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This paper investigates the problem of H∞ model reduction for a class of continuous-time Markovian jump linear systems 
with incomplete statistics of mode information, which simultaneously considers the exactly known, partially unknown and 
uncertain transition rates. By fully utilising the properties of transition rate matrices, together with the convexification of 
uncertain domains, a new sufficient condition for H∞ performance analysis is first derived, and then two approaches, 
namely, the convex linearisation approach and the iterative approach, are developed to solve the model reduction problem. It 
is shown that the desired reduced-order models can be obtained by solving a set of strict linear matrix inequalities (LMIs) or 
a sequential minimisation problem subject to LMI constraints, which are numerically efficient with commercially available 
software. Finally, an illustrative example is given to show the effectiveness of the proposed design methods.

Keywords: Markovian jump systems; model reduction; incomplete statistics of mode information; linear matrix inequality

1. Introduction

In recent decades, extensive research has been focused on 
Markovian jump linear systems (MJLSs) in both academic 
and industrial communities. The inspiration of these stud-
ies is that MJLSs can model different types of dynamic 
systems subject to random abrupt changes in their struc-
tures, e.g. fault-prone manufacturing systems, power sys-
tems, economics systems and networked control systems 
(NCSs) (Wang, Lam, and Liu 2004a; Qiu, Feng, and Yang 
2009; Qiu, Feng, and Gao 2010; Shen, Wang, and Hung 
2010; Wang, Liu, and Liu 2010; Niu, Ho, and Li 2011; 
Shen, Wang, Hung, and Chesi 2011) and so on. In essence, 
MJLSs are a special class of hybrid systems with finite-state 
operation modes, and the system mode switching is gov-
erned by a Markov process (Wang, Lam, and Liu 2004b). It 
is known that the transition rates (TRs) in the Markov 
process determine the behaviour and performance of sys-
tems, and a number of results on the analysis and synthesis 
of MJLSs have been obtained under the assumption that the 
mode transition information is perfectly known (Shi, 
Boukas, and Agarwal 1999; Xu, Chen, and Lam 2003; Shi, 
Xia, Liu, and Rees 2006; Niu, Ho, and Wang 2007; Fei, 
Gao, and Shi 2009; Wu, Shi, and Su 2012).

However, it is noted that not all the mode transition 
information can be easily measured in many practical sys-
tems. Even if the mode TRs could be measured, there exist 
measurement errors (also referred as TR uncertainties) 
inevitably. Therefore, in recent years there have been some
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results on the analysis and design of MJLSs with incom-
plete statistics of mode information (Boukas 2005; Xiong, 
Lam, Gao, and Ho 2005; Karan, Shi, and Kaya 2006; Xiong 
and Lam 2009; Zhang and Lam 2010; Zhang, He, Wu, and 
Zhang 2011; Wei, Qiu, Karimi, and Wang 2013a). To men-
tion a few, in the context of continuous-time case, Boukas 
(2005) concerned the stability analysis problem for MJLSs 
with polytopic-type uncertain TRs; Xiong et al. (2005) 
considered the robust stabilisation problem for MJLSs 
with norm-bounded uncertain TRs; Zhang and Lam (2010) 
addressed the stability analysis and synthesis problems for 
MJLSs with partially unknown TRs. In parallel, the corre-
sponding results for the discrete-time case can be found in 
Boukas (2009), Liu, Wang, and Wang (2011), Zhao, Zhang, 
Shen, and Gao (2011) and Wei, Wang, and Qiu (2013b).

On the other hand, mathematical modelling of complex 
physical systems often results in high-order models, which 
brings serious difficulties to the analysis and synthesis of 
the concerning systems (Birouche, Mourllion, and Basset 
2012; Tahavori and Shaker 2013). Therefore, in practical 
applications it is desirable to approximate these high-order 
models by some simple lower-order models according to 
some given criteria. During the past decades, a number of 
approaches for model reduction have been developed, such 
as the Hankel norm approximation method (Zhou 1995; 
Gao, Lam, Wang, and Wang 2004), the H2 approach (Yan 
and Lam 1999), the H∞ approach (Zhang, Huang, and 
Lam 2003; Gao, Lam, and Wang 2006; Wu and Zheng 
2009)
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and the L2-L∞ approach (Lam, Gao, Xu, and Wang 2005). 
More recently, the linear matrix inequality (LMI) 
technique has been applied to deal with the model 
reduction problem for different classes of systems (Zhang 
et al. 2003; Lam et al. 2005; Gao et al. 2006; Wu and 
Zheng 2009). Specifically, Zhang et al. (2003) addressed 
the H∞ model reduction problem for MJLSs with 
completely known TRs. However, to the authors’ best 
knowledge, few results have been reported on the H∞ 
model reduction for continuous-time MJLSs with 
incomplete statistics of mode information, which 
simultaneously considers the exactly known, partially 
unknown and uncertain TRs. This motivates us for the 
present study.

According to the issues mentioned above, in this paper, 
we will investigate the problem of H∞ model reduction for 
a class of continuous-time MJLSs with incomplete 
statistics of mode information. The incomplete statistics of 
mode in-formation in the Markov stochastic process 
simultaneously takes into account the exactly known, 
partially unknown and uncertain TRs, which is a more 
practical scenario. By fully utilising the properties of the 
TRMs, together with the con-vexification of uncertain 
domains, a new H∞ performance analysis criterion for 
MJLSs with incomplete statistics of mode information will 
be first derived. To solve the model reduction problem, two 
sharply different approaches will then be presented. The 
first approach is based on a lin-earisation procedure, which 
casts the model reduction into a convex optimisation 
problem. The second one, which is based on a decoupling 
technique and cone complemen-tarity linearisation (CCL) 
method (El Ghaoui, Oustry, and AitRami 1997; Qiu, Feng, 
and Gao 2011), casts the model reduction into a sequential 
minimisation problem subject to linear matrix inequality 
(LMI) constraints. An illustrative example will be provided 
to demonstrate the effectiveness of the proposed 
approaches.

