controller (middle)
and the robust controller (bottom).

Figure A6. Second simulation – velocity tracking error signals, e(t), for PI- (top) and robust-type controllers (bottom).
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Figure A7. Second simulation – PI-type controller: voltages applied to the generator, vd(t) (top) and vq(t) (bottom).

Figure A8. Second simulation – robust backstepping controller: voltages applied to the generator, vd(t) (top), vq(t) (middle) and the
auxiliary control input idref (bottom).
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