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This paper presents an implementation of the Unfalsified Control (UC) method using the Riccati-based pa-
rameterization of H∞ controllers. The method provides an infinite controller set to (un)falsify the real-time data
streams seeking for the best performance. Different sets may be designed to increase the degrees of freedom of the
set of controller candidates to perform UC. In general, a set of m central controllers could be designed, each one
seeking different objectives and all with their own parameterization as a function of a stable and bounded transfer
matrix. For example, one controller parameterization could be designed to solve the robust stability of a model
set which covers the physical system, therefore guaranteeing feasibility. The implementation requires the on-line
optimization of either quadratic fractional or quadratic problems, depending on the selection of the cost function.
A MIMO time-varying model of a permanent magnet synchronous generator illustrates the use of this technique.
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1. Introduction

An important area of research is model-free and data driven control design (Parastvand and Khosrowjerdi (2013);
Zhai et al. (2013)), where Unfalsified control (UC) can be included. The latter has been introduced in 1997 in
Safonov and Tsao (1997) and developed since then by different researchers (see also Stefanovic and Safonov
(2011); Jin and Safonov (2012); Safonov (1996); Tsao and Safonov (2001); Ingimundarson and Sánchez Peña
(2008); Cabral and Safonov (2004); van Helvoort et al. (2007); Jin et al. (2011)). Basically, it consists of a set of
candidate controllers and an algorithm (falsifier) that decides which one will achieve the best performance. The
falsifier selects the most suitable controller based only on the information provided by measures of the input and
output of the system.

It has several important conceptual advantages:

• It is implemented as a model-free procedure. No linearity, time-invariance or finite dimension is assumed on the system’s
model, and neither on the noise or perturbations.

• It is solely based on the real time input/output (I/O) data, which can be obtained from the open or closed loop behavior.
No other parameter needs to be measured in real time as in the case of LPV control, nor any identification procedure
needs to be performed as in classical adaptive control.

• The only objective to seek is the best possible performance, which is measured by a predetermined cost function.
• Controller selection can be performed without actually connecting it into the closed-loop in order not to perturb the

system.

Although the UC implementation is not model-based, in many cases different model-based design procedures
may be used in order to produce a set of candidate controllers. In addition, the falsification based on the cost
function needs to be carried out in real time, which in many cases could be computationally demanding. There
are basically two ways to implement an UC in real applications, which are based on a priori or a posteriori
information. These two alternatives create a memory vs. computation time compromise.

(1) Design a finite number of controllers off-line based on a priori information on all plausible future situations, including
failures (Ingimundarson and Sánchez Peña (2008)). Based on an adequate cost function, select the controller that out-
performs all others. This necessarily implies the use of more memory to keep the dynamics of several controllers during

∗Corresponding author. Email: rsanchez@itba.edu.ar

1



November 5, 2013 International Journal of Systems Science UC-Hinf-IJSS

implementation.
(2) Establish a general controller structure and select its parameters on-line in order to optimize the cost function. This

approach is based solely on the a posteriori information, and is aligned with the UC concept. Here in general, a heavier
computational burden is necessary.

In this last category we can mention the ellipsoidal method (Cabral and Safonov (2004); van Helvoort et al.
(2007)), which due to a particular selection of cost function and controller structure, may be optimized
analytically. Nevertheless it does not guarantee feasibility1 and the method does not generalize gracefully from
SISO to MIMO models (van Helvoort et al. (2007)). Some recent references can be found in Wonghon and
Engell (2012); Neamtu and Stoica (2011) and Wang et al. (2011).

A comment concerning cost functions in UC is useful here. A detectable cost function V (see Stefanovic and
Safonov (2011)) reveals closed-loop instability, although in practice it is not clear how long it takes to detect it2.
Previous to this fact, feasibility should be guaranteed.

Here we seek to combine both approaches, 1. and 2., using all possible a priori information in order to design
the controller structure (and guarantee feasibility), but accessing only the real-time a posteriori information at the
implementation stage. In addition to cost detectability, a robust stabilizing controller set is designed in order to
have a fast way to stabilize the loop. Meanwhile, another set may seek for the best performance measure.