Notations. The notations used throughout the pa-per 
are standard. Rn and Rm×n denote, respectively, the n-
dimensional Euclidean space, and the set of all m × n real 
matrices; N

+ represents the set of positive integers; the 
notation P > 0 ( ≥ 0) means that P is real symmetric 
positive (semi-positive) definite; Sym{A} is the shorthand 
notation for A + AT; I and 0 represent the identity matrix 
and a zero matrix, respectively; (�, F , P) denotes a com-
plete probability space, in which � is the sample space, F 
is the σ algebra of subsets of the sample space, and P is the 
probability measure on F ; E[·] stands for the mathematical 
expectation; ‖ · ‖  denotes the Euclidean norm of a vector 
or its induced norm of a matrix; signals that are square 
inte-grable over [0, ∞) are denoted by L2[0, ∞) with the 
norm ‖ · ‖2. Matrices, if their dimensions are not explicitly 
stated, are assumed to be compatible for algebraic 
operations.

2. Problem formulation and preliminaries

Consider the following class of Markovian jump linear 
systems (MJLSs) in a fixed complete probability space

(�,F,P),

(�) : ẋ(t) = A(r(t))x(t) + B(r(t))u(t)

z(t) = C(r(t))x(t) + D(r(t))u(t), (1)

where x(t) ∈ Rnx is the state vector; u(t) ∈ Rnu is the con-
trol input vector which belongs to L2[0, ∞); z(t) ∈ Rnz

is the output vector. In (1), the process {r(t), t ≥ 0} is
a continuous-time homogeneous Markov chain with right
continuous trajectories and takes values in a finite set
I := {1, 2, . . . , N} with a transition rate matrix (TRM)
� := [λij]N × N given by

Pr{r(t + h) = j |r(t) = i} =
{

λijh + o(h), i �= j

1 + λiih + o(h), i = j,

where h > 0, limh→0(o(h)/h) = 0, and λij ≥ 0, for j �= i,
is the transition rate (TR) from mode i at time t to mode j
at time t + h, and λii = −∑N

j=1,j �=i λij . In the sequel, for
each possible r(t) = i, i ∈ I, the system matrices of the ith
mode are known and denoted by (Ai, Bi, Ci, Di), which are
real matrices with appropriate dimensions.

The TRs of the stochastic process in this paper are
considered to be uncertain and partially available, i.e.,
the TRM � = [λij]N × N is assumed to belong to a given
polytope P� with vertices �s, s = 1, 2, . . . , M , P� :={
�
∣∣� = ∑M

s=1 αs�s ; αs ≥ 0,
∑M

s=1 αs = 1
}
, where �s =

[λij]N × N, i, j ∈ I, are given TRMs containing unknown el-
ements still. For instance, a system (�) with four operation
modes, the TRM may be as,

⎡
⎢⎢⎣

λ11 λ̃12 λ̂13 λ14

λ̂21 λ̂22 λ23 λ24

λ̃31 λ̂32 λ̃33 λ̂34

λ41 λ̂42 λ̂43 λ̂44

⎤
⎥⎥⎦ ,

where the elements labelled with ‘ ˆ ’ and ‘ ˜ ’ represent
the unknown information and polytopic uncertainties on
TRs, respectively, and the others are known TRs. For nota-
tional clarity, ∀i ∈ I, we describe I = I (i)

K ∪ I (i)
UC ∪ I (i)

UK as
follows,

I (i)
K = {j : λij is known},

I (i)
UC = {j : λ̃ij is uncertain},

I (i)
UK = {j : λ̂ij is unknown }. (2)

Also, throughout this paper, we denote λ
(i)
K := ∑

j∈I (i)
K

λij

and λ
(is)
UC := ∑

j∈I (i)
UC

λ̃
(s)
ij , where λ̃

(s)
ij represents an uncertain

TR in the sth polytope, ∀s = 1, 2, . . . , M. For tractability
reasons, we further restrict the unknown diagonal element
λ̂ii as λ

(i)
B ≤ λ̂ii B(Zhang and Lam 2010), where λ(i) provides

a lower bound for the unknown element λ̂ii , and satisfies
λ

(i)
B ≤ −(λ(i)

K + λ
(is)
UC
)
.



To approximate the original MJLS in (1), in this pa-
per, we are interested in designing the following mode-
dependent reduced-order model,

˙̂x(t) = Ari x̂(t) + Briu(t)

ẑ(t) = Cri x̂(t) + Driu(t), (3)

where x̂(t) ∈ Rnr (nr < nx), ẑ(t) ∈ Rnz , and Ari ∈ Rnr×nr ,
Bri ∈ Rnr×nu , Cri ∈ Rnz×nr and Dri ∈ Rnz×nu are the gains
of the reduced-order models to be determined.

Define x̄(t) := [
xT (t) x̂T (t)

]T
, and z̄(t) := z(t) − ẑ(t).

Then, by augmenting (1) and (3) the model error dynamics
can be described as,

(�̄) : ˙̄x(t) = Āi x̄(t) + B̄iu(t)

z̄(t) = C̄i x̄(t) + D̄iu(t), (4)

where

Āi =
[

Ai 0
0 Ari

]
, B̄i :=

[
Bi

Bri

]
,

C̄i = [
Ci −Cri

]
, D̄i := Di − Dri. (5)

Therefore, the purpose of this paper is to design a mode-
dependent reduced-order model in the form of (3), such that
the model error system (�̄) in (4) with incomplete statistics
of mode information is stochastically stable and the in-
duced L2-norm of the operator from u(t) to the model error
z̄(t) is less than γ , i.e., ‖z̄(t)‖2

E2
:= E{ ∫∞

0 z̄T (t)z̄(t)dt
} ≤

γ 2 ‖u(t)‖2
2 := γ 2

∫∞
0 uT (t)u(t)dt , under zero initial condi-

tions for any non-zero u(t) ∈ L2[0, ∞).
Before ending the section, we give the following

lemma on the H∞ performance analysis of system (4) with

completely known TRs, which will be used in the proof of 
our main results.

Lemma 2.1 (Zhang et al. 2003): For the MJLS (4) with 
completely known TRs and a given scalar γ > 0, if the 
following coupled inequalities

[
ĀT

i Pi + PiĀi + Pi + C̄T
i C̄i PiB̄i + C̄T

i D̄i

∗ −(γ 2I − D̄T
i D̄i)

]
< 0,

∀i ∈ I, (6)

where Pi := ∑N
j=1 λijPj , have a feasible solution P =

{P1, P2, . . . , PN} with Pi > 0, then the MJLS (4) with
completely known TRs is stochastically stable with an H∞
performance γ .

3. Main results

In this section, we will first derive the H∞ performance
analysis criterion for the model error system (�̄) in (4)
with incomplete statistics of mode information. Then, two
sharply different approaches will be developed to solve
the H∞ model reduction problem formulated in the above
section.

