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Abstract-- A novel iterative learning algorithm is proposed to improve tassat orthogonal forward
regression (OFR) algorithm in an attempt to produce an optimal solution angearely OFR
framework without using any other auxiliary algorithms. The new algorithnelsesfor the optimal
solution on a global solution space while maintaining the advantage of simalicitgomputational

efficiency. Both a theoretat analysis and simulations demonstrate the validity of the new algorithm.

Index Terms:. Iterative orthogonal forward regression, model structure detection, nonlinear system
identification, orthogonal least squares

1. Introduction

The NARMAX (Nonlinear AutoRegressive Moving Average with eXogenous input) neantelithe
associated Orthogonal Forward Regression (OFR) algorithm have been widétyg appionlinear
system identification including in the modelling of many engineering, chérbicdogical, medical,
geographical, and economic systems (Billings 2013). Variations of these algorithmdbdeve
developed for lumped and distributed parameter systems, time-invariant and rapédiatiimg
systems, in the time, frequency and spatio-temporal domains. The OFR algorithm, svhisb i
known as the OLS (Orthogonal Least Squares) or the FOLSR (Forward OrthogostaBtaares
Regression) algorithm, determines the model structure of nonlinear systemsiasedERR (Error
Reduction Ratio) criterion without any a priori knowledge excepttierdpecification of an initial

model set.

However, under some extreme circumstances (for example non-persistently exciting tnguts

classic OFR algorithm can sometimes select some incorrect model ternreg$Bihd Wei 2007;



Mao and Billings 1997; Piroddi and Spinelli 2003; Sherstinsky and Picard 1996). Solutions are
available which solve this problem (Billings 2013; Billings and Wei 2007; Li et al.;2d@6 and
Billings 1997; Wei and Billings 2008) but most of seemethods involve combining the OFR
algorithm with other routines. Contrary to the earlier approaches, this pagents a new proposal

to enhance the classic OFR without making any major conceptual changgarifijathe difference

with a standard OFR algorithm the new algorithm will be referredsttha iterativeOrthogonal
Forward Regression (iOFR) algorithm. The core ideas of the new algorithpresented and it is
shown that the new iOFR methodnproduce an optimal model underevised but purely OFR-ERR
framework. Another advantage of the new iOFR algorithm is that the new two-$t&d@es not
require the initial model obtaineat the first step to be an accurate model, which is different from
most coarsé¢e-fine algorithms. This means the iOFR algorithm can start from an incomplete model

and can still produce a complete optimal model.

The remainder of the paper is organised as follows. Section 2 briefly reviewsasse ©OFR
algorithm. Section 3 introduces the new iterative OFR algorithm. A simple exasjihially
introduced to motivate the introduction of an iterative process to seartifefoptimal solution on a
global solution space rather than a local space. Three illustrative exargmiscussed in section 4
The first example shows that the iOFR can successfully eliminate any redtemantand obtain a
parsimonious model. The second example shows how the new iOFR algorithm can find¢be
terms which may ha been misseth earlier algorithms. The third example is used to illustrate the
identification of the NARMAX model with noise terms using the new iOFR algoritConclusions

are finally drawn in Section 5.



2. NARMAX model and orthogonal forward regression

2.1 NARMAX model

A NARMAX model is essentially an expansion of the output with past inputs, outputs and noise terms.
A wide class of nonlinear systems can be represented by a NARMAX model (Billings 2013

Leontaritis and Billings 1985) which can be defined as

y(k=1),y(k-2) ;- y(k—-n,) u(k-d) u( k- d- 3, .

I ) ket gk ey ) W

where y(K), u(k) and e(k) are the system output, input, and noise sequences edgpagtiy, and R

are the maximum lags for the system output, input, and nbiggjs some nonlinear function; d is a

time delay which is often set as d=1. Although both Volterra series and NARNM@d€Is represent
input-output relations, the Volterra series give an explicit representakibe the NARMAX model
gives an implicit representation, which is often of a much more compact fordargé class of
systems can be described using the NARMAX model by selecting different fotimes foihctions K

for example the nonlinear DARX model (Shouche et al. 1998).

2.2 OFR algorithm

System identification based on the NARMAX model involves selecting the sigmifimodel terms

from a full candidate term dictionary and then estimating the associatedgiars in order to build a
parsimonious model. The search for model subsets with minimum mean square error (MBE&) ca
approached in a straightforward manner by computing all possible regressiohe lauhdunt of
computation required can be formidable, because the number of possible subsets increases
exponentially. OFR offeran efficient procedure for finding the best subsets (Billings et al. 1989;
Billings et al. 1988). The OFR algorithm involves a stepwise orthogonalisatibe oégressors and a
forward selection of the model terms based on the error reduction ratio (ERRiperiBillings

2013).



Specify an initial full model seD={¢,¢,,--¢.}, Which is composed of a total number of
candidate terms. Termg are linear or nonlinear functions of the input, output and noise. When the

measurements of input, output, and noise are availablee foactions can be evaluated and

represented as the regression matrix
=[¢ ¢ - 4] 2

where the column vectogs's are defined ag =[@ () - @ (N)]' . By slightly abusing the notation,
we sometimes use the column veggoto represent terrp, and the regression matrix which includes

all the columns to represent the term dictionBryn later discussions.

Because normally there is a lack of knowledge regarding the structure adriufdn (1), the term

dictionary is seleed to be redundant and it is assumed that F can be expressed as a linear

combination of a subset db, that is Dsz{wg,ws,m,g% }c D, wheres €{1,2;-- x}, so that the

model of system (1) can be represgeiity basis functions
vt =0, (t)6,+e(Y) 3)
i=1

where g are the coefficients.