The paper is organized as follows. The main results are presented in next Section, and are illustrated in
Section 3 by their application to a MIMO time-varying model of a permanent magnet synchronous generator.
Final conclusions are drawn in Section 4.

Throughout the paper, the (lower) LFT between two LTI systems M and Q is represented by

F`(M,Q) = M11 +M12Q (I −M22Q)−1M21, where M =

[
M11 M12

M21 M22

]
.

The norm used in the cost function V is a truncated 2-norm defined as follows: ‖x‖ =
√∫ Ta

0
xT (t)x(t)dt.

Finally, Z+ denotes the set of positive integers.

2. H∞-parameterization based UC

2.1 UC background
The UC concept proposed by Safonov and Tsao (1997) is illustrated in Figure 1. The performance specifications
are stated as a cost-function V depending on the reference r and on the open-loop input u and output y. As a
consequence, the performance specifications define a subset Tspec = {(r, u, y) : V (r, u, y) < η}. The only
information about the system is the set of measures Z = {(u(τ), y(τ)), 0 ≤ τ ≤ t}. The candidate controller
Ki belongs to the set

Ki 4=
{

(r, u, y) : u = Ki

[
r
y

]}
,

where Ki is “causually-left-invertible”, i.e., there exists K−1
i that allows the computation of a fictitious reference

rf from (u, y). This reference is the value that r would take if the controller Ki were inserted in the loop when
the input and output of the plant are (u, y). The fictitious reference can be computed from Z and Ki without
actually inserting the controller in the loop from

rf = K−1
i u+ y. (1)

In this framework, the controller Ki is said to be unfalsified by the experimental information Z if
Ki ∩ Z ∩ Tspec 6= ∅, otherwise the controller is said to be falsified by the measured information. The problem is
feasible if the set of candidate controllers includes at least one which stabilizes the system (page 18, Stefanovic
and Safonov (2011)).

The selection of the most adequate controller, also denoted the falsifier procedure, according to the a
posteriori information (u, y) relies on the evaluation of a cost-detectable function such as

V (u, y) =
‖wuu‖2 + ‖weef‖2

α+ ‖rf‖2
, (2)

1The UC problem is feasible if there exists at least one stabilizing controller in the candidate set, see Stefanovic and Safonov (2011).
2There are no bounds on the time it takes for V to detect an unstable closed-loop system Dehghani et al. (2007).
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Figure 1. UC general scheme

where the fictitious reference has been defined in (1) and its corresponding tracking error is
ef = rf − y = K−1

i u. The linear filters wu and we weight the control signal u and the fictitious error ef .
Constant α is defined in order not to unnecessarily increase the cost when rf ≈ 0. Then, at each iteration of the
UC algorithm, the following optimization problem is solved

min
K
V (u, y). (3)

where K = ∪mi=1Ki. The results proposed here will guarantee feasibility and avoid the controller inverse in the
falsifier procedure.

2.2 Controller sets
As mentioned previously, although the implementation of an UC is model-free, there is always some a priori
information that can be used in order to design the set of candidate controllers or the controller structure. Here,
the robust control framework and theH∞-parameterization based on the results in Doyle et al. (1989) are used as
a controller structure in the proposed falsification algorithm. In addition, this controller parameterization is also
beneficial in order to avoid the “causually-left-invertible” assumption and the controller inverse in the cost
function.

This procedure applies to MIMO systems that may be described by nonlinear equations. Such systems could
be “covered” by a (bounded) set of models with dynamic uncertainty, as follows:

G = {F` [G0(s),∆(s)] , ‖∆(s)‖∞ < 1} . (4)

The transfer function G0(s) is the nominal model and ∆(s) is an unknown but bounded matrix which weights
the uncertainty frequency distribution and its I/O relation, e.g. additive uncertainty
G = {G0(s) +Wδ(s)∆, ‖∆‖∞ < 1}. This is a standard representation of systems in the robust control
framework and can be obtained from robust identification procedures, see IEEE Special issue (1992); Chen and
Gu (2000) and Chap. 10 of Sánchez Peña and Sznaier (1998).

