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Stabilization and Consensus of Linear Systems with Multiple Input

Delays by Truncated Pseudo-Predictor Feedback

Bin Zhou∗ Shen Cong†

Abstract

This paper provides an alternative approach referred to as pseudo-predictor feedback (PPF) for
stabilization of linear systems with multiple input delays. Differently from the traditional predictor
feedback which is from the model reduction appoint of view, the proposed PPF utilizes the idea of
prediction by generalizing the corresponding results for linear systems with a single input delay to the case
of multiple input delays. Since the PPF will generally lead to distributed controllers, a truncated pseudo-
predictor feedback (TPPF) approach is established instead which gives finite dimensional controllers. It
is shown that the TPPF can compensate arbitrarily large yet bounded delays as long as the open-loop
system is only polynomially unstable. The proposed TPPF approach is then used to solve the consensus
problems for multi-agent systems characterized by linear systems with multiple input delays. Numerical
examples show the effectiveness of the proposed approach.

Keywords: Truncated pseudo-predictor feedback; Multiple input delays; Consensus; Multi-agent
systems; Stabilization

1 Introduction

Stability analysis and stabilization of time-delay systems have received considerable attention during the past
several decades since they are respectively the foundations of analysis and design for this class of systems
[1, 2, 3]. For stability analysis, there are tools built in both frequency domain [4, 5] and time domain [6, 7, 8]
and they are equivalently powerful in a sense. For stabilization of time-delay systems, there are also two
kinds of approaches. The first kind of approaches searches for finite dimensional controllers which lead to
an infinite dimensional closed-loop system whose stability is generally delay-dependent, namely, its stability
cannot guaranteed for arbitrarily large delay in general. The second kind of approaches is to design an
infinite dimensional controller, which may make the overall closed-loop system behave as a delay-free linear
system and thus its stability is independent of the delay in general. One of the most efficient methods within
the second category of approaches is the predictor feedback [9, 10, 11, 12, 13].

Consider a linear system with a pure input delay

ẋ (t) = Ax (t) +B0u (t− τ0) , (1)

where A ∈ Rn×n and B0 ∈ Rn×m are constant matrices and τ0 ≥ 0 is a constant scalar denoting the input
delay. To use the predictor feedback approach to stabilize system (1), we can design

u (t) = Fx (t+ τ0) , (2)

such that the closed-loop system is delay-free, namely,

ẋ (t) = (A+B0F0) x, (3)

which is asymptotically stable if A + B0F0 is Hurwitz. However, controller (2) is acausal as it involves the
future state vector x (t+ τ0) . There are three prediction methods for making (2) be causal:
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A. The traditional Predictor Feedback (PF): by the variation of the constant formula we predict x (t+ τ0)
from the open-loop system (1) to get

u (t) = F0

(

eAτ0x (t) +

∫ t+τ0

t

eA(t+τ0−s)B0u (s− τ0) ds

)

, (4)

which is implementable. However, this controller is infinite dimensional and may suffice some imple-
mentation problems [14].

B. Truncated Predictor Feedback (TPF): to overcome the shortcoming existing in the PF (4), under the
condition that (A,B) is controllable and all the eigenvalues of A are on the imaginary axis, we drop
the distributed term in it to yield

u (t) = F0e
Aτ0x (t) , (5)

which is a finite dimensional controller and will be referred to as TPF. We have shown in [13] that the
closed-loop system consisting of (1) and (5) is asymptotically stable for arbitrarily large delay τ0 if F0

is well designed.

C. Pseudo-predictor Feedback (PPF): differently from the PF (4), we predict x (t+ τ0) from the closed-
loop system (3) to get

u (t) = F0e
(A+B0F0)τ0x (t) , (6)

which is also a finite dimensional controller and will be referred to as PPF. It is shown in [15] that the
closed-loop system is asymptotically stable if and only if the following integral delay system is

ρ0 (t) = −F0

∫ t

t−τ0

e(A+B0F0)(t−s)B0ρ0 (s) ds, (7)

which has been studied in [16]. Moreover, similar to the TPF (5), if (A,B) is controllable and all
the eigenvalues of A are on the imaginary axis, the closed-loop system consisting of (1) and (6) is
asymptotically stable for arbitrarily large yet bounded delay τ0 if F0 is well designed [15].

The aim of the present paper is to generalize the PPF approach for the linear system (1) with a single input
delay to the following linear system with multiple input delays

ẋ (t) = Ax (t) +

p
∑

i=1

Biu (t− τi) , (8)

where A ∈ Rn×n and Bi ∈ Rn×m, i = 1, 2, . . . , p, are constant matrices, and τi, i = 1, 2, . . . , p, are constant
scalars. The main contribution and significance of this paper are listed below:

1. Differently from the PPF design for linear system (1) with a single input delay, the PPF design for
the linear system (8) with multiple input delays cannot be accomplished by using a virtual closed-
loop system to predict the future state since the traditional predictor feedback (also known as model
reduction) for system (8) does not use the future state at all. Hence we have to build an alternative
traditional predictor feedback for system (8) based on which a reasonable PPF can be designed. It
turns out that the designed PPF can indeed stabilize system (8) as long as an integral delay system in
the form of (7) is stable, indicating that our PPF design for system (8) is indeed a generalization of
the PPF design for system (1) to the case of multiple input delays.

2. However, differently from the PPF for system (1) with a single input delay, the PPF for system (8)
with multiple input delays results in an infinite dimensional controller which can only be implemented
by numerical approximation and may lead to instability to the overall closed-loop system. To overcome
this shortcoming, under the condition that (A,B) is controllable and all the eigenvalues of A are on
the imaginary axis, we provide a truncated pseudo-predictor feedback (TPPF) approach which leads
to a finite dimensional controller that can stabilize system (8) for arbitrarily large yet bounded delays
if the feedback gain is well designed. A numerical comparison of the proposed TPPF with our early
proposed TPF shows that the TPPF can generally lead to much better control performances.
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3. To show the effectiveness of the TPPF design for linear system (8) with multiple input delays, we use
it to solve the consensus problem for multi-agent systems modeled by general high-order linear systems
with multiple input delays. It is shown that as long as the open dynamics is not exponentially stable
and the communication network contains a spanning tree, the TPPF based protocols can ensure the
consensus of the concerned multi-agent systems for arbitrarily large yet bounded delays.

