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This paper deals with the leader-follower consensus problem of Lipschitz nonlinear systems under
fixed directed communication networks. Both state and output feedback control are proposed based
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are explored for the stability analysis, and the sufficient conditions are derived to solve the consensus
problem. Finally, simulation results are included to demonstrate the effectiveness of the output-based
consensus controller.

Keywords: Consensus, Output feedback, Multi-agent systems, Nonlinear system.

1. Introduction

Consensus control, as a type of cooperative control, has received considerable attention in the
recent decade. Network consensus means that the states or outputs of all agents subject to a
special communication network topology converge to certain quantities of interest. Hence, the
consensus control design usually explores the communication structure (i.e. Laplacian matrix) to
enable each dynamical subsystem in networks with a fixed or switching information connection
to achieve the identical objectives. Many applications, such as formation control, synchronization
and others, are based on the consensus algorithms.
In the modern context of multi-agent systems, numerous results have been obtained for the

consensus problem (Fax et al. 2004; Olfati-Saber et al. 2004, 2003). Information consensus for
first-order (single-integrator) systems has been investigated in the papers such as (Ren 2007;
Cao et al. 2010; Chen et al. 2011; Ren 2007), to name a few. It is then expanded to second order
(double-integrator) consensus problem as shown in (Ren et al. 2007) and higher order consensus
in (Ren et al. 2007; He et al. 2011). Some are analysed based on leader-follower configuration for
single leader (Cai et al. 2014; Hong et al. 2010; Cheng et al. 2010) and multi-leader configuration
(Wang et al. 2014). Consensus for complex systems has also been studied as in (Zhang et al.
2011; Ni et al. 2010), including the study of consensus problem for the systems with nonlinear
terms (Li et al. 2010; Chen et. al. 2009; Song et al. 2010), with delay (Li et al. 2011; Liu et
al. 2012; Cui et al. 2012) or the linear systems with nonlinear consensus protocols (Zuo et al.
2014; Su et al. 2013). Although some results on consensus control with nonlinearity have been
stated in (Liu et al. 2013; Ding 2013; Dong et al. 2014; Li et al. 2012), most are restricted to
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local stability, or to certain connections of the network such as the existence of a tree structure
in the connection, or certain types of nonlinearities. There are a few papers that deal with
consensus problem of high-order dynamic systems with Lipschitz nonlinearities. A result on
the consensus for Lipchitz nonlinear systems derived in (Li et al. 2012) assumed that the left
eigenvector corresponding to the eigenvalue of the Laplacian matrix at zero has no zero elements.
Ding (Ding 2014) investigated the global consensus control for a network-connected system in the
presence of a Lipschitz nonlinearity with a fairly general assumption on the connection structure.
In real-life applications, it is often impossible to obtain the measurements of all system states.

In such a case, state feedback controller clearly are not applicable, but the observer-based con-
troller, or output feedback controller can provide a viable solution. There have been a number
of results developed on the observer design for Lipschitz nonlinear systems (Rajamani 1998;
Rajamani et al. 2002; Aboky et al. 2002; Phanomchoeng et al. 2010; Ding 2013).
Since few results on the output feedback consensus control for Lipchitz nonlinear multi-agent

systems have been reported, this paper presents a new consensus controller for such systems by
output feedback. The basic structure of the controller is built upon the works of Li et.al (Li et al.
2010, 2009), and Ding (Ding 2014). However, apart from the leader-follower configuration, the
key feature different from the works mentioned includes two aspects: (i) a Lipschitz nonlinearity
in the subsystem dynamics is considered, and (ii) a consensus controller based on the outputs
of neighbouring subsystems is proposed. The Lyapunov tools are employed for the consensus
stability analysis and several sufficient conditions are derived from careful study of the connection
topology (i.e. the Laplacian structure). Finally, simulations are given to validate the proposed
consensus controller.
The rest of this paper is organized as follows. Section 2 presents the problem and some basic

notations on graph theory. The leader-follower consensus with state feedback control design
and the consensus observer design are given respectively in Section 3 and Section 4. Section 5
presents the main result on the leader-following consensus by output feedback. Simulation results
are included in 6. Section 7 concludes this paper.
Notations: Throughout the paper, R denotes the set of real numbers. We use the 2-norm (i.e.,