Nevertheless it could happen that there is no controller that could robustly stabilize such a large set of models,
or that the resulting performance is not good enough. In that case, the actual system could be divided into m
smaller regions and for the i-th region, a model set Gi = {G0,i(s) +Wδ,i(s)∆i(s), ‖∆i‖∞ < 1} is obtained.
Next, i = 1, . . . ,m control problems can be configured as in Figure 2. There, the augmented model Gaug,i is a
combination of the nominal model G0,i(s), the robustness weight Wδ,i and a performance weight Wp,i, which
represent the particular problem at hand.

Based on Doyle et al. (1989), for each augmented model Gaug,i an optimalH∞ controller Ki can be
parameterized as a function of a stable, bounded parameter Qi. In addition, considering all augmented models
i = 1, . . . ,m the set of all controllers is defined as:

K 4= {Ki(s) = F` [Mi(s), Qi(s)] , ‖Qi(s)‖∞ < γi, i = 1, . . . ,m} . (5)

Each controller Ki solves a robust performance problem3, i.e. it ensures that the transfer matrix between w → z
satisfies ‖Tzw,i‖∞ < γi for all stable parameter Qi with ‖Qi(s)‖∞ < γi. The controller Ki corresponds to the
i-th augmented model Gaug,i as illustrated in Figure 2. The notation for the central controller is as follows
K0,i = Ki for Qi = 0.

We can interpret this result in several ways. The first interpretation has been stated previously, i.e. m different
uncertainty sets Gi which “cover” a physical system in order to achieve desired levels of performance in each
region. These regions could be linearizations of a nonlinear model at different working points.

3Note that in the context ofH∞ control theory, performance is based on an infinite amount of data, whereas in UC it refers to a finite amount
of data points Z , as defined in subsection 2.1.
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Figure 2. i-th augmented plant Gaug,i andH∞ controller parameterization structure.

Another interpretation is that one of the uncertainty sets, say Gk, covers the complete system and as a
consequence, any member of the robust controller set Kk(s) = F` [Mk(s)), Qk(s)] guarantees closed loop
internal stability of all members of G in equation (4), therefore assuring the feasibility of the unfalsification
problem. Nevertheless, this controller subset Kk will provide an extremely low performance in practice since the
uncertainty set G could be very large and include more models than the actually necessary.

This leads to the third interpretation which circumvents this last issue. The m augmented model set Gaug,i
and their correspondingH∞ controllers Ki could be designed with the same augmented structure but with
different uncertainty and performance weights, i.e. different objectives. For example, different controllers could
be designed focused on pre-defined faults that could appear in the system (fault-tolerance based UC can be found
in Ingimundarson and Sánchez Peña (2008); Coito and Palma (2011); Jain et al. (2012)). Another important
controller set would be the robust stability one Kk mentioned previously (assuring feasibility) or others which
only seek for performance in a smaller region. The falsification algorithm will decide which one provides the
better performance at each time, depending on the actual I/O data (u, y). The sets could be shrunk at each
iteration based on reducing the size of the γi.

The selection of the most adequate controller according to the a posteriori information (u, y) relies on the
evaluation of a cost-detectable function and the optimization problem (3). It can be summarized in the following
pseudo-code.

(1) Initialization: i← 1, t← 0, Kt ← K0,i;
(2) t← t+ Ts, collect data u and y into U and Y , respectively;
(3) IF

t/Ta ∈ Z+

THEN
FOR i← 1 : m

V i? ← arg min‖Qi‖<γiV (U, Y,K0,i);
END
[V?, i

?]← mini{V i? };
IF

V (U, Y,K) > V? + ε;
THEN

Kt ← Ki? ;
ENDIF;
clear U and Y;

ENDIF;

(4) Go to 2. ♦

The index i denotes which is the current central controller (K0,i), and Ts and Ta are the sample time, and the
interval between two consecutive falsification tests, respectively. In the example section, Ta has been selected as
a multiple of Ts. Kt is the current controller inserted in the closed loop, with t denoting the time.