The reminder of this paper is organized as follows. After formulating the problem in Section 2, the PPF
design and TPPF design are respectively carried out in Sections 3 and 4. Application of the TPPF design
to the consensus of multi-agent systems is then discussed in Section 5. Two numerical examples are worked
out in Section 6 to show the effectiveness of the proposed approaches and Section 7 concludes the paper.

Notation: The notation used in this paper is fairly standard. The symbol λ (A) denotes the eigenvalue
set of the square matrix A. For a positive scalar τ, let Cn,τ = C ([−τ, 0] ,Rn) denote the Banach space of
continuous vector functions mapping the interval [−τ, 0] into Rn with the topology of uniform convergence,
and let xt ∈ Cn,τ denote the restriction of x (t) to the interval [t− τ, t] translated to [−τ, 0] , that is,
xt (θ) = x (t+ θ) , θ ∈ [−τ, 0]. For two matrices A and B, we use A⊗B to denote their Kronecker product.
For two integers p and q with p ≤ q, the symbol I [p, q] refers to the set {p, p+ 1, · · · , q} . Finally, for a
complex number s, we use Re{s} and |s| to denote respectively its real part and model.

2 System Description and Problem Formulation

Consider the following linear system with three input delays

ẋ (t) = Ax (t) +B1u (t− τ1) +B2u (t− τ2) +B3u (t− τ3) , (9)

where A ∈ Rn×n and Bi ∈ Rn×m, i = 1, 2, 3, are constant matrices, and τi, i = 1, 2, 3, are constant scalars
and such that

0 ≤ τ1 ≤ τ2 ≤ τ3 < ∞. (10)

For future use, we denote
τ = τ1 + τ2 + τ3. (11)

It is well-known that system (9) is stabilizable if and only if the following assumption is satisfied [9]:

Assumption 1 The matrix pair (A,B) is stabilizable, where

B = e−Aτ3B3 + e−Aτ2B2 + e−Aτ1B1, (12)

namely, there exists a matrix F ∈ Rm×n such that A+BF is Hurwitz.

In this paper, we are interested in the design of state feedback stabilizing controller u (t) for system (9) under
Assumption 1. One of the existing approaches for solving this problem is the so-called model reduction
approach, which is described as follows. Let

z (t) = x (t) +
3
∑

i=1

∫ t

t−τi

eA(t−τi−s)Biu (s) ds. (13)

Then direct computation gives (see, for example, [9] and [17])

ż (t) = Az (t) +Bu (t) , (14)

which is a delay-free linear system. Then, under Assumption 1, a stabilizing controller can be designed as

u (t) = Fz (t)

= F

(

x (t) +

3
∑

i=1

∫ t

t−τi

eA(t−τi−s)Biu (s) ds

)

, (15)
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which is implementable.

However, as the model reduction controller (15) involves the integration of u (t+ s) , s ≤ 0, it must be
implemented via numerical approximation, which may lead to some stability problems (see, for example,
[14]). To overcome this problem, we proposed in [12] and [17] a truncated version of the controller (15),
namely,

u (t) = Fx (t) , (16)

which is a finite dimensional controller and is referred to as truncated predictor feedback (TPF) [12], under
the following assumption:

Assumption 2 The matrix pair (A,B) ∈ (Rn×n ×Rn×m) is controllable with all the eigenvalues of A being
on the imaginary axis.

Under this assumption, the following result has been proven in [12] and [17].

Lemma 1 Let (A,B) satisfy Assumption 2 and F = −BTP where P is the unique positive definite solution
to the following parametric algebraic Riccati equation (ARE) (see Lemma 4 given later)

ATP + PA− PBBTP = −γP. (17)

Then there exists a γ∗ > 0 such that the TPF (16) stabilizes system (9) for all γ ∈ (0, γ∗) .

In this paper, we will establish an alternative approach for stabilizing system (25) from the prediction point
of view and will also build a class of finite dimensional stabilizing controllers under Assumption 2. This new
approach provides an option for the designer since it may possess much better control performance than the
TPF (16).

Remark 1 For easy presentation, in this paper we have assumed that there are only three delays in the
inputs. However, the reported results can be directly generalized to the more general system (8).

3 Stabilization by Pseudo-Predictor Feedback

3.1 A Recursive Derivation of the Model Reduction Approach

We first consider the following new state vector

y3 (t) = eAτ3x (t) +

∫ t+τ3

t

eA(t+τ3−s)B3u (s− τ3) ds (18)

by which and some computation we can rewrite system (9) as

ẏ3 (t) = Ay3 (t) +B3u (t) + eAτ3B1u (t− τ1) + eAτ3B2u (t− τ2) . (19)

Now choose another new state vector y2 (t) as

y2 (t) = eAτ2y3 (t) +

∫ t+τ2

t

eA(t+τ2−s)
(

eAτ3B2u (s− τ2)
)

ds, (20)

by which system (19) is transformed into

ẏ2 (t) = Ay2 (t) +
(

eAτ2B3 + eAτ3B2

)

u (t) + eA(τ2+τ3)B1u (t− τ1) . (21)

Finally, we choose the following new state vector y1 (t) :

y1 (t) = eAτ1y2 (t) +

∫ t+τ1

t

eA(t+τ1−s)
(

eA(τ2+τ3)B1u (s− τ1)
)

ds, (22)

4



and it follows from (21) that

ẏ1 (t) = Ay1 (t) + eAτ
(

e−Aτ3B3 + e−Aτ2B2 + e−Aτ1B1

)

u (t) . (23)

Now we consider a state transformation
y (t) = e−Aτy1 (t) , (24)

by which system (23) can be expressed as

ẏ (t) = Ay (t) +Bu (t) , (25)

which is also in the form of (14).

