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Abstract -- A novel iterative learning algorithm is proposed to improve the classic orthogonal forward 

regression (OFR) algorithm in an attempt to produce an optimal solution under a purely OFR 

framework without using any other auxiliary algorithms. The new algorithm searches for the optimal 

solution on a global solution space while maintaining the advantage of simplicity and computational 

efficiency. Both a theoretical analysis and simulations demonstrate the validity of the new algorithm.   

Index Terms: Iterative orthogonal forward regression, model structure detection, nonlinear system 

identification, orthogonal least squares  

 1. Introduction 

The NARMAX (Nonlinear AutoRegressive Moving Average with eXogenous input) model and the 

associated Orthogonal Forward Regression (OFR) algorithm have been widely applied in nonlinear 

system identification including in the modelling of many engineering, chemical, biological, medical, 

geographical, and economic systems (Billings 2013). Variations of these algorithms have been 

developed for lumped and distributed parameter systems, time-invariant and rapidly time-varying 

systems, in the time, frequency and spatio-temporal domains. The OFR algorithm, which is also 

known as the OLS (Orthogonal Least Squares) or the FOLSR (Forward Orthogonal Least Squares 

Regression) algorithm, determines the model structure of nonlinear systems based on the ERR (Error 

Reduction Ratio) criterion without any a priori knowledge except for the specification of an initial 

model set. 

However, under some extreme circumstances (for example non-persistently exciting inputs) the 

classic OFR algorithm can sometimes select some incorrect model terms (Billings and Wei 2007; 



2 

 

Mao and Billings 1997; Piroddi and Spinelli 2003; Sherstinsky and Picard 1996). Solutions are 

available which solve this problem (Billings 2013; Billings and Wei 2007; Li et al. 2006; Mao and 

Billings 1997; Wei and Billings 2008) but most of these methods involve combining the OFR 

algorithm with other routines. Contrary to the earlier approaches, this paper presents a new proposal 

to enhance the classic OFR without making any major conceptual changes. To clarify the difference 

with a standard OFR algorithm the new algorithm will be referred to as the iterative Orthogonal 

Forward Regression (iOFR) algorithm. The core ideas of the new algorithm are presented and it is 

shown that the new iOFR method can produce an optimal model under a revised but purely OFR-ERR 

framework. Another advantage of the new iOFR algorithm is that the new two-step iOFR does not 

require the initial model obtained at the first step to be an accurate model, which is different from 

most coarse-to-fine algorithms. This means the iOFR algorithm can start from an incomplete model 

and can still produce a complete optimal model.  

The remainder of the paper is organised as follows. Section 2 briefly reviews the classic OFR 

algorithm. Section 3 introduces the new iterative OFR algorithm. A simple example is initially 

introduced to motivate the introduction of an iterative process to search for the optimal solution on a 

global solution space rather than a local space. Three illustrative examples are discussed in section 4. 

The first example shows that the iOFR can successfully eliminate any redundant terms and obtain a 

parsimonious model. The second example shows how the new iOFR algorithm can find the correct 

terms which may have been missed in earlier algorithms. The third example is used to illustrate the 

identification of the NARMAX model with noise terms using the new iOFR algorithm. Conclusions 

are finally drawn in Section 5. 
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2. NARMAX model and orthogonal forward regression 

2.1 NARMAX model 

A NARMAX model is essentially an expansion of the output with past inputs, outputs and noise terms. 

A wide class of nonlinear systems can be represented by a NARMAX model (Billings 2013; 

Leontaritis and Billings 1985) which can be defined as 
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  (1) 

where y(k), u(k) and e(k) are the system output, input, and noise sequences respectively; ny, nu, and ne 

are the maximum lags for the system output, input, and noise; ( )F  is some nonlinear function; d is a 

time delay which is often set as d=1. Although both Volterra series and NARMAX models represent 

input-output relations, the Volterra series give an explicit representation while the NARMAX model 

gives an implicit representation, which is often of a much more compact form. A large class of 

systems can be described using the NARMAX model by selecting different forms of the functions F , 

for example the nonlinear DARX model (Shouche et al. 1998).  

2.2 OFR algorithm 

System identification based on the NARMAX model involves selecting the significant model terms 

from a full candidate term dictionary and then estimating the associated parameters in order to build a 

parsimonious model. The search for model subsets with minimum mean square error (MSE) can be 

approached in a straightforward manner by computing all possible regressions but the amount of 

computation required can be formidable, because the number of possible subsets increases 

exponentially. OFR offers an efficient procedure for finding the best subsets (Billings et al. 1989; 

Billings et al. 1988). The OFR algorithm involves a stepwise orthogonalisation of the regressors and a 

forward selection of the model terms based on the error reduction ratio (ERR) criterion (Billings 

2013).  
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Specify an initial full model set  1 2, ,   D , which is composed of a total number of 

candidate terms. Terms i  are linear or nonlinear functions of the input, output and noise. When the 

measurements of input, output, and noise are available, these functions can be evaluated and 

represented as the regression matrix 

  1 2 ĭ      (2) 

where the column vectors 'i s   are defined as  (1) ( )
T

i i i N  . By slightly abusing the notation, 

we sometimes use the column vector i  to represent term i  and the regression matrix which includes 

all the columns to represent the term dictionary D  in later discussions. 

Because normally there is a  lack of  knowledge regarding  the structure of function F in (1), the term 

dictionary is  selected to be redundant and it is assumed that F can be expressed as a linear 

combination of a subset of D , that is  1 2
, , ,

s
s s s s

   D D , where  1,2, ,is  , so that the  

model of system (1) can be represented by  basis functions 

    
1

( )
s

is i
i

y t t e t


 


    (3) 

where i  are the coefficients. 