The algorithm starts with K0,1, the robust controller which stabilizes the set of models covering the physical
system. At times Ts in step 2, the value of signals u and y are accumulated in vectors U and Y , respectively. At
each period of time Ta, i.e. t/Ta ∈ Z+ in step 3, a new falsification test starts. For each i = 1, . . . ,m, an
optimization procedure searches over all elements of controller set Ki, i.e. all ‖Qi‖∞ < γi, in order to minimize
the cost function, say V i? . Next, the following is computed V? = mini{V i? }, and the index associated with V? is
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Figure 3. Controller structure based on itsH∞ parameterization to avoid computing its inverse.

saved in i?. There should always be a set of robust stabilizing controllers (such as the set Kk mentioned
previously) in order to guarantee feasibility. The current controller is falsified if its cost function is greater than
V? + ε, otherwise it will be active for another interval Ta. In practice, ε > 0 is defined in order to avoid infinite
switching.

2.3 Search for the most adequate parameter Q
The previous problem is particularized for a given controller set Ki, and the UC algorithm must determine the
most adequate parameter Qi. This implies solving the optimization problem

min
‖Qi‖<γi

V (u, y,Ki). (6)

To provide an explicit solution for the problem (6), it is necessary to define the cost function V . Here, two
different detectable cost functions will be proposed, the one in (2) related to a standard mixed sensitivity
problem, and the one related to the ellipsoidal UC in van Helvoort et al. (2007).

In both cases the cost function involves computing the fictitious reference rf,i from the inverse of the
controller to be able to evaluate V without actually inserting Ki in the loop. From here on, to simplify the
notation, the index i will be eliminated.

Taking into account theH∞ controller parameterization and the LFT manipulations in Chapter 10, Zhou et al.
(1996):

K−1 = (T +QU)−1 (R+QS) ,

where

[
R S
T U

]
=

[
M−1

12 −M22M
−1
12

M−1
12 M11 M21 −M22M

−1
12 M11

]
, Mi =

[
M11 M12

M21 M22

]
.

Now consider Q as a linear combination of filters parametrized by a vector variable λ ∈ Rn, i.e.

Q =

n∑
j=1

λjfj ,


‖fj‖∞ < 1, j = 1, · · · , n

λ ∈ Λ
4
=
{∑n

j=1 |λj | ≤ γ
} (7)

where {fj , ; j = 1, · · · , n} is a set of predefined transfer matrices. As a consequence the required condition
‖Q‖∞ < γ is satisfied. In order for the algorithm to learn from past information, the controller set will shrink at
each step according to the optimal value of λ, i.e. its bound γ will decrease.

According to Stefanovic and Safonov (2011) (page 26) the cost function V in (2) may be modified in order not
to invert the controller, as follows (see Fig. 3).

Ṽ [u, y,Q(λ)] =
‖wuu‖2 + ‖weẽf‖2

α+ ‖νf‖2
=

‖wuu‖2 + ‖we [T +Q(λ)U ]u‖2
α+ ‖ [R+Q(λ)S] y + [T +Q(λ)U ]u‖2

4
=
nV (λ)

dV (λ)
(8)
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Here νf = (R+QS)rf and u = (T +QU)−1ẽf . The problem to be solved is therefore:

min
‖Q‖∞<γ

Ṽ [u, y,Q(λ)] = min
λ∈Λ

‖wuu‖2 + ‖we [T +Q(λ)U ]u‖2
α+ ‖ [(Ry + Tu) +Q(λ)(Sy + Uu)] ‖2

= min
λ∈Λ

β + ‖v +Wλ‖2
α+ ‖x+ Zλ‖2 (9)

where

v = weM
−1
12 M11u, wj = wefj (M21u−M22v) , W = [w1 · · ·wn] ∈ Rm×n

x = M−1
12 (y +M11u) , zj = fj (M21u−M22x) , Z = [z1 · · · zn] ∈ Rm×n,

β = ‖wuu‖2 ≥ 0, and α > 0. Here (v, x, wj , zj) are either discrete or continuous time (vector) signals.
It is not the purpose of this work to explore into the non-convex optimization quadratic fractional program (9).

This is an active line of research, some results can be found in Fang et al. (2009) and an algorithmic solution in
Enkhbat et al. (2011).