Since (25) is a delay-free linear system, under Assumption 1, if we choose

u (t) = Fy (t) , (26)

then the closed-loop system is given by

ẏ (t) = (A+BF ) y (t) , (27)

which is asymptotically stable if A+BF is Hurwitz.

To write the controller (26) in terms of the original state vector x (t) , we present the following lemma.

Lemma 2 Let y (t) be defined through (18), (20), (22) and (24) and z (t) be defined in (13). Then

y (t) = z (t) . (28)

Hence the controller (26) is exactly the model reduction based controller (15). However, the aim of the
recursive design of the model reduction described in the above is not to yield the controller (15) but is to link
the new state vector z (t) or y (t) with the future state vector x (t+ τ) and the future input u (t+ s) , s > 0,
as stated in the following lemma whose proof is provided in the appendix for clarity.

Lemma 3 Let y (t) be defined through (18), (20), (22) and (24). Then

y (t) = e−Aτx (t+ τ) −
3
∑

i=1

∫ t+τ−τi

t

eA(t−s−τi)Biu (s) ds. (29)

The connection revealed in the above lemma helps us to derive a predictor based approach for stabilization
of system (25) in the next subsection.

3.2 Pseudo-Predictor Feedback

Since the right-hand side of (29) is acausal, we consider

y (t− τ) = e−Aτx (t)−
3
∑

i=1

∫ t−τi

t−τ

eA(t−τ−s−τi)Biu (s) ds

= e−Aτ

(

x (t)−
3
∑

i=1

∫ t−τi

t−τ

eA(t−s−τi)Biu (s) ds

)

, e−Aτ (x (t)− ϕ (t)) , (30)

and use the closed-loop system model (27) to yield

u (t) = Fy (t)

= F e(A+BF )τy (t− τ)
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= F e(A+BF )τ e−Aτ (x (t)− ϕ (t)) , (31)

which will be referred to as pseudo-predictor feedback (PPF) since we have used the virtual closed-loop
system (27) to predict y (t) from y (t− τ) [15]. The controller (31) is now causal and is thus implementable.

Regarding the stability of the closed-loop system under the PPF (31), we have the following result.

Proposition 1 The closed-loop system consisting of (1) and the PPF (31) is asymptotically stable if and
only if the following integral delay system is

ρ (t) = −F

∫ t

t−τ

e(A+BF )(t−s)Bρ (s) ds. (32)

Proof. By (31) and (25), the closed-lop system is given by

ẏ (t) = Ay (t) +BF e(A+BF )τ e−Aτ (x (t)− ϕ (t))

= Ay (t) +BF e(A+BF )τy (t− τ)

= (A+BF ) y (t) +Bρ (t) , (33)

where
ρ (t) = F

(

e(A+BF )τy (t− τ) − y (t)
)

. (34)

On the other hand, it follows from (33) that

y (t) = e(A+BF )τy (t− τ) +

∫ t

t−τ

e(A+BF )(t−s)Bρ (s) ds, (35)

substituting of which into (33) gives the integral delay system (32). Hence if (32) is asymptotically stable,
it follows from (33) that the closed-loop system is stable. The converse can be shown similarly as the proof
of Theorem 1 in [15] and is omitted for brevity.

Remark 2 The PPF (31) will reduce to the PPF in [15] if there is only one delay in the system, namely,
B1 = B2 = 0 and τ1 = τ2 = 0. In fact, in this case, (31) reduces to

u (t) = F e(A+BF )τ3e−Aτ3x (t)

= F e(A+e−Aτ3B3F)τ3e−Aτ3x (t)

= F ee
−Aτ3 [(A+B3F e−Aτ3)τ3]eAτ3

e−Aτ3x (t)

= F e−Aτ3e(A+B3F e−Aτ3)τ3eAτ3e−Aτ3x (t)

= F3e
(A+B3F3)τ3x (t) , (36)

where F3 = F e−Aτ3 and is such that A + B3F3 is Hurwitz. This controller (36) is exactly in the form of
the PPF (6) established in [15]. On the other hand, the integral delay system (32) is exactly in the form of
(7). Hence Proposition 1 can be naturally considered a generalization of the results for the PPF established
in [15] to the case of multiple input delays.

Differently from the PPF (6) for the linear system (1) with a single input delay, the PPF (31) for system
(9) with multiple input delays also involves the integration of u (t) in the past time and is thus an infinite
dimensional controller which may suffice some implementation problems. To overcome this shortcoming, we
will establish a truncated version of this class of controller in the next section.

4 Truncated Pseudo-Predictor Feedback

4.1 Derivation of the Truncated Pseudo-Predictor Feedback

Similarly to the development in [13], let the feedback gain F be parameterized as F = F (γ) : R → Rm×n

and such that

lim
γ↓0

1

γ
‖F (γ)‖ < ∞, (37)
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then u (t) is also “of order 1” with respect to γ. Consequently, the vector ϕ (t) is “of order 1” with re-
spect to γ. As a result, F e(A+BF )τe−Aτϕ (t) is at least “of order 2” with respect to γ. Hence, the term
F e(A+BF )τe−Aτϕ (t) is dominated by the term F e(A+BF )τe−Aτx (t) and thus might be safely neglected in
u (t) when γ is sufficiently small [13]. As a result, the PPF (31) can be truncated as

u (t) = F e(A+BF )τ e−Aτx (t) , (38)

which we refer to as the “truncated pseudo-predictor feedback (TPPF).” The main advantage of the TPPF
(38) over the PPF (31) is that the former one is finite dimensional and is easy to implement.