3.1. H∞ performance analysis

In this subsection, by fully exploiting the properties of the
transition rate matrix (TRM), together with the convexifica-
tion of uncertain domains, a new H∞ performance analysis
criterion for the model error system (�̄) in (4) with incom-
plete statistics of mode information is presented, which will
play a key role in solving the H∞ model reduction problem.

Proposition 3.1: The model error system in (4) with in-
complete statistics of mode information is stochastically
stable with an H∞ performance γ if there exist matrices
Pi > 0, for each mode i ∈ I, such that the following matrix
inequalities hold,

ϒ
(s)
ij :=

⎡
⎣−I C̄i D̄i

∗ ĀT
i Pi + PiĀi + P̄

(s)
ij PiB̄i

∗ ∗ −γ 2I

⎤
⎦ < 0,

j ∈ I (i)
UK, s = 1, 2, . . . , M, (7)

where

P̄
(s)
ij :=

{
P

(i)
K + P

(is)
UC − (

λ
(i)
K + λ

(is)
UC
)
Pj , j ∈ I (i)

UK, if i ∈ I (i)
K ∪ I (i)

UC,

P
(i)
K + P

(is)
UC + λ

(i)
B Pi − (

λ
(i)
B + λ

(i)
K + λ

(is)
UC
)
Pj , j ∈ I (i)

UK, if i ∈ I (i)
UK,

P
(i)
K :=

∑
j∈I (i)

K
λijPj , P

(is)
UC :=

∑
j∈I (i)

UC
λ̃

(s)
ij Pj ,

λ
(i)
K :=

∑
j∈I (i)

K
λij , λ

(is)
UC :=

∑
j∈I (i)

UC
λ̃

(s)
ij . (8)

Proof: Based on Lemma 2.1, it is known that system
(4) subject to completely known transition rates (TRs) is
stochastically stable with an H∞ performance γ if (6)
holds. Since the diagonal elements in the TRM may be
unknown, we shall divide the proof of Proposition 3.1 into
two cases, that is, i ∈ I (i)

K ∪ I (i)
UC and i ∈ I (i)

UK, respectively.

Case (i): i ∈ I (i)
K ∪ I (i)

UC .

In this case, i ∈ I (i)
K ∪ I (i)

UC implies that λii is known or

uncertain, then it is straightforward that λ
(i)
K + λ

(is)
UC ≤ 0.



First, we consider the case that λ
(i)
K + λ

(is)
UC < 0.

Noticing that with incomplete statistics of mode infor-
mation, the term

∑N
j=1 λijPj in (6) can be treated as,

N∑
j=1

λijPj =
∑
j∈I (i)

K

λijPj +
∑

j∈I (i)
UK

λ̂ijPj

+
∑

j∈I (i)
UC

(
M∑

s=1

αsλ̃
(s)
ij

)
Pj

= P
(i)
K +

(
−λ

(i)
K − λ

(is)
UC
) ∑

j∈I (i)
UK

λ̂ij

−λ
(i)
K − λ

(is)
UC

Pj

+
M∑

s=1

αsP
(is)
UC , (9)

where

P
(i)
K :=

∑
j∈I (i)

K
λijPj , P

(is)
UC :=

∑
j∈I (i)

UC
λ̃

(s)
ij Pj ,

λ
(i)
K :=

∑
j∈I (i)

K
λij , λ

(is)
UC :=

∑
j∈I (i)

UC
λ̃

(s)
ij , (10)

and the elements λ̂ij , j ∈ I (i)
UK, are unknown; and∑M

s=1 αsλ̃
(s)
ij , ∀j ∈ I (i)

UC represents the uncertain elements
in the polytopic uncertainty description.

Since 0 ≤ αs ≤ 1,
∑M

s=1 αs = 1, and 0 ≤ λ̂ij

−λ
(i)
K −λ

(is)
UC

≤ 1,∑
j∈I (i)

UK

(
λ̂ij

−λ
(i)
K −λ

(is)
UC

)
= 1, (9) can be rewritten as,

N∑
j=1

λijPj =
M∑

s=1

αs

∑
j∈I (i)

UK

λ̂ij

−λ
(i)
K − λ

(is)
UC

×
(
P

(i)
K + P

(is)
UC −

(
λ

(i)
K + λ

(is)
UC
)

Pj

)
. (11)

Thus, for 0 ≤ αs ≤ 1 and 0 ≤ λ̂ij ≤ −
(
λ

(i)
K + λ

(is)
UC
)

, the

left-hand side (LHS) of inequality (6) can be rewritten as,

LHS(6) =
M∑

s=1

αs

∑
j∈I (i)

UK

λ̂ij

−λ
(i)
K − λ

(is)
UC

ϒ
(s)
ij , j ∈ I (i)

UK,

s = 1, 2, . . . , M, (12)

where

ϒ
(s)
ij :=

⎡
⎣−I C̄i D̄i

∗ ĀT
i Pi + PiĀi + P̄

(s)
ij PiB̄i

∗ ∗ −γ 2I

⎤
⎦ ,

P̄
(s)
ij := P

(i)
K + P

(is)
UC −

(
λ

(i)
K + λ

(is)
UC
)

Pj . (13)

Then, (6) holds if and only if ϒ
(s)
ij < 0 in (12).

Second, we consider the case that λ
(i)
K + λ

(is)
UC = 0.

In fact, if λ
(i)
K + λ

(is)
UC = 0, then all the elements in the

ith row of the vertices �s, s = 1, 2, . . . , M are completely
known. For this case, the second term of the right-hand side
of (9) is not involved and (7) can be obtained by following
a similar line as above with P̄

(s)
ij := P

(i)
K + P

(is)
UC .

Based on the above discussions, it is known that in the
presence of unknown elements λ̂ij , j �= i, inequality (6) is
equivalent to (7).

Case (ii): i ∈ I (i)
UK.

We first consider the case that λ̂ii < −
(
λ

(i)
K + λ

(is)
UC
)

.