Hence system identification based on the measurements involves the determination of the model 

structure and the estimation of the parameters. However the determination of the structure and the 

estimation of the parameters are coupled with each other. The significance of a term in a model 

depends on the estimated parameters while the estimation of the coefficients depends on the model 

structure. Using a traditional forward regression algorithm, all the coefficients in a model need to be 

re-estimated when a new term is added. Hence the evaluation of the contribution of a newly added 

term to the model is computationally intensive because of the matrix inversion involved in the 

coefficient re-estimation. However, the structure detection and the parameter estimation can be 

successfully decoupled when all the terms are orthogonal to each other.  
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Data collected from 1 to N yields the matrix form of equation (3) 

 .s y ĭ   (4) 

An orthogonal decomposition of sĭ  is given as 

 s ĭ WA   (5) 

Here A is a s s   unit upper triangular matrix and 

 1 s
   W w w   (6) 

is a N   matrix with orthogonal columns which satisfy 
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where ,    denotes the inner product  defined on space NR , that is
1

, ( ) ( )
N

T
i j i j i j

k

w k w k


 w w w w . 

Equation (4) can then be written as 
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The coefficient of each term ig  can be calculated individually as 
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.
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i
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  (9) 

In the OFR algorithm a criterion called the error reduction ratio (ERR) has been introduced to 

measure the significance of the model terms in the description of system (1) and to determine the 

model structure by selecting all the significant terms. The error reduction ratio iERR  due to term iw  is 

defined as 

 
22 , ,

,
, , ,

i i i i
i

i i

g
ERR  

w w w y

y y w w y y
  (10) 
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It is worth noting that the ERR criterion evaluates the contribution of a term considering both the form 

of the term and also the associated coefficients, which is essentially different from the orthogonal 

projection or inner product criterion used by the Projection Pursuit and Matching Pursuit algorithms 

(Huber 1985; Mallat and Zhang 1993; Pati et al. 1993), where the effects of the coefficients has not 

been considered. 

When all the terms are orthogonal with each other the values of ERR of the terms in a model satisfy  

 
1

,
1

,

s

i
i

ERR




 
e e

y y
  (11) 

where the last term on the right hand side of the equation represents the noise-to-signal ratio. 

The error reduction ratio offers a simple, effective, and intuitive means of selecting a subset of 

significant terms from a large number of candidate terms in a forward regression manner. By applying  

the OFR algorithm and the ERR criterion, the contribution of a term can be evaluated avoiding re-

estimating all the coefficients. At each step, a term which produces the largest value of iERR  among 

the candidate terms is selected, and the selection procedure is terminated at s  step when 

 
1

1
s

i
i

ERR





    (12) 

where   is a desired tolerance, and this leads to a subset model of s  terms. In the application of the 

OFR-ERR algorithm, various criteria, such as AIC (Akaike Information Criterion), BIC (Bayesian 

Information Criterion), and other statistical tests, can be used to aid the termination of the term 

selection (Billings and Chen 1989).  

To summarise, the standard orthogonal forward regression algorithm consists of the following steps: 

(i) Sufficiently excite the system and measure the inputs and outputs of the system; 

(ii ) Specify an initial full model set of  candidate terms and the value of  ; 

(iii) Compute the values of the ERR for each of the   candidate terms and select the term which 

gives the largest value of ERR into the model as the first term; 
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(iv) At the k th ( 2k   ) stages compute the values of the error reduction ratio for each of the 

( 1)k     remaining candidate terms by assuming that each is the k th term in the selected model and 

perform the corresponding orthogonalisation; The term that gives the largest value of the error 

reduction ratio is then selected into the model as the k th term. If condition (12) is satisfied, finish the 

process and go to (v). Otherwise set 1k k    and repeat step (iv); 

(v) The final model contains s  terms and the parameter estimates can be calculated using a least 

squares formulae. 

A geometric interpretation of the above procedure has been given by Chen, Billings & Luo (1989). 

Consider y as a vector in the N dimensional Euclidean space NR  where  i  are   linearly 

independent vectors in this space. Each of the vectors can be spanned into a one dimensional subspace 

of NR . Denote the subspace which is spanned by i  as  iS . At the first step, the ERR’s for each i  

measure the orthogonal projections of y onto each of the subspaces. The subspace  
1s

S   which gives 

the maximal projection is determined and the corresponding term 
1s

  is selected as the first term 

which is denoted as 1w . At the second step, consider the orthogonal projections of y onto a two 

dimensional space  
1
,s iS  which is spanned by 

1s
  and each of the remaining ( 1)   vectors i  

where    11,2, , \i s . Since at each step i  has been orthogonalised into iw , the orthogonal 

projection of y onto  
1
,s iS  can be determined by evaluating the orthogonal projection of y onto iw . 

The term 
2s

  which spans the subspace  
1 2
,s sS  on which the orthogonal projection of y reaches the 

maximum is selected as the second term. The orthogonalised vectors  1 2,w w  comprise an orthogonal 

basis of the subspace  
1 2
,s sS . At the kth step, the orthogonal projections of y onto k-dimensional 

subspaces are considered. The selected term 
ks

  and the previous k-1 terms span the subspace  

 
1 2 1
, , , ,

k ks s s sS


     on which the projection of y is maximal. 
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Compared to traditional forward regression methods, the OFR algorithm is computationally efficient 

because it successfully avoids the re-estimation of the parameters and evaluates the contribution of 

each term individually. The OFR is also extremely sufficient in the term selection. At the kth step the 

regression analysis are preformed on the orthogonal complement of the subspace spanned by the 

previous k-1 terms. This successfully eliminates the information redundancy in the model and 

produces a parsimonious model. Accordingly, the OFR can in most cases obtain the optimal solution 

with only forward selection rather than stepwise regression. However, the classic OFR algorithm may 

occasionally give a suboptimal model because of the information overlap among the nonorthogonal 

terms. For example, a wrong term can be selected at the first step because the term carries the 

information from more than one correct term. This often happens at the first step because the terms 

have not been orthogonalised. In this paper, a new iterative OFR algorithm will be introduced to solve 

this problem, to improve the performance of the classic OFR algorithm, and to provide a relatively 

simple and easy to use algorithm for term selection in complex dynamic models. 