Alternatively, a cost function similar to that used in van Helvoort et al. (2007) related to the analytic solution
via the ellipsoidal optimization algorithm is:

V [u, y,Q(λ)] = {Q(λ) : |ef (λ)| ≤ ∆− |wuu|} (10)

Here ∆(t) ≥ 0 is a bound on the tracking error and ef = Gmrf [Q(λ)]− y, with Gm the desired closed-loop
dynamics.

Proceeding as in the previous case, in the cost function the signals are replaced as follows: ef → ẽf and
rf → νf . Also ẽf = Gmνf − (R+QS)y, therefore:

{λ ∈ Λ : |(Gm − I) [R+Q(λ)S] y +Gm [T +Q(λ)U ]u)| ≤ ∆− |wuu|}
= {λ ∈ Λ : |ξ +W`Q(λ)Wr ≤ φ|} (11)

ξ
4
= Gm (Ry + Tu)−Ry, φ

4
= ∆− |wuu|

W`
4
=
[
Gm −I

]
, Wr

4
=

[
Sy + Uu
Sy

]
As in van Helvoort et al. (2007), the simpler (quadratic) problem (11) is obtained, which can be solved via the

ellipsoidal algorithm with proven convergence guarantees. Nevertheless, to apply this optimization to MIMO
systems, the procedure in van Helvoort et al. (2007) should be followed, and the absolute value in the aboves
equations | · | should be considered element-wise.

2.4 Controller set design
The design of the controller set can be summarized as follows:

(1) Define m different nominal models G0,i, uncertainty and performance weights (Wδ,i,Wp,i) according to the problem
at hand.

(2) Compute the augmented model and design a set ofH∞ controllers for each i = 1, . . . ,m, i.e. Ki(s) = F`(Mi, Qi).
(3) At each iteration of the UC implementation, the optimization problem in (3) is solved as follows:

min
{‖Qi‖∞<γi}m1=1

V (u, y,Q1, . . . , Qm) (12)

where V is a detectable cost function.

To assure feasibility, a general model of the system or a set of I/O data vectors and an identification procedure
can “cover” the physical system by means of a family of models with dynamic uncertainty, say
Gk = {G0,k(s) +Wδ,k(s)∆k(s), ‖∆k‖∞ < 1}. Based on this, Kk can be designed and included in the
controller bag. Any member of this set of controllers guarantees closed loop internal stability of the system.
Again, as mentioned in footnote 3, here stability is defined in a robust control sense, i.e. based on an infinite
number of data points.

In some cases, to simplify the search in (12), only the central controllers could be considered, i.e.
Qi ≡ 0, i = 1, . . . ,m, therefore the set of controllers reduces to K = {K0,i, i = 1, . . . ,m} and the search is
over a finite set.
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2.5 Advantages and practical issues
This method offers an interesting alternative to other popular time-varying controllers like the case of LPV. In
many applications it is not possible to measure in real-time a parameter that follows the time-varying dynamics.
Therefore this method produces a time-varying controller that follows the dynamics based solely on I/O
measurements, due to the lack of a representative parameter. On the other hand, the main drawback of this
method is the need to perform a real-time optimization, but this is no different from other popular methods like
MPC control or classical adaptive control.

Next, some practical considerations related to the implementation of this procedure are presented.

• The filter selection should consider the actual bandwidth of the system. A set of second order Kautz filters could be used
for example. Also, the total number of filters n has a practical connotation, due to the fact that the order of Q and as a
consequence of K, depends on it.

• In many cases for numerical reasons, different cost functions could be used. This is the case when controllers are
designed seeking different objectives, e.g. controllerKj focuses on robust stability to guarantee feasibility and controller
K` seeks for the best performance. The weights in each of these cost functions Vj and V` respectively, will be different.
Therefore, a numerical comparison should be made among them in order for the falsifier to decide when performance
or stability should be prioritized. To this end, the following comments are in order.