Hence system identification based on the measurements involves the determihatienmmdel
structure and the estimation of the parameters. However the determination otith&restand the
estimation of the parameters are coupled with each other. The significaacéeiwh in a model
depends on the estimated parameters while the estimation of the coeffiejemtsisl on the model
structure. Using a traditional forward regression algorithm, all the caefticin a model need to be
re-estimated when a new term is added. Hence the evaluation of the contributiorewfy added
term to the model is computationally intensive because of the matrix inversioweidviol the
coefficient re-estimation. However, the structure detection and the paraeséiteation can be

successfully decoupled when all the terms are orthogonal to each other.



Data collected from 1o N yields the matrix form of equation (3)
y=00+E. (4)
An orthogonal decomposition @, is given as
®_=WA (5)
HereA is a x, x x, unit upper triangular matrix and
Wz[w1 WKJ (6)

is a Nxx matrix with orthogonal columns which satisfy

<Wij>={dig,o’ :JJ ()

where(-,-) denotes the inner product defined on spRtethat is{wi W, > :wiTwj :Zvy(k)w k).
k=1
Equation (4) can then be written as

y:Wg:ZWigi+E‘ (8)
i=1

The coefficient of each terrg, can be calculated individualfs

o) ©

In the OFR algorithm a criterion called the error reduction ratio (ERE) been introduced to
measure the significae of the model terms in the description of system (1) and to deterhmne t

model structure by selecting all the significant terms. The error reductiorERadue to termw, is

defined as

_gi2<Wi’Wi>_ < i
R ) (v (10)



It is worth noting that the ERR criterion evaluates the contributi@tem considering both the form
of the term and also the associated coefficients, which is essentiallyewliffeom the orthogonal
projection or inner product criterion used by the Projection Pursuit anchigtPursuit algorithms
(Huber 1985; Mallat and Zhang 1993; Pati et al. 1993), where the effects of tfieietsfhas not

been considered.

When all the terms are orthogonal with each other the values of ERR of the terms in a model satisfy

1= ERR+ (&2

(11)
= (y.y

~

where the last term on the right hand side of the equation represents thsased ratio.

The error reduction ratio offers a simple, effective, and intuiti@amaof selecting a subset of
significant terms from a large number of candidate terms in a forwgrdssion manner. By applying
the OFR algorithm and the ERR criterion, the contribution of a term eavéluated avoiding re-

estimating all the coefficientdAt each step, a term which produces the largest valuERBf among

the candidate terms is selected, and the selection procedure is terminatsteatwhen

1-Y ERR <p (12)

where p is a desired tolerance, and this leads to a subset modegltefms. In the application of the

OFR-ERR algorithm, various criteria, such as AIC (Akaike Informationefoi), BIC (Bayesian
Information Criterion), and other statistical tests, can be used to aidrthimdton of the term

selection (Billings and Chen 1989)
To summarise, the standard orthogonal forward regression algorithm consists dbthiadateps:
() Sufficiently excite the system and measure the inputs and outputs of the system;

(i) Specify an initial full model set ot candidate terms and the value®f

(iii) Compute the values of the ERR for each of theandidate terms and select the term which

gives the largest value of ERR into the model as the first term;



(iv) At the kth (k=2 ) stages compute the values of the error reduction ratio for each of the

(x—k+1) remaining candidate terms by assuming that each istthéerm in the selected model and

perform the corresponding orthogonalisation; The term that gives the largestobalne error
reduction ratio is then selected into the model asctheterm. If condition (12) is satisfied, finish the

process and go to (v). Otherwise ketk+1 and repeat stefv;

(v) The final model containg, terms and the parameter estimates can be calculated using a least

squares formulae.

A geometric interpretation of the above procedure has been given by ChiengsBall Luo (1989)

Considery as a vector in the N dimensional Euclidean spRCewhere {4} are « linearly

independent vectors in this space. Each of the vectors can be spanned into a one dimensional subspace

of R". Denote the subspace which is spanneg Iag S(4). At the first step, the ERR’s for each ¢
measure the orthogonal projectionsyainto each of the subspaces. The subsﬁé@p) which gives
the maximal projection is determined and the corresponding gens selected as the first term
which is denoted aw,. At the second step, consider the orthogonal projectionsafto a two
dimensional spacé;{¢§,¢,} which is spanned by and each of the remaining -1) vectorsg
whereie{1,2;-- x} \{s;} . Since at each step has been orthogonalised intg , the orthogonal
projection ofy onto S{¢§,¢,} can be determined by evaluating the orthogonal projectigronfo w, .
The termg_ which spans the subspas%,%} on which the orthogonal projection pfreackesthe
maximum is selected as the second term. The orthogonalised vigetars} comprise an orthogonal
basis of the subspacklg ¢, | . At the kth step, the orthogonal projectionsyanto k-dimensional

subspaces are considered. The selected gerrand the previous k-1 terms span the subspace

S{# .4 .4, 4, onwhich the projection gfis maximal.



Compared to traditical forward regression methods, the OFR algorithm is computationally efficient
because it successfully avoids the re-estimation of the parameters and evhkia@stribution of
each term individually. The OFR is also extremely sufficient in the sedaction. At the tk step the
regression analysis are preformed on the orthogonal complement of the subspace spammed by th
previous k-1 terms. This successfully eliminates the information redundancy imdtiel and
produces a parsimonious model. Accordingly, the OFRircamost cases obtain the optimal solution
with only forward selection rather than stepwise regression. However, the Q&$sialgorithm may
occasionally give a suboptimal model because of the information overlap among the nomaitthog
terms. For example, a wrong term can be selected at the first step bdeaueen carries the
information from more than one correct term. This often happens at thstéipsbecause the terms
have not been ortigonalised. In this paper, a new iterative OFR algorithm will be introduced te solv
this problem, to improve the performance of the classic OFR algorithm, grdvide a relatively

simple and easy to use algorithm for term selection in complex dynamic models.