Equivalently, for this case the term
∑N

j=1 λijPj in (6)
can be expressed as,

N∑
j=1

λijPj =
∑
j∈I (i)

K

λijPj + λ̂iiPi +
∑

j∈I (i)
UK,j �=i

λ̂ijPj

+
∑

j∈I (i)
UC

(
M∑

s=1

αsλ̃
(s)
ij

)
Pj

= P
(i)
K + λ̂iiPi −

(
λ̂ii + λ

(i)
K + λ

(is)
UC
)

×
∑

j∈I (i)
UK,j �=i

λ̂ij

−λ̂ii − λ
(i)
K − λ

(is)
UC

Pj

+
M∑

s=1

αsP
(is)
UC , (14)

where P
(i)
K := ∑

j∈I (i)
K

λijPj , and P
(is)
UC := ∑

j∈I (i)
UC

λ̃
(s)
ij Pj .

Similarly, it follows from 0 ≤ αs ≤ 1,
∑M

s=1 αs = 1, and

0 ≤ λ̂ij

−λ̂ii−λ
(i)
K −λ

(is)
UC

≤ 1,
∑

j∈I (i)
UK,j �=i

λ̂ij

−λ̂ii−λ
(i)
K −λ

(is)
UC

= 1 that,

N∑
j=1

λijPj =
M∑

s=1

αs

∑
j∈I (i)

UK,j �=i

λ̂ij

−λ̂ii − λ
(i)
K − λ

(is)
UC

×
[
P

(i)
K + P

(is)
UC + λ̂iiPi −

(
λ̂ii + λ

(i)
K + λ

(is)
UC
)

Pj

]
.

(15)

Correspondingly, for this case we can rewrite the left-hand
side of the inequality (6) as

LHS(6) =
M∑

s=1

αs

∑
j∈I (i)

UK,j �=i

λ̂ij

−λ̂ii − λ
(i)
K − λ

(is)
UC

ϒ
(s)
ij ,

j ∈ I (i)
UK, j �= i, s = 1, 2, . . . , M, (16)



where

ϒ
(s)
ij :=

⎡
⎣−I C̄i D̄i

∗ ĀT
i Pi + PiĀi + P̄

(s)
ij PiB̄i

∗ ∗ −γ 2I

⎤
⎦ ,

P̄
(s)
ij := P

(i)
K + P

(is)
UC + λ̂iiPi −

(
λ̂ii + λ

(i)
K + λ

(is)
UC
)

Pj .

(17)

It follows from (16) that (6) is equivalent to,

ϒ
(s)
ij < 0, j ∈ I (i)

UK, j �= i. (18)

For numerical tractability, by introducing a lower bound
λ

(i)
B for the unknown element λ̂ii , we have,

λ
(i)
B ≤ λ̂ii < −λ

(i)
K − λ

(is)
UC , (19)

which implies that λ̂ii may take any value in
[
λ

(i)
B ,−λ

(i)
K −

λ
(is)
UC + ε

]
for some sufficiently small ε < 0. Then λ̂ii can

be further written as a convex combination as follows,

λ̂ii = −κλ
(i)
K − κλ

(is)
UC + κε + (1 − κ)λ(i)

B , (20)

where 0 ≤ κ ≤ 1. Since λ̂ii in (20) depends on κ linearly, and
therefore (18) only needs to be satisfied for κ = 0 and κ =
1, that is, (18) holds if and only if the following inequalities
in (21)–(22) simultaneously hold,

ϒ
(s)
ij < 0, j ∈ I (i)

UK, j �= i, (21)

where ϒ
(s)
ij is defined in (17) with P̄

(s)
ij = P

(i)
K + P

(is)
UC −(

λ
(i)
K + λ

(is)
UC
)
Pi + ε(Pi − Pj ), and

ϒ
(s)
ij < 0, j ∈ I (i)

UK, j �= i, (22)

where ϒ
(s)
ij is defined in (17) with P̄

(s)
ij = P

(i)
K + P

(is)
UC −(

λ
(i)
K + λ

(is)
UC
)
Pj + λ

(i)
B (Pi − Pj ).

Since ε is small enough, (21) holds if and only if

ϒ
(s)
ij < 0, j ∈ I (i)

UK, j �= i, (23)

where ϒ
(s)
ij is defined in (17) with P̄

(s)
ij = P

(i)
K + P

(is)
UC −(

λ
(i)
K + λ

(is)
UC
)
Pi , which is implied by (22) when j = i, j ∈

I (i)
UK. Hence, the inequality (6) can be replaced by (7) in the

context ∀j ∈ I (i)
UK.

On the other hand, the case λ̂ii = −(λ(i)
K + λ

(is)
UC
)

means
that all the elements in the ith row of the vertices �s, s =
1, 2, . . . , M are completely known. For this case, the third
term of the right-hand side of (14) is not involved and by

following a similar line as above, (7) can be obtained with
P̄

(s)
ij := P

(i)
K + P

(is)
UC − (λ(i)

K + λ
(is)
UC )Pi .

In summary, with the presence of unknown and uncer-
tain elements in the TRM, one can readily conclude that
the error system (4) is stochastically stable with an H∞
performance γ if (7) holds. The proof is completed. �

Remark 1: By fully exploiting the properties of the TRMs,
together with the convexification of uncertain domains, a
novel H∞ performance analysis criterion is presented for
the MJLS (4) with incomplete statistics of mode informa-
tion in Proposition 3.1. The incomplete statistics of mode
information simultaneously considers the exactly known,
partially unknown and polytopic-type uncertain TRs, and
thus is more general for practical scenarios. It is worth
mentioning that the condition in (7) is no loss of gener-
ality, since the lower bound λ

(i)
B , of λ̂ii is allowed to be

arbitrarily small. It is also noted that there exist product
terms between the Lyapunov matrices and system matrices
in the condition (7), which bring some difficulties in the
solutions of model reduction problem. By applying some
decoupling techniques, in the following, two sharply differ-
ent approaches to solve the H∞ model reduction problem
will be proposed.

In the sequel, based on the new H∞ performance anal-
ysis criterion presented in Proposition 3.1, we will give the
model reduction synthesis results in the presence of incom-
plete statistics of mode information.

3.2. Model reduction via convex
linearisation approach

In this subsection, by a linearisation procedure, the model
reduction problem described in the above section will be
cast into a convex optimisation problem. The following
theorem presents a sufficient condition for the existence of
admissible reduced-order models.