Euclidean norm) to measure the size of a vector x ∈ Rn, defined by ∥x∥ =
√
xTx, and use the

induced norm corresponding to the 2-norm for vectors to measure the size of a matrix A ∈ Rn×n,

defined by ∥A∥ = supx ̸=0
∥Ax∥
∥x∥ . The symbol ⊗ denotes the Kronecker product of matrices (Horn

1990).

2. Problem Statement

Consider N + 1 nonlinear subsystems with identical dynamics, described as

ẋi = Axi + ϕ(xi) +Bui (1)

yi = Cxi (2)

where for i = 0, . . . , N , xi ∈ Rn is the state vector of the subsystem, ui ∈ Rp is the input of the
ith subsystem, and yi ∈ Rq is the measured output vector, A ∈ Rn×n, B ∈ Rn×p, and C ∈ Rq×n

are appropriate matrices, and ϕ : Rn → Rn is a Lipschitz nonlinear function with the Lipschitz
constant γ, i.e., for any two constant vectors a, b ∈ Rn, we have

∥ϕ(a)− ϕ(b)∥ ≤ γ∥a− b∥ (3)

Without loss of generality, a subsystem indexed by 0 is assigned as the leader with u0 = 0 and
the subsystems indexed by i = 1, . . . , N are referred to as followers.
The connections between the subsystems are specified by a directed graph G which consists of

a set of vertices denoted by V and a set of edges denoted by E . A vertex represents a subsystem
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and each edge represents a connection. The adjacency matrix Q associated with the graph G
is defined with elements qij = 1 if there is a connection between subsystem j to i, and qij = 0
otherwise. The Laplacian matrix L = {lij} is commonly defined as

lij = −qij , if j ̸= i (4)

lii =
N∑

j=1,j ̸=i

qij (5)

A couple of assumptions are needed

Assumption 1. Triple (A,B,C) is controllable and observable.

Assumption 2. The communication network G of the multi-agent systems contains a directed
spanning tree (Godsil et al. (2001)) with the leader as the root.

Since the leader has no neighbours, L can be partitioned as

L =

[
0 01×N

l1 L

]
(6)

where L ∈ RN×N and l1 = [l10, . . . , lN0]
T ∈ RN×1.

Lemma 1 ((Hong et al. 2006)). If the Assumption 2 holds, then all the eigenvalues of L have
positive real parts.

The control objective is to design the leader-follower consensus controller using measured
output information of the neighbouring agents such that the states of the follower subsystems
in a group asymptotically track the state of the leader subsystem.

3. Leader-Follower State Feedback Consensus Controller

The controller proposed using the relative state information takes the structure

ui = K

N∑
j=0

lijxj = K

N∑
j=1

lij(xj − x0) (7)

where K ∈ Rp×n is a constant control gain matrix to be designed later and the fact li0 =
−
∑N

j=1 lij is used. The leader-follower consensus problem is said to be solved if

xi(t) → x0(t), ∀i = 1, . . . , N as t→ ∞ (8)

We first introduce the disagreement between the leader and follower subsystem’s state denoted
by

ξi = xi − x0 (9)

With ξ = [ξT1 , . . . , ξ
T
N ]T , Φ(x) = [ϕT (x1), . . . , ϕ

T (xN )]T and Φ(x0) = 1 ⊗ ϕ(x0), the compact
form of closed-loop dynamics of ξ are given by

ξ̇ = (IN ⊗A− L⊗BK)ξ +Φ(x)− Φ(x0) (10)

3



November 11, 2015 International Journal of Systems Science IJSS-final-version-4Nov2015

where L is defined in (6).
Let us introduce nonsingular matrices T ∈ RN×N and T−1 ∈ RN×N such that

T−1LT = J̄ (11)

with J̄ being a block-diagonal matrix of real Jordan form

J̄1
J̄2

. . .