3. Iterative orthogonal forward regression

Following the discussion in the previous section, the OFR algorithm selects at @athesbest term
which comprises an optimal subspace with the existing terms. However optimaschb&very step
camot always guarantee a global optimum. Although the classic OFR algostltatways very
efficient, OFR can sometimes produce a suboptimal solution rather than an optimal one (Bidlings et
1989). This happens because the candidate terms in the initial term dictionaoy argaogonal with
each other and the information which is represented by these terms overlagaetitother. The
value of the ERR may therefore depend on the order in which the corresptemingnters the

model.

In this section, a very simple example is first studied in detail to explajrtive basic OFR algorithm

sometimes converges to a local optimum. Consider the problem of the regoéssioectors using
three linear independent vectars, «,, ande, in a three-dimensional space. Define the regression

matrix ® as



1 3 21 2
Q=[a, a, a;]=|2 2 18|, f=| 2. (13)
31 21 2

It is easy to show that vectgr in this example is actually a linear combination of vectgrand «, ,

satisfying
B =0.5 + 0.6, (14)

Equation (14) gives the model which represents the accurate relationship betwaed the

independent vectors.

Figure 1 shows the geometric representation of the four vectors in a three-dimeBsiclidian

space. Observe that vectgris closer toe, than to the other vectors althoughactually stays in the

plane spanned by, and«,. This is because vectes, can be decomposed as

a, =050+ 0.5, + a3 (15)

where «; =[0.1 -0.2 0.1]". Vector «,is actually composed of two components: the component which
lies in the plane spanned by and o, and a small componeat, which is perpendicular to the plane
and has no contribution to the explanation of the dependent vectélence vectow, possesses
both the information ofx, and the information of:, .

Fig 1 The geometric relations of the vectors in (13)

The standard OFR process is to find a sequence of nesting subSpacgs----— $ step by step.

Each subspacg, which is spanned by the (RB-tectors fromS_, and a new selected vector from the



regression matrix is optimal at each step. Here optimal meansthiog@mal projection oy on S, is

maximal. In order to decouple the contribution of each term to the totakpanj, the k-th term is
orthogonalised to the (k-1) terms selected in the earlier steps so that gatignagan be calculated

stepwise. The k orthogonal terms form a k-dimensional orthogonal basis of$pd2enote the sum
K

of the ERR values at thie-th step asSERR = > ERR. The sum of the ERR values represents a
i=1

normalised measurement to the projection. Mao and Billings (1997) argued that whernhesi
orthogonal algorithm to detect the model structure, previously selected termiafloance the
selection of later terms. Therefore the detection of a minimal model s&'wen be considered as a
search for the optimal orthogonalisation path which is defined as the order incahitidate terms

are orthogonalised into the regression equation.

In order to analyse the effects of orthogonalisation paths, all the posdiwgmralisation paths are
listed in Table 1. For this example, there are a total number of 6 differentantiizgtion paths in

which three terms can be orthogonalised into a model.

Table 1 ERRs along the six different orthogonalisation paths for eq. (14)

Path 1 Path 2 Path 3 Path 4 Path 5 Path 6
No. Terms | ERRs | Terms | ERRs | Terms | ERRs | Terms | ERRs | Terms | ERRs | Terms | ERRs
1 01 83.02 01 83.02 0 88.21 0 88.21 03 99.37 03 99.37
2 0O 16.98 03 16.40 o 11.79 03 11.39 0 0.06 0 0.23
3 a3 0 a2 0.58 a3 0 01 040 O 0.57 01 0.40
SERR -- 100% -- 100% - 100% -- 100% -- 100% -- 100%

Along the six different paths, the orthogonalised terms form six differambgohal bases which are

shown in Fig 2. Projectingg on each of the orthogonal bases, the ERR values are given in Table 1.

w Wy
1 W
Wy w, W, 1 W,
Wy
Wa
w, Wy ¥ W, w, ™
3 3 w, Wy

Fig 2 Six different orthogonal basfor eq. (14)
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An optimal model means the smallest model which includes all the correct teris.lémguage of
the ERR framework, an optimal model includes the smallest number of terms but prbéueegetst

sum of ERR values. In this example, the optimal model is composed of the two cmect,t and
a,. The classic OFR algorithm searches for a solution along a path where thef gwemERRS
increases at the fastest speed. In this example, although yedtoon the plane spanned by and
a,, the first term that will be selected by the OFR algorithra,ivecauser, is the term which is
mostly close tog and gives the largest projection, see Fig 1. Therefore, the OFRrthidigonalise
the regressors along path 6 in Tablexl»> «, > «,. However following path 6 the obtained model
is not optimal. When a specific tolerance is taken, for exampt€).50%, a correct term will be

missed along path 4, and 6 while a redundant term will be selected atbr®ygyad 5. However along

both pathse, >, > a, and a, > o, > «;, the search process produces an optimal model which

consists of two correct terms for any tolerance less than 10%. This mearadotitata correct
orthogonalisation path the algorithm will be much more robust, to yield optsalts, and the cutoff

is much more obvious and easier to select.

In a forward regression process, since the terms are selected one by onemotielaall the
orthogonal paths comige a solution tree. At the first step, there areoptionsd,,---,4. which
represent tha direct child nodes of the root node. These direct child nodes divide the whole tree into
x branches and each of the branches is also of a tree structure. Thgrelareptions at the second

step and(x-2) options at the third step, and so on. There are a total number different
orthogonalisation paths. A forward regression method starts from the commorodeoand selects

terms one by one from an upper layer to a lower layer. The ERR values assign afaveigich

branch of the tree. Each path from the root node to a leaf node represents a complete
orthogonalization path along which a corresponding model can be obtained. Fornipdeexader

consideration, the solution tree is shown in Fig 3.