For the mixed sensitivity problem in equation (2), the following equivalence holds:

min

∥∥∥∥[Wu(s)K(s)S(s)
We(s)S(s)

]∥∥∥∥2
∞
⇐⇒ min

∥∥∥∥[Wu(s)u
We(s)ef

]∥∥∥∥2
2

, ∀‖rf‖2 ≤ 1

⇐⇒ min
(
‖Wuu‖22 + ‖Weef‖22

)
, ∀‖rf‖2 ≤ 1

The latter is the numerator of the cost function V which should be minimized in real time. It should be pointed out that
this holds for all ‖rf‖2 ≤ 1. Also, for given weights (Wu,We)j or (Wu,We)`, the controller Kj or K` achieve the
optimals V j∗ or V `∗ , respectively. Nevertheless, for a particular value of ‖r∗f‖2 ≤ 1 only the following can be stated:
V j(r∗f ,Kj) ≥ V j∗ and V `(r∗f ,K`) ≥ V `∗ , but there is no obvious relation between V j(r∗f ,K`) and V `(r∗f ,Kj). As a
consequence, the weights in the cost function should be carefully selected in order to compare controllers in the set K`

with the robustness controller Kj .
• Note that the feasibility is guaranteed in a LTI sense, but not in general, when switching among models is performed.

This is due to the fact that the centralH∞ controller covers all LTI models and guarantees their stability, but it does not
cover the switching among them which is related with the nonlinear behavior of the system. For this reason a detectable
cost function is selected, in order to detect possible instabilities during switching.

3. Application example

The torque control of a permanent magnet synchronous generator (PMSG) is used to illustrate the proposed
method. The system is governed by the following differential equations

ẋ =

[
−R/L ωe
−ωe −R/L

]
x+

[
−1/L 0

0 −1/L

]
(v` + vg), (13)

where

x =

[
igq
igd

]
, v` =

[
v`q
v`d

]
, vg =

[
vgq
vgd

]
are the generator currents, the converter and generator’s quadrature and direct voltages, respectively. The
resistance and inductance are R = Rc +Rg and L = Lc + Lg , the subscripts meaning converter and generator
respectively. The electrical frequency ωe is connected with the mechanical speed ωg by the expression
ωe = pωg , where p is the number of pole pairs. This is clearly a MIMO linear time-varying model due to the fact
that the system matrices depend on ωe.

This is a common problem in modern wind turbines, in which a power converter must control the generator
torque and the reactive power to ensure maximum power capture from the wind. The objective can be cast as the
tracking of two reference currents i∗q and i∗d. These references are computed by a high level control that is out of
the scope of this application example.

The results presented here are very general, and the candidate set of controllers is very large. In this example
we have simplified the search over two model sets: one covers the whole system, and the other covers a small
neighborhood around the nominal model. The first one produces a single central controller which guarantees
robust stability and hence feasibility. The second design is focused on performance and the search is over the
‖Q‖∞ < γ parameter. In addition, equation (2) has been used as the cost function, and a standard optimization
procedure was implemented in real-time (command fmincon from Matlab c©).
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First, to design the robust stabilizing controller, the time-varying model (13) is covered by set
G = Gnom +Wδ∆, with ‖∆‖∞ < 1. The uncertainty representation is determined from a set of LTI models
corresponding to (13) evaluated at eight different values of ωe ∈ {20π, . . . , 160π rad/s}. The nominal model
achieves the least uncertainty bound, and corresponds to the system at ωe = 40π rad/s. Figure 1 (left) illustrates
the different errors between the nominal and all other linearized models. The model errors
δGi(ω) = σ̄(Gi −Gnom) are covered by a weight which represents the additive uncertainty among models, i.e.
Wδ = 2.3(s+33)

(s+95)
I2×2, where I2×2 is the identity matrix. The sampling time is Ts = 1 msec and the falsification

period is Ta = 250 msec.

Figure 1. (left) Differences between all linearized models and the nominal Gnom (full), covered by Wδ (dashed). (right) Robust stability and
Nominal and robust performance conditions for the design.