J̄p
J̄p+1

. . .

J̄q


(12)

where J̄k ∈ Rnk for k = 1, . . . , p are the Jordan blocks for real eigenvalues λ̄k > 0 with the
multiplicity nk in the form

J̄k =


λ̄k 1

λ̄k 1
. . .

. . .

λ̄k 1
λ̄k


and J̄k ∈ R2nk for k = p + 1, . . . , q are the Jordan blocks for conjugate eigenvalues ᾱk ± jβ̄k,
ᾱk > 0 and β̄k > 0 with multiplicity nk in the form

J̄k =


µ(ᾱk, β̄k) I2

µ(ᾱk, β̄k) I2
. . .

. . .

µ(ᾱk, β̄k) I2
µ(ᾱk, β̄k)


with I2 the identity matrix in R2×2 and

µ(ᾱk, β̄k) =

[
ᾱk β̄k
−β̄k ᾱk

]
∈ R2×2 (13)

To exploit the structure of L, two other transformations are introduced

η = (T−1 ⊗ In)ξ (14)

Ψ(x, x0) = (T−1 ⊗ In)(Φ(x)− Φ(x0)) (15)

and thus we obtain the transformed closed-loop network dynamics as

η̇ = (IN ⊗A− J̄ ⊗BK)η +Ψ(x, x0) (16)

where η = [ηT1 , . . . , η
T
N ]T , Ψ(x, x0) = [ψT

1 (x, x0), . . . , ψ
T
N (x, x0)]

T and J̄ takes the Jordan matrix
form of (12).
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3.1 Stability Analysis

For the stability analysis, we need to establish a bound of the nonlinear function in terms of the
transformed η.

Lemma 2. For nonlinear element ψi of the nonlinear term Ψ in the transformed closed-loop
network dynamics (16), a bound can be established in terms of the state η as shown by

∥ψi∥ ≤ γ0√
N

∥η∥ (17)

with

γ0 = γλσ(T
−1)λσ(T )

√
N (18)

where λσ(·) denotes the maximum singular value of a matrix.

Proof. The approach of the derivation of (17) and (18) is similar to Lemma 3.2 in (Ding 2014).
From (15) we have

∥ψi(x, x0)∥ ≤ ∥ti ⊗ In∥∥Φ(x)− Φ(x0)∥

≤ ∥T−1 ⊗ In∥γ∥x− x0∥

≤ λσ(T
−1)λσ(In)γ∥x− x0∥

= λσ(T
−1)γ∥ξ∥

where ti denotes the i
th row of T−1 and λσ(In) = 1 has been used. And from (14) we have

∥ξ∥ ≤ ∥T ⊗ In∥∥η∥

≤ λσ(T )∥η∥

Then, it is easy to get

∥ψi(x, x0)∥ ≤ γλσ(T
−1)λσ(T )

√
N√

N
∥η∥

=
γ0√
N

∥η∥

with γ0 as in (18).

The bound derived in the lemma above will be used for the control gain design in the following
theorem.

Theorem 1. For a network-connected nonlinear systems (1) with the communication topology
G satisfying Assumption 2, the consensus control design (7) with K = BTP solves the leader-
follower consensus problem if there exists a solution of P = P T > 0 specified in one of the
following two cases:

(1) If the eigenvalues of the matrix L are distinct, i.e., nk = 1 for k = 1, . . . , q, the matrix P
satisfies

ATP + PA− 2ᾱPBBTP + κPP +
γ20
κ
In < 0 (19)
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with κ being any positive real number and ᾱ = min{λ̄1, . . . , λ̄p, ᾱp+1, . . . , ᾱq}.
(2) If the matrix L have multiple eigenvalues, i.e., nk > 1 for any k ∈ {1, . . . , q}, the matrix

P satisfies

ATP + PA− 2(ᾱ− 1)PBBTP + κPP +
γ20
κ
In < 0 (20)

with κ being any positive real number.