11



16.98 16.92 11.79 11.75 013 015

® 00060
Fig 3 Solution tree of a forward regression algorithm for eq. (14)

For a globally optimal solution, we would need to search on the whole treevahdite all the
solutions on the different branches. Observe that there are many opportuniiie$ & correct
solution by exhausting all the paths on the solution tree. For a correct mhuidhl eonsists of m

terms there are a total number it different perturbations, wherg)! represents the factorial

operation, and each represents a correct solution on different branches of tha teletiThere are

total number ofm! optimal solutions on the tree. These optimal solutions can only happen on the
paths which start from a correct term. Hence only the sub-trees which start from a correctdeiom nee
be considered when searching for an optimal solution. In the above example, there aepérhal

orthogonalisabn paths and only the branches starting fremand «, may include the optimal

solution.

A classic OFR algorithm can occasionally search along a wrong orthogonalisatidoy gatking a
wrong termin the first steps. As a result, the search process will be along a wrorenpathoduce a
sub-optimal model. From the root node, a searching process can be fdwadcertain sub-tree by
fixing the first term before the searching process proceeds. Thereforaiitiveindea is to use the
OFR algorithm to searcbn each of the sub-trees. A sub-optimal madeibtained on each sub-tree
Compare these obtained models and shtite best one as the final result. The optimal model will be
in these sub-optimal models. Remember that there are a total numiempportunities to find a

optimal model. However search on all the sub-trees is not necessary because arpatieatahting

12



from a wrong term will never give an optimal model. Therefore, only thereeb-starting from a
correct term need to be considered. However, it is unknown which term is ectcterm.
Nevertheless a suboptimal model can always be a good starting point for the searctoftmal
solution. It is reasonable to assumatt suboptimal model consists of a majority of correct terms and
a few incorrect terms. Therefore an iterative learning algordambe proposed to find an efficient

and intuitive solution to this problem. The new iterative OFR algorithm consists of the follsisjrsy

i). Preset atolerance and apply the standard OFR algorithm on the whole term dictiahary
to produce a suboptimal term spt = {415§ 4, - ¢§S} ;

ii).  Select a small numbexp as an amendment to the tolerance in the first step (see Remarks 2

for the choice ofap);

iii). Select one of the termg(j=s,,s,--,5 ) in @, asa preselected first term and search the
other terms on the ternset ®\{4} to construct a suboptimal solution satisfying
1-> ERR< p+Ap;

iv).  Repeatiii) for all theg’s in @, and obtaing, suboptimal models;

v).  Compare the obtagu «, suboptimal models and choose the best one as the final mgdel

NARMAX models which typically include highly correlated unknown noise terms cadeogified
by following the iterative procedure below. Because the noise ternmotkaown a priori the model

prediction errors (residuals) will be used to approximate the noise terms.

i).  Assume the noise terms are zero and identify the model whesndo includel the noise
terms using the iOFR algorithm.
ii).  Produce the prediction errors using the best model obtained in step i).
iii). Use the residuals as the noise terms and construction the new term dictionarghirthghi
delayed noise terms are included.
iv).  Identify the full NARMAX model from the dictionary obtained in step iiijngsthe iOFR

algorithm.

13



V). Repeat steps) - iv) until a satisfying model obtained. At each time the residuals are

calculated based on the new identified model. Validate the model.
Remarks:

1) The searchg process can be further itegdtby selecting®,, as the suboptimal solutiol, in
step i) and repeating steps i) ~ v) for a better result. This time onigstén the set

<I>S—c1>0p:{¢|¢ec1>0p,and¢ed>op} need to be considered. However further iterations are often not

neededAn

2) The amendmenkp of the tolerance often takes a small non-negative number. A tolerance
means the sum of ERR’s of the selected terms in a model is no less tliarp). Hence the largea
tolerancep is, the less terms will be selected in the obtained motlglositive Ap means(p + Ap)

is a stricer tolerance and the iterative process will eliminate some of the redundastéepnoduce a
smaller model. On the contrary, a negatiye means(p+Ap) is a looser tolerance and the iterative
process will select more terms into the model and produce a more accurateidaséuipincrease of

the tolerance by can significantly tighten the search process to produce a smaller model. At the
same time a smallp will not expel the correct terms. For example, a good choice of the absolute

value of Ap can be the ERR value of the least significant term a@p , that is,
Ap=min{ERR(¢) |4 €@, }. This follows because after all the correct terms have been selected, the

remaining terms are considered as redundant terms and the corresponding contrililubenswech
smaller than the one with the smallest contribution in the suboptimal model. tBicew IOFR
searches for solutions on several sub-trees in parallel and chooses the best model as tloamdsailt it
expected that the model which is obtained in the iterative process will be no thanséhe sub-
optimal model in the first step when the tolerarckeepskept unchangrged Hence anothesften

used-selection-of choice ip is 0. When correct terms instead of the wrong terms are selected into

14



the model, the sum of ERR’s will reach (1-p) more quickly and a more parsimonious model is

obtained.

3) In the classic OFR algorithrthe selection of the tolerance is crucial for the identification of the

model. Additionally, the selection of the tolerance is often problem-dependent. &oplex the
tolerance may depend on the noise level in the measurement of the input and?otiggtittolerance
may expel some correct terms while a loose tolerance may cause overfithegdata. In the classic
OFR algorithm, a wrong term is selectedténa model because the wrong term may include the
information of more than one correct term and this becomes more signétdastfirst steps of the
forward selection process. Selecting the wrong term into the model at arstegdywill make the
correct terms much less significant and the correct terms will be selectethéntnodel later to
compensate for the information which has been missed. When the remaining meebjpiirmation

is small and is comparable to the effects of noisalight change in the tolerance may lead to a

different model-the—tolerance—will-become—very—sensitidence accurate determination of the

tolerance under which no correct terms will be missed can be diffidit.cBn be avoid by using

the new iOFR algorithm. When any of sieecorrect terms has been forced to be the first term, the
contribution of the wrong term becomes much less significant because plaet ioformation has

been explained by there-determined corretérms which has been selected in the previous s&ps

a result, there is a much lesser possibility that the wrong ternbevielected at the following steps.
Along a correct orthogonalisation path all the correct terms will be significahthe OFR algorithm

will be more robust to the value of the tolerance. This has been obserttesl previous example
where any tolerance which is not greater than 10% will lead to the comeet.rience, the setting

of the tolerancep can be relatively flexible in the new iOFR algorithm. This feature ofQR&® can

be very useful in the identification of real systems.