3. Iterative orthogonal forward regression 

Following the discussion in the previous section, the OFR algorithm selects at each step the best term 

which comprises an optimal subspace with the existing terms. However optimal choices at every step 

cannot always guarantee a global optimum. Although the classic OFR algorithm is always very 

efficient, OFR can sometimes produce a suboptimal solution rather than an optimal one (Billings et al. 

1989). This happens because the candidate terms in the initial term dictionary are not orthogonal with 

each other and the information which is represented by these terms overlaps with each other. The 

value of the ERR may therefore depend on the order in which the corresponding term enters the 

model. 

In this section, a very simple example is first studied in detail to explain why the basic OFR algorithm 

sometimes converges to a local optimum. Consider the problem of the regression of a vector   using 

three linear independent vectors 1 , 2 , and 3  in a three-dimensional space. Define the regression 

matrix   as 
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  1 2 3

1 3 2.1 2.3

2 2 1.8 , 2.2 .

3 1 2.1 2.1

   
   
        
      

   (13) 

It is easy to show that vector   in this example is actually a linear combination of vectors 1  and 2 , 

satisfying   

 1 20.5 0.6 .      (14) 

Equation (14) gives the model which represents the accurate relationship between   and the 

independent vectors. 

Figure 1 shows the geometric representation of the four vectors in a three-dimensional Euclidian 

space. Observe that vector   is closer to 3  than to the other vectors although   actually stays in the 

plane spanned by 1  and 2 . This is because vector 3  can be decomposed as 

 3 1 2 30.5 0.5        (15) 

where 3
 =[0.1 -0.2 0.1]

T
. Vector 3 is actually composed of two components: the component which 

lies in the plane spanned by 1  and 2  and a small component 3
  which is perpendicular to the plane 

and has no contribution to the explanation of the dependent vector  . Hence vector 3  possesses 

both the information of 1  and the information of 2 .  

 

Fig 1 The geometric relations of the vectors in (13) 

The standard OFR process is to find a sequence of nesting subspaces 1 2 s
S S S   step by step. 

Each subspace kS  which is spanned by the (k-1) vectors from 1kS   and a new selected vector from the 



10 

 

regression matrix is optimal at each step. Here optimal means the orthogonal projection of y on kS  is 

maximal.  In order to decouple the contribution of each term to the total projection, the k-th term is 

orthogonalised to the (k-1) terms selected in the earlier steps so that the projection can be calculated 

stepwise. The k orthogonal terms form a k-dimensional orthogonal basis of space kS . Denote the sum 

of the ERR values at the k -th step as 
1

k

k i
i

SERR ERR


 . The sum of the ERR values represents a 

normalised measurement to the projection. Mao and Billings (1997) argued that when using the 

orthogonal algorithm to detect the model structure, previously selected terms can influence the 

selection of later terms. Therefore the detection of a minimal model structure can be considered as a 

search for the optimal orthogonalisation path which is defined as the order in which candidate terms 

are orthogonalised into the regression equation.  

In order to analyse the effects of orthogonalisation paths, all the possible orthogonalisation paths are 

listed in Table 1. For this example, there are a total number of 6 different orthogonalisation paths in 

which three terms can be orthogonalised into a model. 

Table 1 ERRs along the six different orthogonalisation paths for eq. (14) 

 Path 1 Path 2 Path 3 Path 4 Path 5 Path 6 
No. Terms ERRs Terms ERRs Terms ERRs Terms ERRs Terms ERRs Terms ERRs 
1 Į1 83.02 Į1 83.02 Į2 88.21 Į2 88.21 Į3 99.37 Į3 99.37 
2 Į2 16.98 Į3 16.40 Į1 11.79 Į3 11.39 Į1 0. 06 Į2 0. 23 
3 Į3 0 Į2 0. 58 Į3 0 Į1 0.40 Į2 0. 57 Į1 0. 40 

SERR -- 100% -- 100% -- 100% -- 100% -- 100% -- 100% 

 

Along the six different paths, the orthogonalised terms form six different orthogonal bases which are 

shown in Fig 2. Projecting   on each of the orthogonal bases, the ERR values are given in Table 1. 

 

Fig 2 Six different orthogonal bases for eq. (14) 
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An optimal model means the smallest model which includes all the correct terms. In the language of 

the ERR framework, an optimal model includes the smallest number of terms but produces the largest 

sum of ERR values. In this example, the optimal model is composed of the two correct terms 1  and 

2 . The classic OFR algorithm searches for a solution along a path where the sum of the ERR’s 

increases at the fastest speed. In this example, although vector   is on the plane spanned by 1  and 

2 , the first term that will be selected by the OFR algorithm is 3  because 3  is the term which is 

mostly close to   and gives the largest projection, see Fig 1. Therefore, the OFR will orthogonalise 

the regressors along path 6 in Table 1, 3 2 1    .  However following path 6 the obtained model 

is not optimal. When a specific tolerance is taken, for example,  =0.50%, a correct term will be 

missed along path 4, and 6 while a redundant term will be selected along path 2 and 5. However along 

both paths 1 2 3     and 2 1 3    , the search process produces an optimal model which 

consists of two correct terms for any tolerance less than 10%. This means that along a correct 

orthogonalisation path the algorithm will be much more robust, to yield optimal results, and the cutoff 

is much more obvious and easier to select.   