Proof. Within each real Jordan block J̄k, for k ≤ p we have, for i = Nk−1 + 1, . . . , Nk − 1,

η̇i = (A− λ̄iBK)ηi −BKηi+1 + ψi(x) (21)

and

η̇i = (A− λ̄iBK)ηi + ψi(x)

for i = Nk.
For the state variable associated with the Jordan blocks Jk for k > p corresponding to complex

eigenvalues, we consider the dynamics of the state variables in pairs. For notational convenience,
let

i1(j) = Nk−1 + 2j − 1

i2(j) = Nk−1 + 2j

for j = 1, . . . , nk/2. The dynamics of ηi1 and ηi2 for j = 1, . . . , nk/2− 1 are expressed by

η̇i1 = (A− ᾱkBK)ηi1 − βkBKηi2 −BKηi1+2 + ψi1(x)

η̇i2 = (A− ᾱkBK)ηi2 + βkBKηi1 −BKηi2+2 + ψi2(x)

and

η̇i1 = (A− ᾱkBK)ηi1 − βkBKηi2 + ψi1(x)

η̇i2 = (A− ᾱkBK)ηi2 + βkBKηi1 + ψi2(x)

for j = nk/2.
Let Wi = ηTi Pηi. Choose Vk =

∑nk

j=1 σ
2(j−1)Wj+Nk−1

for k = 1, . . . , p and Vk =∑nk/2
j=1 σ

2(j−1)(Wi1(j) + Wi2(j)) for k = p + 1, . . . , q, where σ > 0. Then we consider the Lya-

punov function V =
∑q

i=1 Vk. With K = BTP , we have the following results.
Case 1. For the distinct eigenvalues, we can obtain that

V̇ ≤
N∑
i=1

ηTi

(
ATP + PA− 2ᾱPBBTP + κPP +

γ20
κ
In

)
ηi (22)

The condition (19) guarantees V̇ < 0.
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Case 2. For multiple eigenvalues, we can obtain that

V̇ ≤
N∑
i=1

ηTi

[
ATP + PA− 2

(
ᾱ− 1

σ

)
PBBTP + κPP +

γ20
κ
In

]
ηi.

≤
N∑
i=1

ηTi

[
ATP + PA− 2(ᾱ− 1)PBBTP + κPP +

γ20
κ
In

]
ηi

(23)

with σ = 1. The condition (20) guarantees V̇ < 0.
Hence we conclude that ηi(t) → 0, ∀i = 1, . . . , N as t→ ∞. This completes the proof.

Some of the derivations of the proof have been omitted to save the space. We refer readers to
(Ding 2014) for similar information in detail.

4. Consensus Observer

The consensus observer for each subsystem is proposed as

˙̂xi = Ax̂i +Bui + ϕ(x̂i) + L

N∑
j=1

lij(yj − Cx̂j) (24)

where x̂i ∈ Rn for i = 1, . . . , N is the estimated state of each subsystem (follower) and L ∈ Rn×q

is the observer gain matrix to be determined later.

Remark 1. Differently from the traditional Luenberger observer which uses the absolute output
information, the proposed consensus observer (24) only uses the relative output and estimated
output information of the neighbours via network connections to produce the estimated value of
the subsystem itself.

The estimation error dynamics can be then derived as

˙̃xi = Ax̃i + ϕ(xi)− ϕ(x̂i)− LC

N∑
j=1

lij x̃j (25)

where x̃i = xi − x̂i. With x̃ =
[
x̃T1 , . . . , x̃

T
N

]T
, Φ(x) =

[
ϕT (x1), . . . , ϕ

T (xN )
]T

and Φ(x̂) =[
ϕT (x̂1), . . . , ϕ

T (x̂N )
]T

, the estimation error dynamics (25) for each subsystem can be stacked
into a compact form as

˙̃x = (IN ⊗A− L⊗ LC)x̃+Φ(x)− Φ(x̂) (26)

where L is defined in (6). Likewise, we introduce the transformation

η̃ = (T−1 ⊗ In)x̃ (27)