4) Unlike a coarsde-fine algorithm which starts from a sub-optimal model and purely eliminates

redundant termsthe iterativestepsOFR algorithm,-the-search-process-is-hot-eperated smansh

on thesuboptimal-se® -but-on-thavhole dictionaryrather than on the suboptimal @} -exeeptfor

15



the-pre-determined-terg. This enables the iIOFR algorithmdelect findthe correct terms which

have been missed-the by thesub-optimal modelhich-is-obtained-at ithe first stagente-the-finral
modeltoandobtain a better solution. In other words, the new iIOFR algorithm does nottheeed
suboptimal model obtained at the first step to be a sufficient model. This wilbderved in the

example in Section 4.2.

The new iOFR algorithm may occasionally give a suboptimal solution since tiré¢ratgonly tries
different routes at the first step and the remaining term selection colfdlktit a suboptimal trace.
However this will happen with a very low probability. Firstly, the new iOERrches the optimal
model in parallel along several different paths on the whole solution tree.dikardoo the previous
discussion, there are a total numberndf opportunities to find the optimal model and hence the
probability at which the iOFR can find the optimal solution will iBs® significantly. Té
improvement in the possibility to find the optimal solution will be disedsbelow. Secondly, along
the different search paths the corresponding orthogonal basis will be digterdiandthe ERR’s
assigned to each term will change accordingly. The significant termsheill ie selected into the
term in a different order. This has been observed in the example given in FagsBme& extent, this
process works like the heating process in a simulated annealing algorithmthdenetal atoms in
the material will be rearranged to build a better crystal structuthd cooling process. Finally,
according to the previous discussion, the signifieasf a wrong term which may be selected in the
first steps because it contains information from the correct terthbengreatly reduced when any of
the correct terms has been firstly selected. In the selection of the remammsgthe wrong term will
be less likely to be selected although the search is still along the speedessing path of the sum
of ERR values. Based on the above discussion, these are probably the best sohitadiie because
the alterative full optimal search (Mao and Billings 1997) involves a huge catigmal overload
that is just not feasible when studying real data sets where it is oftessagcto try lags over the
range 1-30 in the initial search. Noise model terms and MIMO (multi-input-muftiautystems just

further aggravate this problem.

16



We should ask what the probabilit/that the new iOFR algorithm will produea optimal solution.

Assumexk, termsin & k- k,_terms of the suboptimal modefp, whichwere wasobtained at the first
stageandare correct; the OFR algorithm can fiad optimal solution with a probability op along
eachpath starting with a correct term. The iOFR algorithm will sedhe optimal solution along,

parallel paths. The probability that the iOFR will find the optimal solutioatdaast one path will be

1- (1- py*, which equals to one minus the probability that the iIOFR fails to findpkienal solution

on all the pathsseeing that the search along {ae—«,) paths which start with a wrong term will
have no contributioferto the probability. The probability will be much higher than the probability of
the single path search whenis large enough. For example, consider a suboptimal model which
consists ofx, =20 terms in whichx, =10 terms are correct terms. The iOFR algorithm sesrfir

the optimal solution along 10 parallel paths at a probability of 50% on each path. It is easyl#ecal
that the probability that the iOFR algorithm will find the optirsalutionis (1-0.5° )~ 99.9% which

is much higher than the 50% succession probability of the single path sepndithad. In fact, the
probability for the classic OFR to successfully find the optimal solutianush better than 50%

Even the classical OFR can produce an optimal solution in most cases iexagphe special

situations.

The new iOFR algorithm is also computationally efficient. As discussed in the pdper and

Billings 1997), there are a total number xif erthegenalization orthogonalisatigraths for ax term

dictionary—where ())! +represents—thefactorial-operatio8earching for an optimal solution by
exhausting all these paths is computationally just not practical. Appthimgyenetic algorithm
assistant MMSD (Minimal Model Structure Detecli@hgorithm the search spacanbe reduced ta
much more practical number which can still be a large number. Comparativéhe imew iOFR
algorithm, the number of searching paths depends on the number of terms in the sub-apighal m
obtained at the first stage which is much less than the size of tltkctidhary, without mentioning
the number of all the combinations. Consider the example in the Mao and Biliipgs where 20

terms were included in the dictionary. An exhaustive search needs to evahi®el® paths; the
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MMSD algorithm searches aloag1¢ paths. Using the new iOFR algorithm, no more than 20 best
searching paths which start from the terms in a suboptimal model need to be dvdlhateforeit
can be concluded that the new iOFR algorithm is very efficient. A discussittre @omputational

complexity of the classic OFR algorithm has been ginghe references.

The performance of the new iOFR algorithm can be improved by appropriately incrisgsimgnber
of parallel searches. For example, a smaller tolerance in the first sihdead/ to a sub-optimal
model with more terms and the global search at the second stage will be carriednoué garallel
sub-trees. The iIOFR algorithm can also be improved by increasing the numbermoé-gedected

terms where a subset instead of a tern@jnis pre-determinedThe more correct terms are pre-

determined, the less possibly the wrong term will be selected into thenfotel. However, both

improvements lead to an increase in computational complexity.