In a forward regression process, since the terms are selected one by one into a model, all the 

orthogonal paths comprise a solution tree. At the first step, there are   options 1, ,    which 

represent the   direct child nodes of the root node. These direct child nodes divide the whole tree into 

  branches and each of the branches is also of a tree structure. There are ( 1)   options at the second 

step and ( 2)   options at the third step, and so on. There are a total number of !  different 

orthogonalisation paths. A forward regression method starts from the common root node and selects 

terms one by one from an upper layer to a lower layer. The ERR values assign a weight for each 

branch of the tree. Each path from the root node to a leaf node represents a complete 

orthogonalization path along which a corresponding model can be obtained. For the example under 

consideration, the solution tree is shown in Fig 3.  
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Fig 3 Solution tree of a forward regression algorithm for eq. (14) 

For a globally optimal solution, we would need to search on the whole tree and evaluate all the 

solutions on the different branches. Observe that there are many opportunities to find a correct 

solution by exhausting all the paths on the solution tree. For a correct model which consists of m 

terms there are a total number of m! different perturbations, where ( )!  represents the factorial 

operation, and each represents a correct solution on different branches of the solution tree. There are a 

total number of m! optimal solutions on the tree. These optimal solutions can only happen on the 

paths which start from a correct term. Hence only the sub-trees which start from a correct term need to 

be considered when searching for an optimal solution. In the above example, there are two optimal 

orthogonalisation paths and only the branches starting from 1  and 2  may include the optimal 

solution.  

A classic OFR algorithm can occasionally search along a wrong orthogonalisation path by picking a 

wrong term in the first steps. As a result, the search process will be along a wrong path and produce a 

sub-optimal model. From the root node, a searching process can be forced onto a certain sub-tree by 

fix ing the first term before the searching process proceeds. Therefore an intuitive idea is to use the 

OFR algorithm to search on each of the sub-trees. A sub-optimal model is obtained on each sub-tree. 

Compare these obtained models and choose the best one as the final result. The optimal model will be 

in these sub-optimal models. Remember that there are a total number of m! opportunities to find a 

optimal model. However search on all the sub-trees is not necessary because any search path starting 
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from a wrong term will never give an optimal model. Therefore, only the sub-trees starting from a 

correct term need to be considered. However, it is unknown which term is a correct term. 

Nevertheless a suboptimal model can always be a good starting point for the search for an optimal 

solution. It is reasonable to assume that a suboptimal model consists of a majority of correct terms and 

a few incorrect terms. Therefore an iterative learning algorithm can be proposed to find an efficient 

and intuitive solution to this problem. The new iterative OFR algorithm consists of the following steps. 

i). Preset a tolerance   and apply the standard OFR algorithm on the whole term dictionary ĭ  

to produce a suboptimal term set  1 2 s
s s s s
ĭ    ; 

ii). Select a small number   as an amendment to the tolerance in the first step (see Remarks 2 

for the choice of  ); 

iii).  Select one of the terms j ( 1 2, , ,
s

j s s s ) in sĭ  as a preselected first term and search the 

other terms on the term set  \ iĭ   to construct a suboptimal solution satisfying 

1 iERR     ; 

iv). Repeat iii) for all the i ’s in sĭ  and obtain s  suboptimal models; 

v). Compare the obtained s  suboptimal models and choose the best one as the final model opĭ  .  

NARMAX models which typically include highly correlated unknown noise terms can be identified 

by following the iterative procedure below. Because the noise terms are not known a priori the model 

prediction errors (residuals) will be used to approximate the noise terms.  

i). Assume the noise terms are zero and identify the model which does not included the noise 

terms using the iOFR algorithm. 

ii). Produce the prediction errors using the best model obtained in step i).  

iii).  Use the residuals as the noise terms and construction the new term dictionary in which the 

delayed noise terms are included. 

iv). Identify the full NARMAX model from the dictionary obtained in step iii) using the iOFR 

algorithm. 
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v). Repeat steps ii ) - iv) until a satisfying model obtained. At each time the residuals are 

calculated based on the new identified model. Validate the model. 

Remarks: 

1) The searching process can be further iterated by selecting opĭ  as the suboptimal solution sĭ  in 

step i) and repeating steps ii) ~ v) for a better result. This time only terms in the set 

 : | ,s op op opand  ĭ ĭ ĭ ĭ    need to be considered. However further iterations are often not 

needed. An optimal solution may be found in the first iteration because the OFR algorithm itself is 

powerful in searching for an optimal solution but more steps may be needed in some cases. 

2) The amendment   of the tolerance often takes a small non-negative number. A tolerance   

means the sum of ERR’s of the selected terms in a model is no less than (1 ) . Hence the larger a 

tolerance   is, the less terms will be selected in the obtained model.  A positive   means ( )   

is a stricter tolerance and the iterative process will eliminate some of the redundant terms to produce a 

smaller model. On the contrary, a negative   means ( )   is a looser tolerance and the iterative 

process will select more terms into the model and produce a more accurate description. An increase of 

the tolerance by   can significantly tighten the search process to produce a smaller model. At the 

same time a small   will not expel the correct terms. For example, a good choice of the absolute 

value of   can be the ERR value of the least significant term in sĭ , that is, 

  min |i i sERR  ĭ . This follows because after all the correct terms have been selected, the 

remaining terms are considered as redundant terms and the corresponding contributions will be much 

smaller than the one with the smallest contribution in the suboptimal model. Since the new iOFR 

searches for solutions on several sub-trees in parallel and chooses the best model as the result it can be 

expected that the model which is obtained in the iterative process will be no worse than the sub-

optimal model in the first step when the tolerance is keeps kept unchanginged. Hence another often 

used selection of choice in   is 0. When correct terms instead of the wrong terms are selected into 
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the model, the sum of ERR’s will reach (1 )  more quickly and a more parsimonious model is 

obtained.    