Ψ(x, x̂) = (T−1 ⊗ In)(Φ(x)− Φ(x̂)) (28)

with T−1LT = J̄ defined in (12). Hence, the transformed dynamics of the consensus observer

7



November 11, 2015 International Journal of Systems Science IJSS-final-version-4Nov2015

are given by

˙̃η = (IN ⊗A− J̄ ⊗ LC)η̃ +Ψ(x, x̂) (29)

where η̃ = [η̃T1 , . . . , η̃
T
N ]T , Ψ(x, x̂) = [ψ̄T

1 (x, x̂), . . . , ψ̄
T
N (x, x̂)]T .

Remark 2. Similar to the previous section, the estimation error dynamics (26) is now turned
into a diagonally dominant matrix, which facilitates the stability analysis.

4.1 Stability Analysis

Similar to the previous section, the bound of ψ̄i(x, x̂) in terms of η̃ is needed.

Lemma 3. For nonlinear element ψ̄i of the nonlinear term Ψ in the transformed closed-loop
network dynamics (29), a bound can be established in terms of η̃ as shown by

∥ψ̄i(x, x̂)∥ ≤ γ0√
N

∥η̃∥ (30)

with

γ0 = γλσ(T
−1)λσ(T )

√
N (31)

where λσ(·) denotes the maximum singular value of a matrix.

Proof. From (28), we have

∥ψ̄i(x, x̂)∥ ≤ ∥ti ⊗ In∥∥Φ(x)− Φ(x̂)∥ (32)

where ti is the i
th row of T−1. And from (27), we have

∥x̃∥ ≤ ∥T ⊗ In∥∥η̃∥ (33)

Hence, similar to the proof in Lemma 2, the following can be obtained

∥ψ̄i(x, x̂)∥ ≤ λσ(T
−1)γ∥x̃∥

≤ λσ(T
−1)γλσ(T )∥η̃∥

=
γ0√
N

∥η̃∥

with γ0 as in (31).

The bound obtained in the lemma above will be used for the consensus observer gain design
in the following theorem.

Theorem 2. For a network-connected dynamic system (1) with communication topology G sat-
isfying Assumption 2, (24) with L = P−1CT is an asymptotically stable observer for the system
(1) if there exists a solution P = P T > 0 specified in the following of the two cases:

(1) If the eigenvalues of the matrix L are distinct, i.e., nk = 1 for k = 1, . . . , q the matrix
P = P T > 0 satisfies

ATP + PA− 2ᾱCTC + κPP +
γ20
κ
In < 0 (34)
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with κ being any positive real number and ᾱ = min{λ̄1, . . . , λ̄p, ᾱp+1, . . . , ᾱq}.
(2) If the matrix L have multiple eigenvalues, i.e., nk > 1 for any k ∈ {1, . . . , q}, the matrix

P = P T > 0 satisfies

ATP + PA− 2(ᾱ− 1)CTC + κPP +
γ20
κ
In < 0 (35)

with κ being any positive real number.

Proof. Similar to the proof of Theorem 1, for k ≤ p we have

˙̃ηi = (A− λ̄iLC)η̃i − LCη̃i+1 + ψ̄i(x) (36)

with i = Nk−1 + 1, . . . , Nk − 1 and

˙̃ηi = (A− λ̄iLC)η̃i + ψ̄i(x)

for i = Nk.
For k > p, we have

˙̃ηi1 = (A− ᾱkLC)η̃i1 − βkLCη̃i2 − LCη̃i1+2 + ψi1(x)

˙̃ηi2 = (A− ᾱkLC)η̃i2 + βkLCη̃i1 − LCη̃i2+2 + ψi2(x)

with j = 1, . . . , nk/2− 1 and

˙̃ηi1 = (A− ᾱkLC)η̃i1 − βkLCη̃i2 + ψ̄i1(x)