According to the discussion in [13], to ensure that there exists a stabilizing F satisfying (37), we should
assume that system (9) satisfies Assumption 2. In this case, we have the following lemma which is helpful
for proving our main results.

Lemma 4 [15] Assume that (A,B) satisfies Assumption 2. Then the ARE (17) admits a unique positive
definite solution P (γ) = W−1 (γ) for all γ > 0, where W (γ) is the unique positive definite solution to the
Lyapunov equation

W
(

A+
γ

2
In

)T

+
(

A+
γ

2
In

)

W = BBT. (39)

Moreover, A+ BF is Hurwitz, where F = −BTP , tr
(

BTPB
)

= nγ, PBBTP ≤ nγP (γ) , limγ↓0 P (γ) = 0,
and

P e(A+BF ) = e−(A+γIn)
T

P. (40)

In the next subsection we will show that the TPPF (38) can indeed stabilize system (9).

4.2 Stability of the Closed-Loop System

The aim of this subsection is to prove the following result.

Theorem 1 Let F = −BTP where P is the unique positive definite solution to the parametric ARE (17).
Then there exits a scalar γ∗ > 0 such that the closed-loop system consisting of (9) and the TPPF (38) is
asymptotically stable for all γ ∈ (0, γ∗) .

Proof. Consider the closed-loop system consisting of (25) and (38) given by

ẏ (t) = Ay (t) +BF e(A+BF )τe−Aτx (t)

= Ay (t) +BF e(A+BF )τ
(

y (t− τ) + e−Aτϕ (t)
)

= Ay (t) +BF e(A+BF )τy (t− τ) +BF e(A+BF )τe−Aτϕ (t)

= (A+BF ) y (t) +Bρ (t) , (41)

where
{

ρ (t) = F
(

e(A+BF )τy (t− τ)− y (t)
)

+ φ (t) ,

φ (t) = F e(A+BF )τe−Aτϕ (t) .
(42)

By using the variation of constant formula, we get from (41) that

y (t) = e(A+BF )τy (t− τ) +

∫ t

t−τ

e(A+BF )(t−s)Bρ (s) ds, (43)

by which ρ (t) can be simplified as

ρ (t) = −F

∫ t

t−τ

e(A+BF )(t−s)Bρ (s) ds+ φ (t) . (44)

7



For later use, we notice from the definition of ϕ (t) in (30) that











φ (t) = F e(A+BF )τ e−Aτ

3
∑

i=1

ϕi (t) ,

ϕi (t) =
∫ t−τi

t−τ
eA(t−s−τi)Biu (s) ds, i = 1, 2, 3.

(45)

Moreover, by equation (30) we can write u (t) as

u (t) = F e(A+BF )τ
(

y (t− τ) + e−Aτϕ (t)
)

= F e(A+BF )τy (t− τ) + φ (t) . (46)

Consider a Lyapunov function V1 (y (t)) = yT (t)Py (t) whose time-derivative along system (41) is given by

V̇1 (y (t)) = yT (t)
(

(A+BF )
T
P + P (A+BF )

)

y (t) + 2yT (t)PBρ (t)

= −γyT (t)Py (t)− yT (t)PBBTPy (t) + 2yT (t)PBρ (t)

≤ −γyT (t)Py (t) + ‖ρ (t)‖2 , (47)

where we have used Lemma 4. By (44) and the Jensen inequality we can derive

‖ρ (t)‖2 ≤ 2

(
∫ t

t−τ

e(A+BF )(t−s)Bρ (s) ds

)T

FTF

∫ t

t−τ

e(A+BF )(t−s)Bρ (s) ds+ 2 ‖φ (t)‖2

≤ 2nγ ‖P‖ τ

∫ t

t−τ

ρT (s)BTe(A+BF )T(t−s)e(A+BF )(t−s)Bρ (s) ds+ 2 ‖φ (t)‖2

≤ 2nγ ‖P‖ τ ‖B‖2 e2(‖A‖+‖B‖2‖P‖)τ
∫ t

t−τ

‖ρ (s)‖2 ds+ 2 ‖φ (t)‖2

= c1γ ‖P‖

∫ t

t−τ

‖ρ (s)‖2 ds+ 2 ‖φ (t)‖2 , (48)

where
c1 = c1 (γ) = 2nτ ‖B‖2 e2(‖A‖+‖B‖2‖P‖)τ . (49)

Let γ∗
1 > 0 be such that

c1γ ‖P‖ τ +
√

‖P‖ ≤ 1, ∀γ ∈ (0, γ∗
1) . (50)

Then the time-derivative of the second Lyapunov functional

V2 (ρ (t)) = c1γ ‖P‖

∫ 0

−τ

∫ t

t−s

‖ρ (σ)‖2 dσds (51)

along (48) satisfies

V̇2 (ρ (t)) = c1γ ‖P‖ τ ‖ρ (t)‖2 − c1γ ‖P‖

∫ t

t−τ

‖ρ (σ)‖2 dσ

≤ c1γ ‖P‖ τ ‖ρ (t)‖2 + 2 ‖φ (t)‖2 − ‖ρ (t)‖2

≤ 2 ‖φ (t)‖2 −
√

‖P‖ ‖ρ (t)‖2 . (52)

Now by using (45) we can obtain

‖φ (t)‖2 = ϕT (t) e−ATτe(A+BF )TτFTF e(A+BF )τ e−Aτϕ (t)

≤ nγ ‖P‖ e2(‖A‖+‖B‖2‖P‖)τ e2‖A‖τϕT (t)ϕ (t)

≤ 3nγ ‖P‖ e2(‖A‖+‖B‖2‖P‖)τe2‖A‖τ
3
∑

i=1

‖ϕi (t)‖
2
, (53)
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and, by using the Jensen inequality again, we get, for i = 1, 2, 3,