Theorem 3.2: Consider MJLS (1) with incomplete statis-
tics of mode information and reduced-order model (3). The
model error system (4) is stochastically stable with a guar-
anteed H∞ performance γ , if there exist positive-definite

symmetric matrices Pi = [ Pi(1) EPi(2)

∗ Pi(2)

] ∈ R(nx+nr )×(nx+nr ),

E := [
Inr

0nr×(nx−nr )
]T

, and matrices Āri ∈ Rnr×nr , B̄ri ∈
Rnr×nu , Cri ∈ Rnz×nr , and Dri ∈ Rnz×nu , for each mode
i ∈ I, such that the following LMIs hold,

⎡
⎢⎢⎣

−I Ci −Cri Di − Dri

∗ �
(s)
1ij �

(s)
2ij Pi(1)Bi

∗ ∗ �
(s)
3ij Pi(2)E

T Bi

∗ ∗ ∗ −γ 2I

⎤
⎥⎥⎦ < 0,

j ∈ I (i)
UK, s = 1, 2, . . . ,M, (24)



where

�
(s)
1ij := 
1 + P

(1i)
K + P

(1is)
UC − (

λ
(i)
K + λ

(is)
UC
)
Pj (1), j ∈ I (i)

UK
�

(s)
2ij := 
2 + E

(
P

(2i)
K + P

(2is)
UC

)− (
λ

(i)
K + λ

(is)
UC
)
EPj (2), j ∈ I (i)

UK
�

(s)
3ij := Sym{Āri} + P

(2i)
K + P

(2is)
UC − (

λ
(i)
K + λ

(is)
UC
)
Pj (2), j ∈ I (i)

UK

⎫⎪⎬
⎪⎭ if i ∈ I (i)

K ∪ I (i)
UC,

�
(s)
1ij := 
1 + P

(1i)
K + P

(1is)
UC + λ

(i)
B Pi(1) − (

λ
(i)
B + λ

(i)
K + λ

(is)
UC
)
Pj (1), j ∈ I (i)

UK
�

(s)
2ij := 
2 + E

(
P

(2i)
K + P

(2is)
UC

)+ λ
(i)
B EPi(2) − (

λ
(i)
B + λ

(i)
K + λ

(is)
UC
)
EPj (2), j ∈ I (i)

UK
�

(s)
3ij := Sym{Āri} + P

(2i)
K + P

(2is)
UC + λ

(i)
B Pi(2) − (

λ
(i)
B + λ

(i)
K + λ

(is)
UC
)
Pj (2), j ∈ I (i)

UK

⎫⎪⎬
⎪⎭ if i ∈ I (i)

UK,


1 := Sym{Pi(1)Ai},

2 := EĀri + AT

i EPi(2), E := [
Inr

0nr×(nx−nr )
]T

,

P
(1i)
K :=

∑
j∈I (i)

K
λijPj (1), P

(2i)
K :=

∑
j∈I (i)

K
λijPj (2),

P
(1is)
UC :=

∑
j∈I (i)

UC
λ̃

(s)
ij Pj (1), P

(2is)
UC :=

∑
j∈I (i)

UC
λ̃

(s)
ij Pj (2). (25)

Moreover, if the above conditions have a set of feasible
solutions (Pi(1), Pi(2), Āri , B̄ri , Cri,Dri), then an admissi-
ble nr-order approximation model in the form of (3) can be
obtained as,

Ari = P −1
i(2)Āri , Bri = P −1

i(2)B̄ri , Cri = Cri, Dri = Dri.

(26)

Proof: By Proposition 3.1, the model error system (4) is
stochastically stable with an H∞ performance γ , if for each
mode i ∈ I, there exist positive-definite symmetric matri-
ces Pi such that (7) holds. Now, for simplicity in model re-
duction synthesis procedure, we first specify the Lyapunov
matrices Pi in (7) as,

Pi =
[

Pi(1) EP(2)

∗ P(3)

]
, (27)

where E := [
Inr

0nr×(nx−nr )
]T

, Pi(1) ∈ Rnx×nx , P(2) ∈
Rnr×nr and P(3) ∈ Rnr×nr . Then, similar to Gao et al. (2006)
and Wei et al. (2013a), performing a congruent transforma-
tion to Pi by diag

{
Inx

, P(2)P
−1
(3)

}
, yields,

[
Pi(1) EP(2)P

−1
(3) P T

(2)

∗ P(2)P
−1
(3) P T

(2)

]
:=

[
Pi(1) EP̄(2)

∗ P̄(2)

]
. (28)

Thus, without loss of generality, we can directly specify the
Lyapunov matrices as,

Pi =
[

Pi(1) EPi(2)

∗ Pi(2)

]
. (29)

It is noted that in this way the matrix variables Pi(2) are
set as Markovian and can be absorbed directly by the gain
variables Ari and Bri by introducing

Āri = Pi(2)Ari, B̄ri = Pi(2)Bri, i ∈ I. (30)

Now, substituting the Lyapunov matrix Pi given in (29) into
(7), together with consideration of the matrices defined in
(30), leads to (24) exactly. In other words, (24) is a sufficient
condition for (7) with the Lyapunov matrices Pi shown in
(29).

On the other hand, Pi > 0 implies that Pi(2) is non-
singular. Thus, the reduced-order model can be constructed
by (26). This completes the proof. �

Remark 2: Theorem 3.2 provides a sufficient condition for
the solvability of H∞ model reduction synthesis problem
for the MJLS (1) with incomplete statistics of mode infor-
mation. A desired reduced-order model can be determined
by solving the following convex optimisation problem,

Problem MRLA (model reduction via linearisation
approach).

Minimise γ subject to (24) for Pi(1), Pi(2), Āri , B̄ri , Cri,
Dri, i ∈ I.

Remark 3: It is noted that in order to obtain the strict
LMIs-based conditions in Theorem 3.2, a relaxation ma-
trix E is imposed in the Lyapunov matrices Pi, i ∈ I. This
structural constraint inevitably brings some degree of de-
sign conservatism. To reduce the design conservatism, in
the following subsection, we will resort to an iterative ap-
proach to solve the model reduction problem.