A centralH∞ controller KRS(s) has been designed focused on robust stability. This implies a controller that
should meet ‖Wδ(s)K(s)S(s)‖∞ < 1, where S(s) is the sensitivity function. In practice, this is solved as a
mixed sensitivity problem with a very low performance weight. Here the performance is stated as a constraint on
the error, therefore the sensitivity function was penalized with Wp = 2× 10−4I2×2, in order to meet the
robustness constraint, as seen in Figure 1 (right). The controller KRS(s) is obtained by solving

min
KRS(s)

∥∥∥∥Wδ(s)K(s)S(s)
Wp(s)S(s)

∥∥∥∥
∞

(14)

An integrator has been inserted in the loop to ensure a zero steady state error. The time response of all models
connected with the central controller KRS(s) is presented in Figure 2, excited by a staircase signal. The time
responses differ significantly with the rotational speed, and low rotation speeds tend to produce more oscillatory
results.

Figure 2. (upper) Time response of all (8) models connected with the central controller KRS .(lower) Input reference signal [igq igd]
T .

The central controller for performance KP was designed with the same mixed-sensitivity scheme than the

8
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robust stability case, but the weighting functions in (14) were

Wδ(s) =
(s+ 33)

10(s+ 95)
I2×2, Wp = 3× 10−3I2×2

The controller set is then defined as KP = F` [M,Q(λ)], with Q(λ) as in equation (7) and λ obtained at each
step from the real-time optimization problem (11), based solely on real-time I/O data (u, y). For this case, due to
the fact that the robust controller produces a bandwidth of around 30 rad/s, two first-order filters have been
considered for Q:

Q(s) =
λ1

0.03s+ 1
+

λ2

0.01s+ 1

in order to produce a faster closed-loop response.
A comparison between the UC and the KRS controller is performed for a parameter trajectory which starts at

t = 0 s from ωe = 130.8 rad/s and linearly increases to 151.8 rad/s at t = 2 s. and then decreases abruptly to
ωe = 130.8 rad/s. The reference is similar to the staircase signal in Figure 2.

Figure 3 shows the responses of the closed loop system with the robust controller KRS and the UC. The
evolution of the parameters λ1 and λ2 can be seen in Figure 4 and the corresponding control action for both
controllers in Figure 5. Clearly the UC outperforms the fixed controller KRS at the cost of a longer
computational time at implementation (3 to 1), due to the on-line optimization.

Figure 3. Reference and the closed loop responses with UC and KRS .

Figure 4. Evolution of the parameters λ in the UC controller.

Next we illustrate the use of the robust controller to guarantee closed-loop stability. According to equation (3),
this should be performed automatically as part of the online optimization. For a ωe = 41.86 rad/s and the same
reference signal, the response of the UC controller is shown in Figure 6. Note that at this speed the response is
oscillatory and the KP controller is applied at the beginning, but at t = 1 s the oscillations seem to increase and
the robust controller KRS0 takes the command of the situation at t = 1.5 s, stabilizing the output.

4. Conclusions

Unfalsified control is an attractive adaptive approach in cases of lack of information about the plant. For example,
this provides a time varying alternative to LPV control when no representative parameter can be measured in real

9
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Figure 5. Control signals for UC (upper) and robust control KRS (lower).

Figure 6. Automatic switch from the UC to the robust control KRS0.

time. An important point in UC is the set of candidate controllers. Although the main claim of UC theory is that
no a priori information is needed, in practice some information is necessary to ensure feasibility of the controller
search. There are basically two approaches to define the controller set. One consists of a set with a finite number
of elements and the other uses online optimization to compute the candidate controller for a given structure. Here
an intermediate approach is proposed based on the parameterization of all optimalH∞ controllers. The set of
controllers is defined as a finite set of central controllers and an on-line optimization procedure which finds the
most suitable parameter Q for a particular central controller. Therefore, a trade-off can be reached between the
amount of memory needed to store the controller set and the computational burden to find the optimal parameter.
Another advantage of the proposed UC approach is that it allows a simpler extrapolation to MIMO systems than
previous online optimization algorithms such as the ellipsoidal UC. This point is clearly shown in the example
used to illustrate the application of the proposed control approach. Overall, the method presented here offers a
fairly general set to implement UC on practical applications based on switching and optimizing linear controllers.
Although the results are promising, further research should be made in order to simplify the online optimization
procedure, which can be computationally-demanding for commonly used cost-functions.
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