3) In the classic OFR algorithm, the selection of the tolerance   is crucial for the identification of the 

model. Additionally, the selection of the tolerance is often problem-dependent. For example, the 

tolerance may depend on the noise level in the measurement of the input and output. A tight tolerance 

may expel some correct terms while a loose tolerance may cause overfitting of the data. In the classic 

OFR algorithm, a wrong term is selected in to a model because the wrong term may include the 

information of more than one correct term and this becomes more significant at the first steps of the 

forward selection process. Selecting the wrong term into the model at an early stage will make the 

correct terms much less significant and the correct terms will be selected into the model later to 

compensate for the information which has been missed. When the remaining unexplained information 

is small and is comparable to the effects of noise, a slight change in the tolerance may lead to a 

different model the tolerance will become very sensitive. Hence accurate determination of the 

tolerance under which no correct terms will be missed can be difficult. This can be avoided by using 

the new iOFR algorithm. When any of these correct terms has been forced to be the first term, the 

contribution of the wrong term becomes much less significant because part of the information has 

been explained by the pre-determined correct terms which has been selected in the previous steps. As 

a result, there is a much lesser possibility that the wrong term will be selected at the following steps. 

Along a correct orthogonalisation path all the correct terms will be significant and the OFR algorithm 

will be more robust to the value of the tolerance. This has been observed in the previous example 

where any tolerance which is not greater than 10% will lead to the correct model. Hence, the setting 

of the tolerance   can be relatively flexible in the new iOFR algorithm. This feature of the iOFR can 

be very useful in the identification of real systems. 

4) Unlike a coarse-to-fine algorithm which starts from a sub-optimal model and purely eliminates 

redundant terms, In the iterative stepsOFR algorithm, the search process is not operated search terms  

on the suboptimal set sĭ  but on the whole dictionary rather than on the suboptimal set sĭ   except for 
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the pre-determined term i .  This enables the iOFR algorithm to select find the correct terms which 

have been missed in the by the sub-optimal model which is obtained at in the first stage into the final 

model toand obtain a better solution. In other words, the new iOFR algorithm does not need the 

suboptimal model obtained at the first step to be a sufficient model. This will be observed in the 

example in Section 4.2. 

The new iOFR algorithm may occasionally give a suboptimal solution since the algorithm only tries 

different routes at the first step and the remaining term selection could still follow a suboptimal trace. 

However this will happen with a very low probability. Firstly, the new iOFR searches the optimal 

model in parallel along several different paths on the whole solution tree. According to the previous 

discussion, there are a total number of m! opportunities to find the optimal model and hence the 

probability at which the iOFR can find the optimal solution will increase significantly. The 

improvement in the possibility to find the optimal solution will be discussed below. Secondly, along 

the different search paths the corresponding orthogonal basis will be quite different and the ERR’s 

assigned to each term will change accordingly. The significant terms will then be selected into the 

term in a different order. This has been observed in the example given in Fig 2.  To some extent,   this 

process works like the heating process in a simulated annealing algorithm where the metal atoms in 

the material will be rearranged to build a better crystal structure in the cooling process. Finally, 

according to the previous discussion, the significance of a wrong term which may be selected in the 

first steps because it contains information from the correct terms will be greatly reduced when any of 

the correct terms has been firstly selected. In the selection of the remaining terms, the wrong term will 

be less likely to be selected although the search is still along the speediest increasing path of the sum 

of ERR values. Based on the above discussion, these are probably the best solutions available because 

the alterative full optimal search (Mao and Billings 1997) involves a huge computational overload 

that is just not feasible when studying real data sets where it is often necessary to try lags over the 

range 1-30 in the initial search. Noise model terms and MIMO (multi-input-multi-output) systems just 

further aggravate this problem. 
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We should ask what the probability is that the new iOFR algorithm will produce an optimal solution. 

Assume 1  terms in a s - s  terms of the suboptimal model sĭ  which were was obtained at the first 

stage and are correct; the OFR algorithm can find an optimal solution with a probability of p  along 

each path starting with a correct term. The iOFR algorithm will search the optimal solution along s  

parallel paths. The probability that the iOFR will find the optimal solution on at least one path will be 

11 (1 )p   , which equals to one minus the probability that the iOFR fails to find the optimal solution 

on all the paths, seeing that the search along the 1( )s   paths which start with a wrong term will 

have no contribution for to the probability. The probability will be much higher than the probability of 

the single path search when 1  is large enough.  For example, consider a suboptimal model which 

consists of 20s   terms in which 1 10   terms are correct terms. The iOFR algorithm searches for 

the optimal solution along 10 parallel paths at a probability of 50% on each path. It is easy to calculate 

that the probability that the iOFR algorithm will find the optimal solution is 10(1 0.5 ) 99.9%   which 

is much higher than the 50% succession probability of the single path search algorithm.  In fact, the 

probability for the classic OFR to successfully find the optimal solution is much better than 50%. 

Even the classical OFR can produce an optimal solution in most cases except in some special 

situations.  

The new iOFR algorithm is also computationally efficient. As discussed in the paper (Mao and 

Billings 1997), there are a total number of !  orthogonalization orthogonalisation paths for a   term 

dictionary, where ( )!  represents the factorial operation. Searching for an optimal solution by 

exhausting all these paths is computationally just not practical.  Applying the genetic algorithm 

assistant MMSD (Minimal Model Structure Detection) algorithm the search space can be reduced to a 

much more practical number which can still be a large number. Comparatively, in the new iOFR 

algorithm, the number of searching paths depends on the number of terms in the sub-optimal model 

obtained at the first stage which is much less than the size of the full dictionary, without mentioning 

the number of all the combinations. Consider the example in the Mao and Billings paper where 20 

terms were included in the dictionary. An exhaustive search needs to evaluate 182.433 10 paths; the 
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MMSD algorithm searches along 32 10 paths. Using the new iOFR algorithm, no more than 20 best 

searching paths which start from the terms in a suboptimal model need to be evaluated. Therefore it 

can be concluded that the new iOFR algorithm is very efficient. A discussion of the computational 

complexity of the classic OFR algorithm has been given in the references. 

The performance of the new iOFR algorithm can be improved by appropriately increasing the number 

of parallel searches. For example, a smaller tolerance in the first stage will lead to a sub-optimal 

model with more terms and the global search at the second stage will be carried out on more parallel 

sub-trees. The iOFR algorithm can also be improved by increasing the number of the pre-selected 

terms where a subset instead of a term in sĭ  is pre-determined. The more correct terms are pre-

determined, the less possibly the wrong term will be selected into the final model. However, both 

improvements lead to an increase in computational complexity.  