An alternative OFR algorithm has been proposed by Piroddi and Spinelli (2003) bas#tdnaising

the model predicted or simulated output rather than the one step ahead predictions. This is very
similar to the algorithms by Billings and Mao (1998). The simulated outpettagorithm has been
shown to be effective where the data is grossly oversampled and where the input tdebapied

and not persistently exciting. However, these solutions are hugely computatexlysive so that

they cannot be realistically applied to complex models where searches over many lags, MIMO models,
and noise are involved all of which are typical when dealing with datd sets rather than very

simple simulated examples. The new iIOFR offers a much simpler solution.

4. Test examples

Several examplesill-beare used to illustrate the new iOFR algorithm. While the literature isofull
examples where the classical OFR algorithm works extremely aathexample below has been
deliberately chosen from the small number of past results where the standard OEBnhstsolwvn to

give non ideal results. In other words worst case examples are used below becauseabn typi
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examples where the data is sampled correctly and the input is persistatitiyg the algorithm

works perfectly every time.

4.1. A linear example

This linear examplevil-beis used to show that the OFR algoritltan sometimes give a suboptimal
model which includes redundant terms. But by applying an iterative process, thal@fithm is
greatly improved and is able to produce an optimal solution. This example wadrtakeiVei and

Billings 2008).
Consider the system
y(k)=-1.7y(k—1)- 0.8/(k— 3+u(k— }+ 0.8(k— P+¢ K (16)

where y(Kk), u(k), and e(k) represent the output, input and noise of the systempthie uniformly
distributed white noise u(k) ~ U(-1,1). The noise is nolyndistributed white noise e(k) ~ N(0,6)1
A total number of 1000 input and output data are measured for the system idamtifibefine a
candidate term dictionary which is composed of the delayed input and output@erfpék-1), y(k-
2), y(k-3), y(k-4), y(k-5), u(k-1), u(k-2), u(k-3), u(k-4), u(k-5)}. Applyinige classic OFR algorithm,
the identified model is shown in Table 1. A total number of seven terms have bssadeito the

model which includsall the correct terms. However three redundant terms have also been selected.

Table 2 Results given by the standard OFR algorithm for system (16)

No. Terms ERRs Coefficients Stapd_ard
Deviation

1 y(k-1) 67.8218 -1.6982 0.02894

2 u(k-1) 26.6089 0.9994 0.00557
3 y(k-4) 2.8635 0.0017 0.01235

4 u(k-4) 0.5968 -0.0021 0.01396

5 u(k-3) 0.4825 0.0036 0.01325

6 u(k-2) 0.4121 0.7912 0.02944
7 y(k-2) 0.3908 -0.7992 0.03679

SERR -- 99.18 -- --

In this example the classic OFR algorithm gives an incorrect model because obamgéing.

System (16) can be considered as a discretisation of a second order systewewitlow sampling
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frequency. The frequency response function and impulse response of systesedE®)ufe 4) show
that the natural frequency of the system is around 0.45 Hz. The sampling fsegugns example is

1 Hz which is only about 2.2 times of the natural frequency. The severe undengamibie system
exasperates this problem. The impulse response shows that the system needsme ltimgettle
down and oscillates with a period about 2.2s. This means the response of the systepeatibvery
2.2s (about 2 sampling intervals). Since the output is a convolution of the irthutheiimpulse
response function, y(k) may be of a similar pattern with y(k-2jis €xplains why y(k-4) may appear
in the final model because the term looks like y(kf8) this sampling and data case. The effect of
sampling time on nonlinear system identification has been studied by Billings and A88%, @nd

Billings (2013).

050

impulse response
o

-0.5}

0 0.1 0.2 0.3 04 0.5 "o 10 20 30 40 50 60
frequency(Hz) time (seconds)

Figure 4 Frequency response function and impulse response of system (16)

Taking each term in Table 2 as the first term and applying an OFR alganitiene Ao =0.3908%

which is the least value of thERR’s in Table 2, yields the results of the iOFR process given in Table
3. Seven different models were obtained. Me@eand 7 have the simplest structure where only four
terms are used to produce the best SERR. Actually both models consist of fear tesms. Model

1, 2, 3, 4, and 5 misslthe correct term y(k-2) under the amended tolergpeerp) and produce a
relatively smaller SERR. Therefore model 6 and model 7 are selected as thesiittal of the iOFR

process. Notice that both models include the same terms with the same assodiatahteAll the
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redundant terms in Table 2 Jeabeen successfully eliminated in the iterative process. The iOFR

algorithm which starts from the results of a standard OFR prgeessgivegthe optimal model.

Table 3 Results produced by iOFR algorithm for system (16)

Model 1 Model 2 Model 3 Model 4
No. Terms ERRs Coeffs Terms ERRs Coeffs Terms ERRs Coeffs Terms ERRs Coeffs
1 y(k-1)* 67.8218 -1.081 u(k-1)* 23.8334 0.997 y(k-4)* 3.509 -0.2546 | u(k-4)* 5.614 0.2622
2 u(k-1) 26.6089 0.997 y(k-1) 70.5972 -1.081 y(k-1) 66.7799 -1.081 y(k-1) 62.2166 -1.081
3 y(k-4) 2.8635 -0.2546 y(k-4) 2.8635 -0.2546 u(k-1) 27.0053 0.997 u(k-1) 26.8122 0.997
4 u(k-4) 0.5968 0.2622 u(k-4) 0.5968 0.2622 u(k-4) 0.5968 0.2622 y(k-4) 3.2483 -0.2546
5 u(k-3) 0.4825 -0.2354 u(k-3) 0.4825 -0.2354 u(k-3) 0.4825 -0.2354 u(k-3) 0.4825 -0.2354
6 u(k-2) 0.4121 0.1748 u(k-2) 0.4121 0.1748 u(k-2) 0.4121 0.1748 u(k-2) 0.4121 0.1748
SERR - 98.79 - - 98.79 - - 98.79 - - 98.79
Model 5 Model 6 Model 7
No. Terms ERRs Coeffs Terms ERRs Coeffs Terms ERRs Coeffs
1 u(k-3)* 8.9466 -0.3878 | u(k-2)* 18.5449 | 0.7881 y(k-2)* 36.7635 | -0.7941
2 y(k-1) 59.2524 | -1.2489 y(k-1) 49.3851 | -1.6951 y(k-1) 32.6657 | -1.6951
3 u(k-1) 26.2424 | 0.9987 u(k-1) 26.6444 | 0.9992 u(k-1) 26.8377 | 0.9992
4 y(k-3) 3.3286 0.3865 y(k-2) 4.6019 -0.7941 u(k-2) 2.9095 0.7881
5 u(k-2) 1.2412 0.3418
SERR - 99.01 - 99.18 - - 99.18