˙̃ηi2 = (A− ᾱkLC)η̃i2 + βkLCη̃i1 + ψ̄i2(x)

for j = nk/2.
Let W i = η̃Ti P η̃i. Choose V k =

∑nk

j=1 σ
2(j−1)W j+Nk−1

for k = 1, . . . , p and V k =∑nk/2
j=1 σ

2(j−1)(W i1(j)+W i2(j)) for k = p+1, . . . , q, where σ > 0. Then we consider the Lyapunov

function V =
∑q

i=1 V k. With σ = 1 and L = P−1CT , we have the following results.
Case 1. For the distinct eigenvalues, we can obtain that

V̇ ≤
N∑
i=1

η̃Ti

(
ATP + PA− 2ᾱCTC + κPP +

γ20
κ
In

)
η̃i

Case 2. For multiple eigenvalues, we can obtain that

V̇ ≤
N∑
i=1

η̃Ti

[
ATP + PA− 2(ᾱ− 1)CTC + κPP +

γ20
κ
In

]
η̃i

Therefore, conditions (34) and (35) guarantee that V̇ < 0 for both cases. Hence we conclude
that η̃i(t) → 0, ∀i = 1, . . . , N as t→ ∞. This completes the proof.
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5. Leader-follower Consensus Controller with State Estimation

The output feedback consensus controller takes the following structure

ui = −K(x̂i − x0) (37)

where x̂i ∈ Rn for i = 1, . . . , N are the estimated states defined in (24) and the consensus
controller gain K ∈ Rp×n is to be determined later.

Remark 3. The controller utilizes the estimated information provided by the consensus observer
for each of the subsystem. It is worth noting that the consensus controller in (37) is an output
feedback controller, since the consensus observer in (24) only depends on the outputs of the
subsystems.

Remark 4. It is worth mentioning that the implementation of the consensus controller (37)
requires the state of the leader to be accessed by the followers. This requirement is due to the
nonlinearity of each subsystem. In other words, it is not needed if all subsystems in a group are
linear.

With (3) and (37), system (1) can be written as

ẋi = (A−BK)xi +BKx0 +BKx̃i + ϕ(xi) (38)

and with (26), the augmented closed-loop network dynamics can be stacked into a compact form
as [

ξ̇
˙̃x

]
=

[
IN ⊗ (A−BK) IN ⊗BK

0 IN ⊗A− L⊗ LC

] [
ξ
x̃

]
+

[
Φ(x)− Φ(x0)
Φ(x)− Φ(x̂)

] (39)

By using the same transformation (27) for η̃, we have the transformed network dynamics[
ξ̇
˙̃η

]
=

[
IN ⊗ (A−BK) IN ⊗BK

0 IN ⊗A− J̄ ⊗ LC

] [
ξ
η̃

]
+

[
Φ(x)− Φ(x0)

Ψ(x, x̂)

] (40)

We summarize the main result of this paper in the following theorem.

Theorem 3. For a network-connected dynamic system (1) with the associated Laplacian matrix
that satisfies Assumptions 1-2, the observer-based controller (37) with K = BTP1, and L =
P−1
2 CT solve the leader-follower consensus problem if there exist solutions P1 = P T

1 > 0 and
P2 = P T

2 > 0 specified in one of the following cases:

(1) If the eigenvalues of the matrix L are distinct, i.e., nk = 1 for k = 1, . . . , q, the matrices
P1 and P2 satisfy

ATP1 + P1A− P1BB
TP1 + κ1P1P1 +

γ2

κ1
In < 0 (41)

and

ATP2 + P2A− 2ᾱCTC + κ2P2P2 +
γ20
κ2
In + P1BB

TP1 < 0 (42)
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with κ1 and κ2 being any positive real numbers, ᾱ = min{λ̄1, . . . , λ̄p, ᾱp+1, . . . , ᾱq}, γ de-
fined in (3) and γ0 defined in (31).