3.3. Model reduction via iterative approach

As mentioned in the previous subsection, the design con-
servatism of Theorem 3.2 is mainly induced by a struc-
tural constraint on the Lyapunov matrices. Therefore, for
reduced-order model synthesis purpose and to lessen the
design conservatism, it shall be useful to eliminate the
products of the system matrices with Lyapunov matrices.
Nevertheless, it is worth pointing out that due to the incom-
plete statistics of transition information, the indices i ∈ I,



j ∈ I (i) and s = 1, 2, . . . , M are simultaneously involved

in (7) i
UK

n Proposition 3.1. Thus, the celebrated elimination 
lemma (or called projection lemma) (Zhang et al. 2003; 
Wu and Zheng 2009) cannot be utilised to eliminate the 
coupling between the system matrices and Lyapunov ma-
trices in (7). In other words, for MJLSs in (1) with in-
complete statistics of mode information, the reduced-order 
models (3) cannot be obtained by the projection approach 
as proposed in Gao et al. (2004), Zhang et al. (2003) and 
Wu and Zheng (2009). To this end, inspired by Shaked 
(2001) and Qiu, Feng, and Gao (2012), in this subsection 
another decoupling technique will be used to separate the 
Lyapunov matrices from the system matrices. The result is 
summarised in the following theorem.

Theorem 3.3: Consider MJLS in (1) with incomplete 
statistics of mode information and reduced-order model in 
the form of (3). Given a scalar δ > 0, the model error 
system in (4) is stochastically stable with an H∞ perfor-
mance γ , if there exist positive-definite symmetric matri-
ces {Pi, Xi} ∈  R(nx +nr )×(nx +nr ), and matrices Ari  ∈ Rnr 

×nr , Bri  ∈ Rnr ×nu , Cri  ∈ Rnz×nr , and Dri  ∈ Rnz×nu , such that⎡
⎢⎢⎣

−δXi 0 I + δĀi δB̄i

∗ −I C̄i D̄i

∗ ∗ −δ−1Pi + P̄
(s)
ij 0

∗ ∗ ∗ −γ 2I

⎤
⎥⎥⎦ < 0,

j ∈ I (i)
UK, s = 1, 2, . . . ,M, (31)

PiXi = I, i ∈ I, (32)

where

Āi :=
[

Ai 0
0 Ari

]
, B̄i :=

[
Bi

Bri

]
, C̄i := [

Ci −Cri

]
, D̄i := Di − Dri,

P̄
(s)
ij :=

{
P

(i)
K + P

(is)
UC − (

λ
(i)
K + λ

(is)
UC
)
Pj , j ∈ I (i)

UK, if i ∈ I (i)
K ∪ I (i)

UC,
P

(i)
K + P

(is)
UC + λ

(i)
B Pi − (

λ
(i)
B + λ

(i)
K + λ

(is)
UC
)
Pj , j ∈ I (i)

UK, if i ∈ I (i)
UK,

(33)

with P
(i)
K , P

(is)
UC , λ

(i)
K and λ

(is)
UC defined in (8).

Proof: Similarly, it follows from Proposition 3.1 that if we
can show (7), then the claim result follows. To this end,
rewrite the inequality in (7) as,

⎡
⎣ −I C̄i D̄i

C̄T
i P̄

(s)
ij 0

D̄T
i 0 −γ 2I

⎤
⎦+ Sym

⎧⎨
⎩
⎡
⎣ 0

Pi

0

⎤
⎦[0 Āi B̄i

]⎫⎬⎭ < 0,

j ∈ I (i)
UK, s = 1, 2, . . . ,M. (34)

Note that

⎡
⎣ 0

Pi

0

⎤
⎦[ 0 Āi B̄i

] =
⎡
⎣ I 0 0

0 Pi 0
0 0 I

⎤
⎦
⎡
⎣ 0 0 0

0 Āi B̄i

0 0 0

⎤
⎦ ,

⎡
⎣ I 0 0

0 Pi 0
0 0 I

⎤
⎦ > 0.

(35)

Then, it is easy to see that there exists a sufficiently small
positive scalar δ such that the following inequality implies
(34),

δ

⎡
⎣0 0 0

0 Āi B̄i

0 0 0

⎤
⎦

T ⎡
⎣ I 0 0

0 Pi 0
0 0 I

⎤
⎦
⎡
⎣0 0 0

0 Āi B̄i

0 0 0

⎤
⎦

+ LHS(34) < 0, i ∈ I, j ∈ I (i)
UK, s = 1, 2, . . . ,M.

(36)

It is noted that for any matrices P, A and a positive scalar δ,
we have the following equality,

PA + AT P + δAT PA = (I + δA)T

× (δ−1P )(I + δA) − δ−1P. (37)

Then, rewriting the inequality (36) based on (37) and by
Schur complement twice, we have

⎡
⎢⎢⎣

−δP −1
i 0 I + δĀi δB̄i

∗ −I C̄i D̄i

∗ ∗ −δ−1Pi + P̄
(s)
ij 0

∗ ∗ ∗ −γ 2I

⎤
⎥⎥⎦ < 0,

j ∈ I (i)
UK, s = 1, 2, . . . ,M. (38)

Setting Xi := P −1
i , it is easy to see that (38) is equivalent

to (31) and (32). This completes the proof. �
Remark 4: Theorem 3.3 provides another sufficient con-
dition for testing the solvability of H∞ model reduction

synthesis for MJLS (1) with incomplete statistics of mode 
information. It is noted that the condition in Theorem 3.3 
is not strict LMIs-based due to the matrix equality in 
(32). However, with the cone complementarity linearisa-
tion (CCL) technique (El Ghaoui et al. 1997; Qiu et al. 
2011), we can resolve this nonconvex feasibility problem 
by formulating it into a sequential optimisation problem
subject to LMI constraints. The basic idea of CCL algo-
rithm is that if the LMI

[ P I
I X

] ≥ 0 is feasible with the n ×
n matrix variables P > 0 and X > 0, then Trace(PX) ≥ n,
and Trace(PX) = n if and only if PX = I.

Based on the above discussions and using a cone com-
plementarity technique, the nonconvex feasibility problem
given in (31) and (32) is converted into the following non-
linear minimisation problem that involves LMI conditions.



Problem MRIA (model reduction via iterative
approach).

Minimise Trace
(∑N

i=1 PiXi

)
subject to (31) and

[
Pi I
∗ Xi

]
≥ 0, ∀i ∈ I. (39)

Then, the suboptimal performance of γ can be found by 
the following algorithm. The convergence of this algorithm 
is guaranteed in terms of similar results in El Ghaoui et al.
(1997) and Qiu et al. (2011).

Algorithm MRIA: Suboptimal performance of γ
Step 1. Choose a sufficiently large initial γ > 0 and

a small positive scalar δ, such that there exists a feasible
solution to (31) and (39). Set γ 0 = γ .