An alternative OFR algorithm has been proposed by Piroddi and Spinelli (2003) based on minimising 

the model predicted or simulated output rather than the one step ahead predictions. This is very 

similar to the algorithms by Billings and Mao (1998). The simulated output based algorithm has been 

shown to be effective where the data is grossly oversampled and where the input is badly designed 

and not persistently exciting. However, these solutions are hugely computationally expensive so that 

they cannot be realistically applied to complex models where searches over many lags, MIMO models, 

and noise are involved all of which are typical when dealing with real data sets rather than very 

simple simulated examples. The new iOFR offers a much simpler solution. 

4. Test examples 

Several examples will beare used to illustrate the new iOFR algorithm. While the literature is full of 

examples where the classical OFR algorithm works extremely well, each example below has been 

deliberately chosen from the small number of past results where the standard OFR has been shown to 

give non ideal results. In other words worst case examples are used below because on typical 
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examples where the data is sampled correctly and the input is persistently exciting the algorithm 

works perfectly every time. 

4.1. A linear example 

This linear example will beis used to show that the OFR algorithm can sometimes give a suboptimal 

model which includes redundant terms. But by applying an iterative process, the OFR algorithm is 

greatly improved and is able to produce an optimal solution. This example was taken from (Wei and 

Billings 2008).  

Consider the system 

            1.7 1 0.8 2 1 0.8 2y k y k y k u k u k e k            (16) 

where y(k), u(k), and e(k) represent the output, input and noise of the system. The input is uniformly 

distributed white noise u(k) ~ U(-1,1). The noise is normally distributed white noise e(k) ~ N(0,0.12). 

A total number of 1000 input and output data are measured for the system identification. Define a 

candidate term dictionary which is composed of the delayed input and output terms ĭ ={y(k-1), y(k-

2), y(k-3), y(k-4), y(k-5), u(k-1), u(k-2), u(k-3), u(k-4), u(k-5)}. Applying the classic OFR algorithm, 

the identified model is shown in Table 1. A total number of seven terms have been selected into the 

model which includes all the correct terms. However three redundant terms have also been selected.  

Table 2 Results given by the standard OFR algorithm for system (16)  

No. Terms ERRs Coefficients 
Standard 
Deviation 

1 y(k-1) 67.8218 -1.6982 0.02894 
2 u(k-1) 26.6089 0.9994 0.00557 
3 y(k-4) 2.8635 0.0017 0.01235 
4 u(k-4) 0.5968 -0.0021 0.01396 
5 u(k-3) 0.4825 0.0036 0.01325 
6 u(k-2) 0.4121 0.7912 0.02944 
7 y(k-2) 0.3908 -0.7992 0.03679 

SERR -- 99.18 -- -- 

 

In this example the classic OFR algorithm gives an incorrect model because of under-sampling. 

System (16) can be considered as a discretisation of a second order system with a very low sampling 
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frequency. The frequency response function and impulse response of system (16) (see Figure 4) show 

that the natural frequency of the system is around 0.45 Hz. The sampling frequency in this example is 

1 Hz which is only about 2.2 times of the natural frequency. The severe under-damping in the system 

exasperates this problem. The impulse response shows that the system needs a long time to settle 

down and oscillates with a period about 2.2s. This means the response of the system will repeat every 

2.2s (about 2 sampling intervals). Since the output is a convolution of the input with the impulse 

response function, y(k) may be of a similar pattern with y(k-2).  This explains why y(k-4) may appear 

in the final model because the term looks like y(k-2)  for this sampling and data case.  The effect of 

sampling time on nonlinear system identification has been studied by Billings and Aguirre (1995), and  

Billings (2013). 

 

Figure 4 Frequency response function and impulse response of system (16) 

Taking each term in Table 2 as the first term and applying an OFR algorithm where  =0.3908 % 

which is the least value of the ERR’s in Table 2, yields the results of the iOFR process given in Table 

3. Seven different models were obtained. Models 6 and 7 have the simplest structure where only four 

terms are used to produce the best SERR. Actually both models consist of four correct terms. Models 

1, 2, 3, 4, and 5 missed the correct term y(k-2) under the amended tolerance ( )    and produce a 

relatively smaller SERR. Therefore model 6 and model 7 are selected as the final results of the iOFR 

process. Notice that both models include the same terms with the same associated coefficients. All the 
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redundant terms in Table 2 have been successfully eliminated in the iterative process. The iOFR 

algorithm which starts from the results of a standard OFR process gave gives the optimal model.  

Table 3 Results produced by iOFR algorithm for system (16) 

 Model 1 Model 2 Model 3 Model 4 
No. Terms ERRs Coeffs Terms ERRs Coeffs Terms ERRs Coeffs Terms ERRs Coeffs 
1 y(k-1)* 67.8218 -1.081 u(k-1)* 23.8334 0.997 y(k-4)* 3.509 -0.2546 u(k-4)* 5.614 0.2622 
2 u(k-1) 26.6089 0.997 y(k-1) 70.5972 -1.081 y(k-1) 66.7799 -1.081 y(k-1) 62.2166 -1.081 
3 y(k-4) 2.8635 -0.2546 y(k-4) 2.8635 -0.2546 u(k-1) 27.0053 0.997 u(k-1) 26.8122 0.997 
4 u(k-4) 0.5968 0.2622 u(k-4) 0.5968 0.2622 u(k-4) 0.5968 0.2622 y(k-4) 3.2483 -0.2546 
5 u(k-3) 0.4825 -0.2354 u(k-3) 0.4825 -0.2354 u(k-3) 0.4825 -0.2354 u(k-3) 0.4825 -0.2354 
6 u(k-2) 0.4121 0.1748 u(k-2) 0.4121 0.1748 u(k-2) 0.4121 0.1748 u(k-2) 0.4121 0.1748 