‖ϕi (t)‖
2 ≤ τ

∫ t−τi

t−τ

uT (s)BT
i e

AT(t−s−τi)eA(t−s−τi)Biu (s) ds

≤ ‖Bi‖
2 e2‖A‖τ (τ − τi)

∫ t−τi

t−τ

‖u (s)‖2 ds

≤
3
∑

i=1

‖Bi‖
2
e2‖A‖τ τ

∫ t

t−τ

‖u (s)‖2 ds. (54)

Moreover, it follows from (46) that

∫ t

t−τ

‖u (s)‖2 ds ≤ 2

∫ t

t−τ

‖φ (s)‖2 ds+ 2

∫ t

t−τ

yT (s− τ) e(A+BF )TτFTF e(A+BF )τy (s− τ) ds

= 2

∫ t

t−τ

‖φ (s)‖2 ds+ 2

∫ t−τ

t−2τ

yT (s)P e−(A+γI)τBBTe−(A+γI)TτPy (s) ds

≤ 2

∫ t

t−τ

‖φ (s)‖2 ds+ 2 ‖P‖
∥

∥e−AτB
∥

∥

2
∫ t−τ

t−2τ

yT (s)Py (s) ds

≤ 2

∫ t

t−τ

‖φ (s)‖2 ds+ 2 ‖P‖
∥

∥e−AτB
∥

∥

2
∫ t

t−2τ

yT (s)Py (s) ds, (55)

where we have used the inequality (40). Inserting (55) into (54) and then (53) gives

‖φ (t)‖2 ≤ 9nγτ ‖P‖ e2(‖A‖+‖B‖2‖P‖)τe4‖A‖τ
3
∑

i=1

‖Bi‖
2
∫ t

t−τ

uT (s)u (s) ds

≤ c2γ ‖P‖

∫ t

t−τ

‖φ (s)‖2 ds+ c3γ ‖P‖2
∫ t

t−2τ

yT (s)Py (s) ds, (56)

where






















c2 = c2 (γ) = 18nτe2(‖A‖+‖B‖2‖P‖)τ e4‖A‖τ

3
∑

i=1

‖Bi‖
2
,

c3 = c3 (γ) = 18nτe2(‖A‖+‖B‖2‖P‖)τ e4‖A‖τ

3
∑

i=1

‖Bi‖
2 ∥
∥e−AτB

∥

∥

2
.

(57)

Let γ∗
2 ∈ (0, γ∗

1) be such that

c2γ ‖P‖ τ +
√

‖P‖ ≤ 1, ∀γ ∈ (0, γ∗
2) . (58)

Then the time-derivative of the Lyapunov functional

V3 (φt) = c2γ ‖P‖

∫ 0

−τ

∫ t

t−s

‖φ (σ)‖2 dσds, (59)

satisfies

V̇3 (φt) = c2γ ‖P‖ τ ‖φ (t)‖2 − c2γ ‖P‖

∫ t

t−τ

‖φ (σ)‖2 dσ

≤ c2γ ‖P‖ τ ‖φ (t)‖2 + c3γ ‖P‖2
∫ t

t−2τ

yT (s)Py (s) ds− ‖φ (t)‖2

≤ c3γ ‖P‖2
∫ t

t−2τ

yT (s)Py (s) ds−
√

‖P‖ ‖φ (t)‖2 . (60)

Finally, we choose

V (yt, ρt, φt) =
1

8
‖P‖V1 (y (t)) +

1

4

√

‖P‖V2 (ρt) + V3 (φt)
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+ c3γ ‖P‖2
∫ 0

−2τ

∫ t

t−s

yT (σ)Py (σ) dσds, (61)

and it follows from (47), (52) and (60) that

V̇ (yt, ρt, φt) ≤
1

8
‖P‖

(

−γyT (t)Py (t) + ‖ρ (t)‖2
)

+
1

4

(

√

‖P‖
(

2 ‖φ (t)‖2 −
√

‖P‖ ‖ρ (t)‖2
))

+ c3γ ‖P‖2
∫ t

t−2τ

yT (s)Py (s) ds−
√

‖P‖ ‖φ (t)‖2

+ 2τc3γ ‖P‖2 yT (t)Py (t)− c3γ ‖P‖2
∫ t

t−2τ

yT (s)Py (s) ds

= −
1

8
‖P‖ ‖ρ (t)‖2 −

1

2

√

‖P‖ ‖φ (t)‖2

−

(

1

8
− 2τc3 ‖P‖

)

‖P‖ γyT (t)Py (t) . (62)

Hence there exists a γ∗ ∈ (0, γ∗
2) such that

V̇ (yt, ρt, φt) ≤ −
1

8
‖P‖ ‖ρ (t)‖2 −

1

2

√

‖P‖ ‖φ (t)‖2

−
1

16
‖P‖ γyT (t)Py (t) , ∀γ ∈ (0, γ∗) . (63)

Then by a similar argument in [17], we can show that limt→∞ ‖ρ (t)‖ = limt→∞ ‖φ (t)‖ = limt→∞ ‖y (t)‖ = 0.
Consequently, by (30) we know limt→∞ ‖x (t)‖ = 0, which implies asymptotic stability. The proof is finished.

Remark 3 We point out that all the plant parameters and the delays in system (1) can be time-varying as
in [15] and similar results can be obtained. We here however only consider time-invariant parameters for
the sake of brevity.

5 Applications to the Consensus of Multi-Agent Systems

5.1 Problem Formulation and Assumptions

We consider a continuous-time high-order multi-agent system described by

ẋi (t) = Axi (t) +

3
∑

j=1

Bjui (t− τj) , i ∈ I [1, N ] , (64)

where xi ∈ Rn and ui ∈ Rm are the state and the control of Agent i, respectively, N ≥ 1 is a given
integer denoting the number of agents, τj , j = 1, 2, 3 are the input delays satisfying (10), and A,Bi are given
matrices. Let the communication topology among these agents be characterized by a weighted directed graph
G (N , E ,A) , where N is the node set, E is the edge set, and A = [αij ] ∈ RN×N is the weighted adjacency
matrix. Denote the corresponding Laplacian by L = [lij ] ∈ RN×N (see [18] for a detailed introduction on
graph theory).