Step 2. Find a feasible set
(
P

(0)
i , X

(0)
i , A

(0)
ri , B

(0)
ri ,

C
(0)
ri , D

(0)
ri ,∀i ∈ I) that satisfies the conditions in (31) and

(39). Set q = 0.
Step 3. Solving the following LMI problem over the

variables Pi, Xi, Ari, Bri, Cri and Dri,

minimise trace

(
N∑

i=1

(
P

(q)
i Xi + PiX

(q)
i

))

subject to (31) and (39). (40)

Set P
(q+1)
i = Pi and X

(q+1)
i = Xi .

Step 4. Substituting the gains Ari, Bri, Cri and Dri ob-
tained in Step 3 into (7) and if the LMIs in (7) are feasible 
with respect to the variables Pi, i ∈ I, then set γ 0 = γ 
and return to Step 2 after decreasing γ to some extent. If 
(7) are infeasible within the maximum number of iterations 
allowed, then exist. Otherwise, set q = q + 1, and go to 
Step 3.

Remark 5: It is noted that the Algorithm MRIA involves a 
tuning parameter δ. When the scalar δ is given, the problem 
MRIA can be easily solved by the CCL technique. The issue 
that one then faces is how to find a scalar such that (31) and 
(39) have feasible solutions. A simple way to address the 
tuning issue is by the trial-and-error method. Another pos-
sible way is to utilise some numerical optimisation-search 
algorithms, such as the program fminsearch in the optimisa-
tion toolbox of MATLAB, genetic algorithm, etc. It has been 
demonstrated that these optimisation-search procedures are 
indeed efficient for the LMIs-based parameter-tuning prob-
lems (Shaked 2001; Qiu et al. 2012).

Remark 6: It is noted that the conditions in Theorem 3.2 
are convex, and thus can be readily solved with com-
mercially available software. The design conservatism of 
Theorem 3.2 mainly comes from the structural constraint 
of Lyapunov matrices Pi in (29). In the iterative approach, 
the conditions given in (31) and (32) are equivalent to 
the corresponding performance analysis results given in

Proposition 3.1. This is the main advantage of Theorem 3.3
over Theorem 3.2. However, the computation cost involved
in Algorithm MRIA is also much larger than that involved
in Theorem 3.2 (MRLA), especially when the number of
iterations increases.

4. An illustrative example

In this section, we will present an example to demonstrate
the effectiveness of the proposed approaches.

Consider a continuous-time Markovian jump linear sys-
tem (MJLS) in (1) with four modes, and the system param-
eters are given as follows,

[
A1 B1

C1 D1

]
=

⎡
⎢⎢⎢⎢⎣

−2 3 −1 1 −2.5
0 −1 1 0 1.3
0 0 −3 12 1.6
0 0 0 −4 −3.4

1.2 0.5 1.7 1.2 0.5

⎤
⎥⎥⎥⎥⎦ ,

[
A2 B2

C2 D2

]
=

⎡
⎢⎢⎢⎢⎣

−1 2 −1 1 −1.5
0 −3 1 0 1.2
0 0 −3 4 1.6
0 0 0 −5 −2
1 0.5 1.2 1 0.5

⎤
⎥⎥⎥⎥⎦ ,

[
A3 B3

C3 D3

]
=

⎡
⎢⎢⎢⎢⎣

−3 1 −1 1 −1
0 −2 1 0 0.8
0 0 −5 2 1.3
0 0 0 −3 −1.4

0.8 0.4 1.2 1.2 0.5

⎤
⎥⎥⎥⎥⎦ ,

[
A4 B4

C4 D4

]
=

⎡
⎢⎢⎢⎢⎣

−2.5 1 −1 1 −1.6
0 −3 1 0 1.3
0 0 −4 6 1
0 0 0 −6 −2.4

1.3 0.5 1.5 0.8 0.5

⎤
⎥⎥⎥⎥⎦ .

Four different cases for the transition rate matrix (TRM) are
given in Table 1, where the elements labelled with ‘ˆ ’ and
‘ ˜ ’ represent the unknown and uncertain transition rates
(TRs), respectively. Specifically, the Case 1, Case 2, Case 3
and Case 4 stand for the completely known TRs, incomplete
statistics of mode information (including known, partially
unknown and uncertain TRs), partially unknown TRs, and
completely unknown TRs, respectively.

For Case 2 shown in Table 1, it is assumed that the
uncertain TRs comprise two vertices �s, s = 1, 2, where
the vertices for the second row �s(2), s = 1, 2, are given
by

�1(2) = [
λ̂21 −2 1.2 λ̂24

]
,

�2(2) = [
λ̂21 −1 0.3 λ̂24

]
,



Table 1. Four different TRMs.

Case 1: Completely known TRM Case 2: Incomplete TRM1

⎡
⎢⎣

−1.3 0.2 0.8 0.3
0.3 −1.3 0.5 0.5
0.1 0.9 −2.5 1.5
0.4 0.2 0.6 −1.2

⎤
⎥⎦

⎡
⎢⎢⎣

−1.3 0.2 λ̂13 λ̂14

λ̂21 λ̃22 λ̃23 λ̂24

0.1 λ̂32 −2.5 λ̂34

λ̂41 0.2 0.6 λ̂44

⎤
⎥⎥⎦

Case 3: Incomplete TRM2 Case 4: Completely unknown TRM⎡
⎢⎢⎣

−1.3 0.2 λ̂13 λ̂14

λ̂21 λ̂22 λ̂23 λ̂24

0.1 λ̂32 −2.5 λ̂34

λ̂41 0.2 0.6 λ̂44

⎤
⎥⎥⎦

⎡
⎢⎢⎣

λ̂11 λ̂12 λ̂13 λ̂14

λ̂21 λ̂22 λ̂23 λ̂24

λ̂31 λ̂32 λ̂33 λ̂34

λ̂41 λ̂42 λ̂43 λ̂44

⎤
⎥⎥⎦

and the other rows in the two vertices are defined with the
same elements, that is,

�s(1) = [−1.3 0.2 λ̂13 λ̂14

]
,

�s(3) = [
0.1 λ̂32 −2.5 λ̂34

]
,

�s(4) = [
λ̂41 0.2 0.6 λ̂44

]
, s = 1, 2.