SERR -- 98.79 -- -- 98.79 -- -- 98.79 -- -- 98.79  
 Model 5 Model 6 Model 7  

No. Terms ERRs Coeffs Terms ERRs Coeffs Terms ERRs Coeffs    
1 u(k-3)* 8.9466 -0.3878 u(k-2)*  18.5449 0.7881 y(k-2)*  36.7635 -0.7941    
2 y(k-1) 59.2524 -1.2489 y(k-1) 49.3851 -1.6951 y(k-1) 32.6657 -1.6951    
3 u(k-1) 26.2424 0.9987 u(k-1) 26.6444 0.9992 u(k-1) 26.8377 0.9992    
4 y(k-3) 3.3286 0.3865 y(k-2) 4.6019 -0.7941 u(k-2) 2.9095 0.7881    
5 u(k-2) 1.2412 0.3418          

SERR -- 99.01 -- -- 99.18 -- -- 99.18 --    

* means the term is determined first. 

4.2. A nonlinear example 

This example is taken from (Mao and Billings 1997). System (17) has been widely used as a 

benchmark example for the study of variations of OFR algorithms and for  comparisons of OFR with 

other algorithms (Baldacchino et al.). In this example, it will be shown that the iOFR can produce an 

optimum solution even when some correct terms are not selected in the first OFR step. 

Consider the nonlinear system 

 
           

     

3 2

2

0.2 1 0.7 1 1 0.6 2 0.5 2

0.7 2 2

y k y k y k u k u k y k

y k u k e k

        

   
  (17) 

The system is excited with a uniformly distributed white noise u(k) ~ U(-1,1) and the output y(k) is 

disturbed by a normally distributed white noise e(k) ~ N(0,0.12). A total number of 1000 input and 

output data were used for the system identification. 

Up to third order polynomials of the delayed inputs and outputs {y(k-1), y(k-2), y(k-3), y(k-4), u(k-1), 

u(k-2), u(k-3)} were used to model the nonlinear system. A total number of 120 terms were included 

in the term dictionaryĭ . Applying the OFR algorithm yields a five term model which is shown in 

Table 4. Notice that the model in Table 4 includes an redundant term y(k-4)u2(k-2) but misses a 

correct term y(k-2)u2(k-2).  
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 Table 4 Results produced by the standard OFR algorithm for system (17) 

No. Terms ERRs Coefficients 
Standard 
Deviation 

1 y(k-4)u2(k-2) 36.2732 0.2922 0.02602 
2 y(k-1)u(k-1) 13.7147 0.6544 0.01528 
3 u2(k-2) 11.3488 0.5134 0.009331 
4 y(k-2) 26.8516 -0.6743 0.01165 
5 y3(k-1) 3.3248 0.1949 0.009847 

SERR -- 91.513 -- -- 

 

The nonlinear cross correlation model validation tests (Billings and Voon 1986; Billings and Zhu 

1994) clearly show that the model is unacceptable as a sufficient model of system (17). Figure 5 

shows that the cross correlation tests fail with two of the five cross correlations significantly outside 

the 95% confidence intervals. Notice that this model has been obtained by deliberately abusing the 

classic OFR algorithm to test the robustness of the new iOFR algorithm. In the application of the OFR 

algorithm, a model validation is always adopted conducted to aid the determination of the model size. 

An obtained model should be sufficient enough to pass all the model validations. For this example, an 

acceptable model can be obtained by increasing the number of terms until the model validations are is 

satisfied.  

 

 

Fig 5 Cross correlation model validation for example 4.2 
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Take the incorrect model in Table 4 as the starting point and apply the iOFR algorithm. Use each term 

in the previous model as the first term and employ the OFR algorithm to select the remaining terms 

until SERR satisfies a tolerance where  =0.  The new iOFR produced five different models. The 

results are shown in Table 5. All the five models have the same number of terms. However models 3 

and 4 give a better SERR than the other three models. Compared with system (17), both models 3 and 

model 4 are composed of the correct terms and give an accurate representation of the original system. 

It is worth emphasising that the missed term y(k-2)u2(k-2) in Table 3 has now been correctly selected 

into the final model by the iOFR algorithm. 

Table 5 Results produced by iOFR algorithm for system (17) 

 Model 1 Model 2 Model 3 
No. Terms ERRs Coeffs Terms ERRs Coeffs Terms ERRs Coeffs 
1 y(k-4)u2(k-2)*  36.2732 0.2922 y(k-1)u(k-1)*  13.7511 0.6544 u2(k-2)*  24.7602 0.6004 
2 y(k-1)u(k-1) 13.7147 0.6544 y(k-4)u2(k-2) 36.2367 0.2922 y(k-2) 48.5816 -0.5124 
3 u2(k-2) 11.3488 0.5134 u2(k-2) 11.3488 0.5134 y(k-1)u(k-1) 13.985 0.6828 
4 y(k-2) 26.8516 -0.6743 y(k-2) 26.8516 -0.6743 y(k-2)u2(k-2) 3.2488 -0.6683 
5 y3(k-1) 3.3248 0.1949 y3(k-1) 3.3248 0.1949 y3(k-1) 3.4452 0.1983 

SERR -- 91.513 -- -- 91.513 -- -- 94.0208  
 Model 4 Model 5  

No. Terms ERRs Coeffs Terms ERRs Coeffs    
1 y(k-2)*  29.8926 -0.5124 y3(k-1)*  0.9922 0.1949    
2 u2(k-2) 43.4491 0.6004 y(k-4)u2(k-2) 37.4213 0.2922    
3 y(k-1)u(k-1) 13.985 0.6828 y(k-1)u(k-1) 15.4601 0.6544    
4 y(k-2)u2(k-2) 3.2488 -0.6683 y(k-2) 11.9572 -0.6743    
5 y3(k-1) 3.4452 0.1983 u2(k-2) 25.6822 0.5134    

SERR -- 94.0208 -- -- 91.513 --    

* represents the term is determined first. 