We assume that Agent i collects the state information of its neighboring agents by the rule [19]

zi (t) =
∑

j∈Ni

αij (xi (t)− xj (t))

=

N
∑

j=1

lijxj (t) , i ∈ I [1, N ] , (65)
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where Ni = {j : αij 6= 0}. In this section, we are interested in the design of the state feedback protocol
ui (t) = ui (zi) , i ∈ I [1, N ] that achieves consensus of the multi-agent system (64). To this end, we first
introduce the concept of consensus.

Definition 1 The linear multi-agent system (64) achieves consensus if limt→∞ ‖xi (t)− xj (t)‖ = 0, ∀i, j ∈
I [1, N ] .

Remark 4 By definition, if the high-order multi-agent system (64) achieves consensus, then there exists a
signal s (t) ∈ Rn, which may be unbounded, such that limt→∞ ‖xi (t)− s (t)‖ = 0, ∀i ∈ I [1, N ] . The signal
s (t) is referred to as the reference trajectory.

According to the discussions in [20] and [19], to ensure that the consensus value reached by the agents will not
tend to infinity exponentially, namely, the reference trajectory s (t) defined in Remark 4 is not exponentially
diverging, the matrix A should not contain eigenvalues in the open right-half plane [20]. Hence, without loss
of generality, we assume that Assumption 2 is satisfied for (64) [19].

The following assumption is also necessary for the solvability of the consensus problem (see, for example,
[19]).

Assumption 3 The communication topology G (N , E ,A) contains a directed spanning tree.

By this assumption we know that λ (L) = {0, λ2, . . . , λN} with Re {λi} > 0, i ∈ I [2, N ] (see, for example,
[18]).

5.2 Consensus by Truncated Pseudo-Predictor Feedback Protocols

In this section we present our solutions to the consensus problem by using the TPPF approach developed in
Section 4 for stabilization of the linear system (9).

Theorem 2 Let Assumptions 2 and 3 be satisfied, F = −BTP where P > 0 is the unique positive definite
solution to the parametric ARE (17) and µ be any positive number such that

µ ≥ max
i∈I[2,N ]

{

1

Re {λi}

}

. (66)

Then, for any delay τ that is exactly known and can be arbitrarily large yet bounded, there exists a number
γ∗ = γ∗(µ, τ, {λi}

N
i=2) such that the consensus of the multi-agent system (64) is achieved by the protocol

ui (t) = µF e(A+BF )τe−Aτzi (t) , i ∈ I [1, N ] , γ ∈ (0, γ∗). (67)

Moreover, the reference signal s (t) defined in Remark 4 satisfies

‖s (t)‖ ≤ k
(

1 + tN
∗−1
)

, ∀t ≥ 0, (68)

where N∗ is the maximal algebraic multiplicity of the eigenvalues of A and k is a positive function of the
initial conditions.

Proof. Under Assumption 3, there exists a nonsingular matrix U ∈ CN×N , whose first column is 1N ,

[1, 1, . . . , 1]⊺ ∈ RN , such that [18]

U−1LU =















0
λ2 δ2

. . .
. . .

λN−1 δN−1

λN















, J, (69)
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where λi are such that Re{λi} > 0, i ∈ I [2, N ] , and δi, i ∈ I [2, N − 1] , equals either 1 or 0. For future use,
we define δN = 0.

Let F = µF e(A+BF )τe−Aτ . The closed-loop system consisting of (64) and (67) is given by

ẋi (t) = Axi (t) +

3
∑

k=1

BkFzi (t− τk)

= Axi (t) +

3
∑

k=1

BkF

N
∑

j=1

lijxj (t− τk)

= Axi (t) +

3
∑

k=1

N
∑

j=1

lijBkFxj (t− τk) , i ∈ I [1, N ] . (70)

By letting x = [x⊺

1 , x
⊺

2 , · · · , x
⊺

N ]
⊺
, the above system can be expressed as

ẋ (t) = (IN ⊗A) x (t) +

3
∑

k=1

(L⊗BkF )x (t− τk)

= (U ⊗ In) (IN ⊗A)
(

U−1 ⊗ In
)

x (t)

+ (U ⊗ In)

3
∑

k=1

(J ⊗BkF )
(

U−1 ⊗ In
)

x (t− τk) , (71)

namely,

χ̇ (t) = (IN ⊗A)χ (t) +

3
∑

k=1

(J ⊗BkF )χ (t− τk) , (72)

where χ =
(

U−1 ⊗ In
)

x = [χ⊺

1 , χ
⊺

2 , · · · , χ
⊺

N ]
⊺
. In view of (56), system (72) is equivalent to











χ̇i (t) = Aχi (t) , i = 1,

χ̇i (t) = Aχi (t) + λi

3
∑

k=1

BkFχi (t− τk) + δiχi+1 (t− τk) , i ∈ I [2, N ] ,
(73)

where χN+1 (t) ≡ 0. Since x = (U ⊗ In)χ, it follows from the special structure of U that the consensus is
achieved if

lim
t→∞

‖χi (t)‖ = 0, i ∈ I [2, N ] , (74)

and in this case
xi (t)

t→∞
−→ χ1 (t) , i ∈ I [1, N ] , (75)

which implies (68) in view of the first equation of (73). It is easy to see that (74) is true if and only if

χ̇i (t) = Aχi (t) + λi

3
∑

k=1

BkFχi (t− τk) , i ∈ I [2, N ] , (76)

are all asymptotically stable. In the following we will show that (76) are all indeed asymptotically stable if
(66) is satisfied.