(2) If the eigenvalues of the matrix L are multiple eigenvalues, i.e., nk > 1 for any k ∈
{1, . . . , q}, the matrices P1 and P2 satisfy

ATP1 + P1A− P1BB
TP1 + κ1P1P1 +

γ2

κ1
In < 0 (43)

and

ATP2 + P2A− 2(ᾱ− 1)CTC + κ2P2P2 +
γ20
κ2
In + P1BB

TP1 < 0 (44)

with κ1 and κ2 being any positive real numbers.

Proof. Let V1 =
∑N

i=1 ξ
T
i P1ξi and taking derivative of V1 along (40) yields

V̇1 =

N∑
i=1

[(A−BK)ξi +BKη̃i + ϕ(xi)− ϕ(x0)]
TP1ξi +

N∑
i=1

ξTi P1[(A−BK)ξi +BKη̃i + ϕ(xi)− ϕ(x0)]

=

N∑
i=1

ξTi (A
TP1 + P1A− 2P1BK)ξi + 2ξTi P1BKη̃i +

N∑
i=1

2ξTi P1(ϕ(xi)− ϕ(x0))

≤
N∑
i=1

ξTi (A
TP1 + P1A− P1BB

TP1 + κ1P1P1)ξi +

N∑
i=1

η̃Ti P1BB
TP1η̃i +

N∑
i=1

1

κ1
∥ϕ(xi)− ϕ(x0)∥2

≤
N∑
i=1

ξTi (A
TP1 + P1A− P1BB

TP1 + κ1P1P1 +
γ2

κ1
In)ξi +

N∑
i=1

η̃Ti P1BB
TP1η̃i

(45)

where K = BTP1 and we have used the inequality 2aT b ≤ κaTa + bT b/κ for vectors a and b
with the same dimension.
Let the Lyapunov function be V = V1 + V2 with V2 = V . By Theorem 2, two cases are

considered for stability analysis, respectively.
Case 1. If the eigenvalues of the matrix L are distinct, we have

V̇ ≤
N∑
i=1

ξTi (A
TP1 + P1A− P1BB

TP1 + κ1P1P1 +
γ2

κ1
In)ξi

+

N∑
i=1

η̃Ti

(
ATP + PA− 2ᾱCTC + κPP +

γ20
κ
In

)
η̃i

+

N∑
i=1

η̃Ti P1BB
TP1η̃i

=
N∑
i=1

ξTi M1ξi +
N∑
i=1

η̃Ti M2η̃i

(46)

11
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where

M1 = ATP1 + P1A− P1BB
TP1 + κ1P1P1 +

γ2

κ1
In

M2 = ATP2 + P2A− 2ᾱCTC + κ2P2P2 +
γ20
κ2
In + P1BB

TP1

Conditions (41) and (42) guarantee V̇ < 0 for κ1 > 0, κ2 > 0, γ defined in (3) and γ0 defined in
(31), which implies ξi(t) → 0 and η̃i(t) → 0 as t→ ∞ for all i.
Case 2. If the matrix L has multiple eigenvalues, we similarly have

V̇ ≤
N∑
i=1

ξTi M1ξi +
N∑
i=1

η̃Ti M2η̃i (47)

where

M2 =A
TP2 + P2A− 2(ᾱ− 1)CTC + κ2P2P2 +

γ20
κ2
In + P1BB

TP1

Conditions (43) and (44) guarantee V̇ < 0, which implies ξi(t) → 0 and η̃i(t) → 0 as t→ ∞ for
all i.
Hence, the leader-follower consensus is achieved. This completes the proof.

Remark 5. The conditions derived in (41)–(44) can be formulated as linear matrix inequalities
(LMIs) (Ding 2014). The feasibility and a possible solution can be easily checked and obtain
from standard LMI routines. Note that a possible solution P1 of (41) can be calculated first and
then the possible solution P2 of (42) for the fixed P1 can be obtained. One can follow the same
manipulation for case 2 in Theorem 3.