Furthermore, we restrict the unknown diagonal element
λ̂44 with a lower bound λ

(4)
B = −3 in Case 2; set λ

(2)
B =

−4 and λ
(4)
B = −3 in Case 3; and also assign λ

(1)
B = −2,

λ
(2)
B = −4, λ

(3)
B = −3 and λ

(4)
B = −3 a priori for Case 4,

respectively.
The objective is to design a reduced-order model of the 

form (3) to approximate the above system such that the 
model error system (4) is stochastically stable with an H∞ 
performance index γ . By solving the problems MRLA and 
MRIA with δ = 0.1 and the maximum number of itera-tions 
allowed as 100, a detailed comparison between the 
minimum H∞ performance indices γmin obtained based on 
Theorems 3.2 and 3.3 is summarised in Table 2. By in-
spection of Table 2, it is easy to see that the results based on 
Theorem 3.3 (MRIA) are much less conservative than those 
based on Theorem 3.2 (MRLA). It is also shown from 
Tables 1 and 2 that the more the information on TRs is avail-
able, the better H∞ performance can be obtained, which is

effective to reduce the design conservatism. Therefore, the
introduction of the uncertain TRs is meaningful.

Specifically, for nr = 3, we obtain γmin = 1.4164 by 
Theorem 3.2 with incomplete TRM1 shown in Table 1, and 
the three-order model parameters are given by,

[
Ar1 Br1
Cr1 Dr1

]
=

⎡
⎢⎣

−1.7242 2.4467 −0.7379 2.6112
0.0017 −1.0005 0.9994 −1.3006
3.5045 −6.6357 0.1266 −0.2661

−1.5486 0.1635 −2.0128 0.3667

⎤
⎥⎦,

[
Ar2 Br2
Cr2 Dr2

]
=

⎡
⎢⎣

−1.2273 1.3075 −0.6212 2.0471
0.1000 −3.1191 0.9180 −1.4547
0.6898 −2.2215 −2.2220 −2.2403

−1.0315 0.0796 −1.4729 0.3911

⎤
⎥⎦,

[
Ar3 Br3
Cr3 Dr3

]
=

⎡
⎢⎣

−2.9838 0.4674 −0.7342 1.4153
0.1116 −2.2021 0.9262 −0.8209
0.0825 −0.7079 −4.3823 −1.2055

−0.8386 0.0698 −1.5773 0.2912

⎤
⎥⎦,

[
Ar4 Br4
Cr4 Dr4

]
=

⎡
⎢⎣

−2.7213 0.5360 −0.6519 1.9938
0.2009 −3.1982 0.8568 −1.8801
0.1847 −3.5380 −2.6115 −1.4419

−1.2610 −0.0789 −1.7249 0.3993

⎤
⎥⎦.

For nr = 3, we obtain γ = 1.0 by solving the Algo-rithm 
MRIA after 100 iterations with incomplete TRM1 shown 
in Table 1, and the three-order model parameters are

Table 2. Comparison of minimum H∞ performance for different TRMs.

Three-order Two-order One-order

Theorem 3.2 Theorem 3.3 Theorem 3.2 Theorem 3.3 Theorem 3.2 Theorem 3.3
TRMs (MRLA) (MRIA) (MRLA) (MRIA) (MRLA) (MRIA)

Case 1 1.1472 0.4 3.1683 0.9 3.1886 0.9
Case 2 1.4164 1.0 3.4504 1.2 3.4759 1.2
Case 3 1.6002 1.2 3.5248 1.4 3.5497 1.4
Case 4 2.8666 2.1 4.9436 2.8 4.9575 2.8



given by,

[
Ar1 Br1
Cr1 Dr1

]
=

⎡
⎢⎣

−2.6346 2.4270 0.2987 3.4541
0.6704 −1.9250 0.6497 −1.8063
7.6536 −7.7100 −3.4463 −1.9041

−1.6845 0.6684 −1.6363 0.4908

⎤
⎥⎦,

[
Ar2 Br2
Cr2 Dr2

]
=

⎡
⎢⎣

−2.0600 1.3113 −0.0737 1.6033
0.9626 −4.3074 0.3832 −1.4598
2.4065 −2.9088 −3.4451 −1.7387

−1.5378 0.4070 −1.1007 0.5312

⎤
⎥⎦,

[
Ar3 Br3
Cr3 Dr3

]
=

⎡
⎢⎣

−3.0769 0.2218 −0.0270 1.1196
−0.1415 −3.2393 0.4244 −1.0786

1.2613 −1.2557 −5.3077 −1.4461
−1.3818 0.6491 −1.1270 0.5125

⎤
⎥⎦,

[
Ar4 Br4
Cr4 Dr4

]
=

⎡
⎢⎣

−3.7483 0.9741 0.0087 1.9017
0.5611 −4.7360 0.5143 −1.6656
3.7021 −4.2059 −4.4138 −1.1339

−1.7264 0.3602 −1.3931 0.5426

⎤
⎥⎦.

The feasible solutions for the other cases are omitted for 
brevity.

In order to further illustrate the effectiveness of the 
designed approximation models, simulations have been 
carried out. Specifically, choose the zero initial condition 
and the input u(t) = 0.1e−0.01t+1 cos(0.02t). With the 
above obtained approximation models under Case 2 in 
Table 1 and given one possible realisation of the Markovian 
jumping mode, the output trajectories of the original 
system and approximation models obtained based on 
Theorem 3.2 (MRLA) and Theorem 3.3 (MRIA) are 
depicted in Fig-ures 1 and 2, respectively. It can be clearly 
observed from the simulation curves that, despite the 
incomplete transi-tion descriptions in the TRM, the 
obtained reduced-order models approximate the original 
system very well.

Figure 1. Output trajectories of the original system and reduced-
order models with incomplete TRM1 based on Theorem 3.2
(MRLA).

Figure 2. Output trajectories of the original system and reduced-
order models with incomplete TRM1 based on Theorem 3.3
(MRIA).

5. Conclusions

This paper has addressed the problem of H∞ model reduc-
tion for a class of continuous-time Markovian jump linear
systems with incomplete statistics of mode information,
which simultaneously involves the exactly known, partially
unknown and uncertain transition rates. By fully utilising
the properties of the transition rate matrices, together with
the convexification of uncertain domains, a new H∞ per-
formance analysis criterion has been derived. Two sharply
different approaches, namely, the convex linearisation
approach and iterative approach, have been developed to
solve the model reduction problem. It has been shown
that the desired reduced-order models can be obtained
by solving a set of strict linear matrix inequalities
(LMIs) or a sequential minimisation problem subject to
LMI constraints. An illustrative example has been pro-
vided to demonstrate the effectiveness of the proposed
approaches.
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