In both examples, the new iOFR algorithm produced optimal models which include all the correct 

terms and are of the simplest structure in a very efficient computational process. The iOFR algorithm 

worked well even when the first OFR step did not give a correct model as in the second example. 

Moreover, in both examples, the iOFR algorithm found optimal solutions on more than one searching 

path. This indicates that the new algorithm is significantly robust because the iOFR can still produce 

an optimal solution even when the algorithm fails on one of the parallel search paths. 

4.3. A nonlinear example with noise modelling 

This example is taken from and uses the same settings in the Piroddi and Spinelli’s paper with the 

same parameter settings (Piroddi and Spinelli 2003). This example will be used to show that the iOFR 

algorithm can correctly identify an optimal model even when the systems are not persistently excited. 
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This example also illustrates the application of iOFR in identification of NARMAX models including 

delayed noise terms. 

The system is given as follows 

 
       

 
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w k u k u k u k u k u k
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


  

  (18) 

where u represents the input signal and y represents the observation of the output w. Both the input 

u(k) and the noise e(k) are Gaussian distributed white noise. It can be shown that the classic OFR 

algorithm can correctly select all the terms and produce an accurate model when the system is 

persistently excited. However, Piroddi and Spinelli argued that the classic OFR algorithm may 

incorrectly select autoregressive terms when the input signal is less not rich enough in frequency 

components. Piroddi and Spinelli recommended an input which is generated by an AR process with 

two real poles between 0.75 and 0.9. Repeating Piroddi and Spinelli’s simulation using an input signal 

which was generated by the following AR process. 

 
1 2

0.3
( ) ( )

1 1.6 0.64
u k v k

z z 
 

  (19) 

where v(k) is Gaussian noise v(k) ~ N(0,1). The AR process has a repeat pole at 0.8 and the coefficient 

0.3 is chosen to guarantee the input signal is at a reasonable level. Here the noise signal e(k) is a 

Gaussian distributed noise with a variance 0.02, that is, e(k) ~ N(0,0.02). The results produced by the 

classic OFR algorithm are given in Table 6. 

Table 6 Results produced by the classic OFR algorithm for example 3 

No. Terms ERRs Coefficients 
Standard 
Deviation 

1 y(k-1) 87.0633 0.4260 0.01436 
2 y(k-2) 6.9723 0.0131 0.004886 
3 u3(k-1) 1.1786 -0.3015 0.001741 
4 u3(k-2) 3.6867 0.1346 0.004265 
5 u(k-1) 0.1917 1.1097 0.0194 
6 u2(k-1) 0.7733 0.1409 0.003438 
7 u(k-2) 0.0050 -0.2613 0.03052 
8 y(k-1)u(k-1) 0.0023 0.0034 0.003889 
9 y(k-2)u(k-1) 0.0053 0.0140 0.001935 
10 y(k-1)u(k-2) 0.0016 -0.0169 0.004702 

SERR -- 99.88 -- -- 

 

Observe that several incorrect autoregressive terms have been selected overwhelming the correct 

terms while a correct term u(k-1)u(k-2) was is missed. The new iOFR algorithm was employed to 

solve the problem. Each term in the model in Table 6 was selected as the pre-determined term and the 

remaining terms were selected in a model using a classic OFR algorithm. In this example, a total 
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number of 10 models were obtained. Three in the ten models give the same model which is the best 

model obtained under the given tolerance of 0.2%.  

Table 7 Model identified using the iOFR algorithm for example 3 

No. Terms ERRs Coefficients 
Standard 
Deviation 

1 u3(k-1) 79.8101 -0.3002 0.000578 
2 u(k-1) 14.4655 0.9686 0.01938 
3 u (k-1)u(k-2) 5.3722 0.2485 0.001905 
4 u(k-2) 0.1596 0.5413 0.01864 
5 constant 0.0050 0.0477 0.009254 

SERR -- 99.81 -- -- 

 

Next we generated the residuals ˆ( ) ( ) ( )k y k y k   , where ̂ ( )y k  is the one-step-ahead prediction of the 

model in Table 7. Use We then used the residuals to replace the noise terms. The new dictionary is 

composed of all the up to third order monomials of variables {( 1)u k , ( 2)u k , ( 1)y k  , ( 2)y k  , 

( 1)k  , ( 2)k  , ( 3)k  }. The new iOFR is was then used to identify the full NARMAX models 

form the constructed dictionary under the tolerance level 0.2%. This time  three of seven search paths 

gave the optimal solution which is shown in Table 8. All the terms in system (18) were successfully 

detected and the associated coefficients are close to the real values in the first time iteration for the 

noise model.  

Table 8 Full model identified using the iOFR algorithm for example 3 

No. Terms ERRs Coefficients 
Standard 
Deviation 

1 u3(k-1) 79.8129 -0.2995 0.000349 
2 u(k-1) 14.4635 0.9647 0.012 
3 u (k-1)u(k-2) 5.3719 0.2543 0.000933 
4 u(k-2) 0.1591 0.5395 0.01156 

5  (k -1)    0.1174 -0.7922 0.01968 

SERR -- 99.92 -- -- 

5. Conclusions 

 

Several algorithms have been proposed to enhance the OFR algorithm by introducing modified or add 

on  algorithms, but the new iterative orthogonal forward regression algorithm improves OFR under a 

purely OFR framework. Very little extra programming is needed to implement the new iOFR 
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algorithm which is also highly computationally efficient. The new iOFR improves the classic OFR in 

two ways: it eliminates the redundant terms in a suboptimal model to produce a more parsimonious 

model, and selects the correct terms to obtain an accurate system description. Because the new iOFR 

searches for the solution over the whole solution tree iOFR is capable of producing an optimal 

solution using simple search procedures and can be applied to estimate highly complex system models 

within a very efficient and intuitive framework. 
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