* means the term is determined first.

4.2. A nonlinear example

This example is taken from (Mao and Billings 1997). System (17) has been widely used a
benchmark example for the study of variations of OFR algorithms and for comparidR& with
other algorithms (Baldacchino et al.). In this examplell be shown that the iOFR can produce an

optimum solution even when some correct terms are not selected in the first OFR step.

Consider the nonlinear system

y(K)=0.2y*(k—1+ 0.%(k— Ju(k— 1+ 0.6°(k— - OfKk- )

17
—0.7y(k— 2)u? (k- 2+e(K)

The system is excited with a uniformly distributed white noise td(-1,1) and the output y(Kk) is
disturbed by a normally distributed white noise efk)(0,0.%). A total number of 1000 input and

output data were used for the system identification.

Up to third order polynomials of the delayed inputs and outputs {y(k-1), y&d23), y(k-4), u(k-1),
u(k-2), u(k-3)} were used to model the nonlinear system. A total number of 120wenmsncluded

in the term dictionarg . Applying the OFR algorithm yields a five term model which is shown in
Table 4. Notice that the model in Table 4 includesredundant term y(k-4§(k-2) but missesa
correct term y(k-2)¥(k-2).
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Table 4 Results produced by the standard OFR algorithm for system (17)

No. Terms ERRs Coefficients Stapdgrd
Deviation

1 y(k-4)u2(k-2) 36.2732 0.2922 0.02602

2 y(k-Du(k-1) 13.7147 0.6544 0.01528
3 u’(k-2) 11.3488 0.5134 0.009331

4 y(k-2) 26.8516 -0.6743 0.01165
5 y3(k-1) 3.3248 0.1949 0.009847
SERR -- 91.513 -- --

The nonlinear cross correlation model validation tests (Billings and Voon Bfiigs and Zhu
1994) clearly show that the model is unacceptable as a sufficient model of systemddrd.5i
shows that the cross correlation tests fail with two of the five crosslations significantly outside
the 95% confidence intervals. Notice that this model has been obtained lisrately abusing the
classic OFR algorithm to test the robustness of the new iOFR algorithm. In the applicationeRthe O

algorithm,a-model validation is alwaysdepted conductet aid the determination of the model size.

Fooithis example, an

acceptable model can be obtained by increasing the number of ternisamtidel validatios areis

satisfied.
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Fig 5 Cross correlation model validation for example 4.2
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Take the incorrect model in Table 4 as the starting point and apply the iQ#fihafg Use each term

in the previous model as the first term and employ the OFR algorithm to $edeeintaining terms
until SERR satisfies a tolerance wheye=0. The new iOFR produced five different models. The
results are shown in Table 5. All the five models have the same number &f lHowever model8
and 4 give a better SERR than the other three models. Compared with system liimpde$t3 and
model 4 are composed of the correct terms and give an accurate representation gihtiesygstem.

It is worth emphasising that the missed term y(K{&)Q) in Table 3 has now been correctly selected

into the final model by the IOFR algorithm.

Table 5 Results produced by iOFR algorithm for system (17)

Model 1 Model 2 Model 3
No. Terms ERRs Coeffs Terms ERRs Coeffs Terms ERRs Coeffs
1| y(k-A)Pk-2)* | 36.2732| 0.2922 | y(k-Du(k-1)* | 13.7511 | 0.6544 ui(k-2)* 247602 | 0.6004
2 y(k-Du(k-1) | 13.7247] 06544 | y(k-A)F(k-2) | 36.2367 | 0.2922 y(k-2) 48.5816 | -0.5124
3 u’(k-2) 11.3488 | 0.5134 u’(k-2) 11.3488 | 05134 | y(k-Du(k-1) | 13.985 | 0.6828
4 y(k-2) 26.8516 | -0.6743 y(k-2) 26.8516 | -0.6743 | y(k-2)u’(k-2) | 3.2488 | -0.6683
5 y3(k-1) 3.3248 | 0.1949 y(k-1) 3.3248 | 0.1949 y(k-1) 3.4452 | 0.1983
SERR - 91513 - - 91513 - - 94.028

Model 4 Model 5
No. Terms ERRs Coeffs Terms ERRs Coeffs
1 y(k-2)* 29.8926 | -0.5124 yi(k-1)* 0.9922 | 0.1949
2 u’(k-2) 43.4491 | 0.6004 | y(k-4)P(k-2) | 37.4213 | 0.2922
3 y(k-Du(k-1) | 13.985 | 0.6828 | y(k-Du(k-1) | 154601 | 0.6544
4 y(k-2u’(k-2) | 3.2488 | -0.6683 y(k-2) 119572 | -0.6743
5 y3(k-1) 3.4452 | 0.1983 u’(k-2) 25.6822 | 0.5134
SERR - 94.008 - - 91513 -

* represents the term is determined first.