We consider the following linear time-delay system











κ̇ (t) = Aκ (t) +

3
∑

k=1

Bku (t− τk) ,

u (t) = Fe(A+BF )τe−Aτ
κ (t) ,

(77)

where

F = λµF, µ ≥
1

Re {λ}
, Re {λ} > 0. (78)
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By comparing (76) with (77)-(78), it suffices to show that there exists a γ# (λ) such that (77) is asymptotically
stable for all γ ∈ (0, γ# (λ)). However, system (77) is very similar to the closed-loop system consisting of (9)
and the TPPF (38). Hence we need only to prove the stability of

ẏ (t) = (A+BF) y (t) +Bρ (t) , (79)

where


















ρ (t) = F
(

e(A+BF )τy (t− τ)− y (t)
)

+ φ (t) ,

φ (t) = Fe(A+BF )τe−Aτϕ (t) ,

ϕ (t) =

3
∑

i=1

∫ t−τi
t−τ

eA(t−s−τi)Biu (s) ds.

(80)

The proof is almost the same as the proof of Theorem 1 where the constants ci, i = 1, 2, 3, are redefined
accordingly. Particularly, the inequality in (47) can be obtained since

(A+BF)
H
P + P (A+BF) = ATP + PA− 2Re {λ}µPBBTP

≤ ATP + PA− 2PBBTP

= −γP − PBBTP, (81)

where we have used (78).

Based on the above discussion, the proof is finished by choosing γ∗ = mini∈I[2,N ]

{

γ# (λi)
}

.

The TPPF protocols can also be generalized to the observer based output feedback case. The details are
omitted for brevity.

6 Two Illustrative Examples

6.1 Stabilization by Truncated Pseudo-Predictor Feedback

Consider a linear system in the following form

ẋ (t) = Ax (t) +B1u (t) +B2u (t− τ) , (82)

where τ = π
2 and

A =









0 1 0 0
−1 0 1 0
0 0 0 1
0 0 −1 0









, B1 =









0
−1
0
0









, B2 =









0
0
0
−1









. (83)

It follows that λ (A) = {±i,±i} and (A,B) is controllable, where B is found to be

B =
[

− 1
2

1
4 − π −1 0

]T
. (84)

By Lemma 1 and Theorem 1, both the TPF and the TPPF controllers take the form

u (t) = F (γ)x (t) , (85)

where F (γ) = FTPF for the TPF and F = FTPPF for the TPPF with FTPF and FTPPF given by

FTPF =
[

4γ3 −γ4 + 4γ2 4γ + γ4 − 2γ3 − 4γ2 − 1
4πγ

4 + πγ2 − 1
2γ

4 + 4γ3 − 4γ2 − γ3π
]

, (86)

FTPPF =
1

4
γe−

1

2
γπ









γ2
(

4γπ − 3γ3π + 2γ4 + 8γ2 − 16
)

2γ
(

−4γπ − 5γ3π + 3γ4 + 18γ2 + 8
)

16 + 6γ4 − 36γ3 + 40γ2 − 16γ − 6γ5 − 4γπ + 10πγ4 − 11γ3π + 8πγ2

γ
(

8γ3 + 2γ2 − 16γ + 16 + 2γ5 + 4πγ2 − 4γπ − 3πγ4
)









T

. (87)

The closed-loop system consisting of (82) and (85) is given by

ẋ (t) = (A+B1F (γ))x (t) +B2F (γ)x (t− τ) , (88)
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Figure 1: The functions λmax (γ) for the closed-loop system (88) under the TPF and the TPPF

which is a linear time-delay system whose stability is completely determined by the right-most roots of its
characteristic equation c (s, γ) = det (sI4 − (A+B1F (γ))−B2F (γ) e−τs) [21, 13]. Let [15]

λmax (γ) = max {Re {s} : c (s, γ) = 0} , (89)

which can be efficiently computed by the software package DDE-BIFTOOL [22] for a fixed γ. Then the
closed-loop system (88) is asymptotically stable if and only if λmax (γ) < 0 and its convergence rate is
completely determined by λmax (γ) [21, 13]. Let γsup > 0 be the minimal number such that λmax (γ) = 0.
Then clearly there exists an optimal value γopt ∈ (0, γsup) such that λmax (γ) is minimized at γ = γopt with
the minimal value λmaxmin. It is thus clear that λmaxmin is the maximal convergence rate that the controller
(85) can achieve [12, 13, 15].

The functions λmax (γ) associated with both F (γ) = FTPF and F (γ) = FTPPF are shown in Fig. 1 from
which we clearly see that

A. The closed-loop system under the TPF is asymptotically stable if and only if γ ∈ (0, γTPF
sup ) where

γTPF
sup = 0.276, and its convergence rate is maximized with γ = γTPF

opt = 0.221 and λTPF
maxmin =

λmax(γ
TPF
opt ) = −0.113, which is the maximal convergence rate that the TPF can achieve.

B. The closed-loop system under the TPPF is asymptotically stable if and only if γ ∈ (0, γTPPF
sup ) where

γTPPF
sup = 1.067 and its convergence rate is maximized with γ = γTPPF

opt = 0.447 and λTPPF
maxmin =

λmax(γ
TPPF
opt ) = −0.278, which is the maximal convergence rate that the TPPF can achieve.

We thus conclude that the TPPF can not only allow a larger range of γ ensuring the stability than the
TPF (namely, γTPPF

sup > γTPF
sup ) but also lead to a much better control performance than the TPF (namely,

λTPPF
maxmin < λTPF

maxmin). For the comparison purpose, both the state responses of the closed-loop system by
TPF with γ = γTPF

opt and the closed-loop system by the TPPF with γ = γTPPF
opt are recorded in Fig. 2 from

which we can see that the later one indeed converges faster than the former one.