6. Simulation

In this section, an example will be employed to show some details on the consensus observer-
based control designed. The system under consideration is a connection of four subsystems with
a leader, where each of them described by a second order state space model as

ẋi =

[
−1 −1
1 0

]
xi +

[
0
1

]
ui +

[
sin(Cxi)

0

]
(48)

and

C =
[
1 0

]
(49)

The adjacent matrix for the connection of the followers is given by

Q =


0 0 0 0 0
1 0 1 0 0
0 0 0 0 1
0 0 0 0 1
0 1 0 0 0

 (50)

12
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and the corresponding Laplacian matrix is obtained as

L =


0 0 0 0 0
−1 2 −1 0 0
0 0 1 0 −1
0 0 0 1 −1
0 −1 0 0 1

 (51)

The eigenvalues of L are given as {0.2451, 1, 1.8774 ± 0.7449j} which are distinct. The Jordan
matrix J̄ corresponding to L can be obtained as

J̄ =


0.2451 0 0 0

0 1 0 0
0 0 1.8774 0.7449
0 0 −0.7449 1.8774

 (52)

The nonlinear function 0.05 sin(Cxi) in the dynamic system is globally Lipshitz. The values of the
follower substates and the leader are set as x1 = [0.1,−0.1]T , x2 = [0.3,−0.3]T , x3 = [0.2,−0.2]T ,
x4 = [0.4,−0.4]T , and x0 = [0.5,−0.5]T . Based on matrix L, we have α = 0.2451. From (48), we
have

ϕ(xi) =

[
sin(Cxi)

0

]
(53)

The Lipschitz constant is γ = 0.05 and the bound in Lemmas 2 and 3 can be calculated as
γ0 = 0.0115. With κ1 = 1.0, and κ2 = 1.0, the control gain and the observer gain can be
computed respectively as

K =
[
−0.0189 0.2759

]
(54)

L =

[
0.9708
0.1058

]
(55)

where

P1 =

[
0.2763 −0.0189
−0.0189 0.2759

]
(56)

P2 =

[
1.0424 −0.1132
−0.1132 1.0382

]
(57)

Figures 1 and 2 show, respectively, the time evolutions of the sub-state 1 and 2 of the leader and
all followers subject to the controller (37) with γ = 0.05. The estimation errors of all sub-states
of each follower are presented in Figures 3 and 4, which demonstrate that the proposed consensus
observer recovers the state of each follower. Since the conditions (41)-(42) derived in Theorem 3
are sufficient conditions for the control gain design of the multi-agent systems with nonlinearities,
these conditions may be conservative for a given Lipschitz nonlinear function in the control gain
design. As shown in Figures 5 and 6, the same control gain can also achieve the leader-follower
consensus for the nonlinearities with a larger Lipschitz constant γ = 0.8. Noticeably, it took a
bit longer time to achieve the consensus tracking due to a stronger nonlinearity. In addition, the

13
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Figure 1. Time evolution of sub-state 1 of the leader and each follower: γ = 0.05.
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Figure 2. Time evolution of sub-state 2 of the leader and each follower: γ = 0.05.
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Figure 3. Estimation error for sub-state 1 of each follower: γ = 0.05.
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Figure 4. Estimation error for sub-state 2 of each follower: γ = 0.05.
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Figure 5. Time evolution of sub-state 1 of the leader and each follower: γ = 0.8.
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Figure 6. Time evolution of sub-state 1 of the leader and each follower: γ = 0.8.
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subsystem trajectories shown in Figures 1 and 2 are different from those in Figures 5 and 6 due
to the difference in the nonlinear term.

7. Conclusion

In this paper, both state and output feedback leader-follower consensus controllers have been pro-
posed for the multi-agent systems with Lipschitz nonlinearity in networks subject to a spanning
tree topology. The global stability is guaranteed by a careful study of the Laplacian structure
and some sufficient conditions, if the nonlinear terms are globally Lipschitz. This study is also
applicable to consensus control of local Lipschitz nonlinear systems around operating points with
the consideration of stability in a small neighbourhood, since the Lipschitz constants are getting
smaller as it approaches the operating points. This means that the results obtained in this paper
can be used to check the operating region, in which the stability can be ensured by checking the
local Lipschitz constants.
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