In both examples, the new iOFR algorithm produced optimal models which incluithe @orrect
terms and are of the simplest structure in a very efficient computational prbees@FR algorithm
worked well even when the first OFR step did not give a correct masligl the second example
Moreover, in both examples, the iOFR algorithm found optimal solutions on more than amasgear
path. This indicates that the new algorithm is significantly robust becaug@RRecan still produce

an optimal solution even when the algorithm fails on one of the parallel search paths.

4.3. A nonlinear example with noise modelling

This example idakenfrom ard-uses-the-same-settings—n-B@ddi and Spinelli’s paperwith the
same parameter settinfRiroddi and Spinelli 2003). This example will be used to show that the iOFR

algorithm can correctly identify an optimal model even when the systems greraistently excited.
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This example also illustrates the application of iOFR in identificatidd ARMAX models including

delayed noise terms.

The system is given as follows

w(k)=u(k-1)+0.5u(k- 2+ 0.28 k- 1y k— 2} 0.8( k- )
V(9 = w(k) + ———e(K) o
1-0.&
where u represents the input signal and y represents the observation dpthemouBoth the input
u(k) and the noise e(k) are Gaussian distributed white noise. It can be shouethktssic OFR
algorithm can correctly select all the terms and produce an accurate model when dhe isyst
persistently excited. However, Piroddi and Spinelli argued that the classic OFRhahlgonay

incorrectly select autoregressive terms when the input sigriabkdsnotrich_enoughin frequency

components. Piroddi and Spinelli recommended an input which is generated by an AdR piritice
two real poles between 0.75 and R8peating Piroddi and Spinelli’s simulation using an input signal

which was generated by the following AR process.

0.3

u(k) =
(K 1-1.621+ 0.6472

v(K) (19)

where v(K) is Gaussian noise v(k) ~ N(0,1). The AR process has a repedatt p8and the coefficient
0.3 is chosen to guarantee the input signal is at a reasonable level. Heres¢hsigmal e(k) is a
Gaussian distributed noise with a variance 0.02, that is, e(k) ~ N(0,0.02). The pesdiiced by the

classic OFR algorithm are given in Table 6.

Table 6 Results produced by the classic OFR algorithm for example 3

No. Terms ERRs Coefficients Staf‘d?“d
Deviation
1 y(k-1) 87.0633 0.4260 0.01436
2 y(k-2) 6.9723 0.0131 0.004886
3 u¥(k-1) 1.1786 -0.3015 0.001741
4 uw(k-2) 3.6867 0.1346 0.004265
5 u(k-1) 0.1917 1.1097 0.0194
6 u(k-1) 0.7733 0.1409 0.003438
7 u(k-2) 0.060 -0.2613 0.03052
8 y(k-1)u(k-1) 0.0023 0.0034 0.003889
9 y(k-2)u(k-1) 0.0053 0.0140 0.001935
10 y(k-D)u(k-2) 0.0016 -0.0169 0.004702
SERR -- 99.88 -- --

Observe that several incorrect autoregressive terms have been selected ovegmientorrect
terms while a correct term u(k-1)u(k-@gsis missed. The new iOFR algorithm was employed to
solve the problem. Each term in the model in Table 6 was selected as the pre-detenmi@ed the

remaining terms were selected in a model using a classic OFR algorithms kex#imple, a total
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number of 10 models were obtained. Three in the ten models give the same modes wieécheist

model obtained under the given tolerance of 0.2%.

Table 7 Model identified using the iOFR algorithm for example 3

No. Terms ERRs Coefficients Standgrd
Deviation

1 u’(k-1) 79.8101 -0.3002 0.000578

2 u(k-1) 14.4655 0.9686 0.01938

3 u (k-Du(k-2) 5.3722 0.2485 0.001905

4 u(k-2) 0.1596 0.5413 0.01864
5 constant 0.0050 0.0477 0.009254

SERR -- 99.81 - --

Next we generatd the residuals:(k) = y(k) - ¥(k) , where y(k) is the one-step-ahead prediction of the

model in Table 7dse We then usethe residuals to replace the noise terms. The new dictignary

composed of all the up to third order monomials of variablg&-{1), u(k-2), y(k-1), y(k-2),
e(k-1),e(k-2),e(k—-3)}. The new iOFRis-wasthen used to identify the full NARMAX models

form the constructed dictionary under the tolerance level 0.2%. Thisttiree of seven search paths
gave the optimal solution which is shown in Table 8. All the terms in system (18suaessfully

detected and the associated coefficients are close to the real values irt thedineration for the

noise model.

Table 8 Full model identified using the iOFR algorithm for example 3

No. Terms ERRs Coefficients Stand_ard
Deviation
1 u3(k-1) 79.8129 -0.2995 0.000349

2 u(k-1) 14.4635 0.9647 0.012
3 u (k-Du(k-2) 5.3719 0.2543 0.000933
4 u(k-2) 0.1591 0.5395 0.01156
5 ek-1) 0.1174 -0.7922 0.01968

SERR - 99.92 - -

5. Conclusions

Several algorithms have been proposed to enhance the OFR algorithm by introcwdifiegdror add
on algorithms, but the new iterative orthogonal forward regression algorithrovies OFR under a

purdy OFR framework. Very little extra programming is needed to implement the né®R iO
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algorithm which is also highly computationally efficient. The new iIOFR imprdveslassic OFR in

two ways:it eliminates the redundant terms in a suboptimal model to praom®e parsimonious

model, and selects the correct terms to obtain an accurate system descripgoiseBre new iOFR
searcles for the solution over the whole solution tree iOFR is capable of produingptimal

solution using simple search procedures and can be applied to estimate highly complex system models

within a very efficient and intuitive framework.
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