6.2 Consensus by Truncated Pseudo-Predictor Feedback

We assume that there are six agents with each agent being characterized by the linear system (82)–(83).
Let these agents be connected by a communication network as shown in Fig. 3. This network can be
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with γ = γTPPF
opt

characterized by the Laplacian

L =

















2 −2 0 0 0 0
−1 1 0 0 0 0
0 0 2 0 −2 0
0 0 −1 1 0 0
−2 0 0 0 2 0
0 0 0 0 −1 1

















. (90)

As λ (L) = {0, 1, 1, 2, 2, 3}, Assumption 3 is fulfilled. We can thus choose µ = 1. By Theorem 2, the protocol
can then be designed as

ui (t) = F (γ) zi (t) , i ∈ I [1, 6] , (91)

where F (γ) is given by (87) and γ = 0.1. For some specified initial conditions, the state vector x1 of the
first agent and the differences between the states xi of the other five agents and x1 are recorded in Fig. 4.
From this figure, we clearly see that the consensus is achieved.

7 Conclusion

This paper has studied the stabilization problem for linear systems with multiple input delays. We first
establish a pseudo-predictor feedback controller, which is infinite dimensional, and then build a truncated
version of this pseudo-predictor feedback controller, which is finite dimensional and is termed as truncated
pseudo-predictor feedback (TPPF). It is shown that the TPPF can stabilize the concerned systems for
arbitrarily large yet bounded delay if the open-loop system is not exponentially stable. Comparison of the
TPPF with the existing results shows that the former one can generally lead to better control performance.
The TPPF approach has also been utilized to solve the consensus problem for linear multi-agent systems
with multiple input delays.
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Figure 3: The communication network
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Figure 4: The state vector x1(t) and ‖xi(t)− x1(t)‖ , i ∈ I [2, 6]
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Appendix

A1. Proof of Lemma 2

We compute from (18), (20), (22) and (24) that

y (t) = e−Aτy1 (t)

= e−Aτ

(

eAτ1y2 (t) +

∫ t+τ1

t

eA(t+τ1−s)
(

eA(τ2+τ3)B1u (s− τ1)
)

ds

)

= e−A(τ2+τ3)y2 (t) +

∫ t+τ1

t

eA(t−s)B1u (s− τ1) ds

= e−A(τ2+τ3)

(

eAτ2y3 (t) +

∫ t+τ2

t

eA(t+τ2−s)
(

eAτ3B2u (s− τ2)
)

ds

)

+

∫ t+τ1

t

eA(t−s)B1u (s− τ1) ds

= e−Aτ3y3 (t) +

∫ t+τ2

t

eA(t−s)B2u (s− τ2) ds+

∫ t+τ1

t

eA(t−s)B1u (s− τ1) ds

= e−Aτ3

(

eAτ3x (t) +

∫ t+τ3

t

eA(t+τ3−s)B3u (s− τ3) ds

)

+

∫ t+τ2

t

eA(t−s)B2u (s− τ2) ds+

∫ t+τ1

t

eA(t−s)B1u (s− τ1) ds

= x (t) +
3
∑

i=1

∫ t+τi

t

eA(t−s)Biu (s− τi) ds

= x (t) +
3
∑

i=1

∫ t

t−τi

eA(t−τi−s)Biu (s) ds

= z (t) , (92)

which completes the proof.

A2. Proof of Lemma 3

In view of systems (9), (19) and (21), we can write










y3 (t) = x (t+ τ3)−
∫ t+τ3
t

eA(t+τ3−s) (B1u (s− τ1) +B2u (s− τ2)) ds,

y2 (t) = y3 (t+ τ2)−
∫ t+τ2

t
eA(t+τ2−s)

(

B3u (s) + eAτ3B1u (s− τ1)
)

ds,

y1 (t) = y2 (t+ τ1)−
∫ t+τ1

t
eA(t+τ1−s)

(

eAτ2B3 + eAτ3B2

)

u (s) ds,

(93)

from which it follows that

y (t) = e−Aτy1 (t)

= e−Aτy2 (t+ τ1)−

∫ t+τ1

t

e−Aτ eA(t+τ1−s)
(

eAτ2B3 + eAτ3B2

)

u (s) ds

= e−Aτy3 (t+ τ1 + τ2)

−

∫ t+τ1+τ2

t+τ1

e−AτeA(t+τ1+τ2−s)
(

B3u (s) + eAτ3B1u (s− τ1)
)

ds

−

∫ t+τ1

t

e−AτeA(t+τ1−s)
(

eAτ2B3 + eAτ3B2

)

u (s) ds

= e−Aτx (t+ τ1 + τ2 + τ3)

−

∫ t+τ1+τ2+τ3

t+τ1+τ2

e−AτeA(t+τ1+τ2+τ3−s) (B1u (s− τ1) +B2u (s− τ2)) ds

−

∫ t+τ1+τ2

t+τ1

e−AτeA(t+τ1+τ2−s)
(

B3u (s) + eAτ3B1u (s− τ1)
)

ds
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−

∫ t+τ1

t

e−AτeA(t+τ1−s)
(

eAτ2B3 + eAτ3B2

)

u (s) ds

= e−Aτx (t+ τ1 + τ2 + τ3)

−

∫ t+τ1+τ2+τ3

t+τ1+τ2

eA(t−s)B1u (s− τ1) + eA(t−s)B2u (s− τ2) ds

−

∫ t+τ1+τ2

t+τ1

eA(t−τ3−s)B3u (s) + eA(t−s)B1u (s− τ1) ds

−

∫ t+τ1

t

eA(t−τ3−s)B3u (s) + eA(t−τ2−s)B2u (s) ds

= e−Aτx (t+ τ1 + τ2 + τ3)−
3
∑

i=1

∫ t+τ1+τ2+τ3−τi

t

eA(t−s−τi)Biu (s) ds, (94)

which completes the proof.
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