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This article proposes a systematic analysis for a tracking problem which ensures cooperation amongst a
swarm of UAVs, modelled as nonlinear systems with linear and angular velocity constraints, in order to
achieve different goals. A distributed Takagi-Sugeno (TS) framework design is adopted for the representa-
tion of the nonlinear model of the dynamics of the UAVs. The distributed control law which is introduced
is composed of both node and network level information. Firstly feedback gains are synthesised using
a Parallel Distributed Compensation (PDC) control law structure, for a collection of isolated UAVs;
ignoring communications among the swarm. Then secondly, based on an alternation-like procedure, the
resulting feedback gains are used to determine Lyapunov matrices which are utilised at network level
to incorporate into the control law the relative differences in the states of the vehicles, and to induce
cooperative behaviour. Eventually stability is guaranteed for the entire swarm. The control synthesis is
performed using tools from linear control theory: in particular the design criteria are posed as Linear
Matrix Inequalities (LMIs). An example based on a UAV tracking scenario is included to outline the
efficacy of the approach.
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1. Introduction

During the last two decades there has been increasing interest in cooperative control which can
benefit swarm-based Unmanned Aerial Vehicle (UAV) missions in many ways. The most common
problems that have been studied often relate to the stabilisation or tracking of a network of vehicles
to introduce cooperative behaviour. In order to achieve this, an important facet is the propagation
of information among the vehicles which influences the overall dynamical behaviour of the network.
Multi-agent systems can be represented accurately by nonlinear models in a large domain of

operation. However for nonlinear system representations, coupled with the dimensionality of the
network, the task of designing a control law is far from trivial. Perhaps not surprisingly most of the
existing work has focused on the interconnection of systems with linear dynamics. For example,
consensus was examined for multi-agent systems with general linear dynamics in Li et al. (2007),
Seo et al. (2009). In Ren and Beard (2008), Sun and Long (2009) consensus problems for agents
with single/double or higher integrator dynamics were studied. In Fax and Murray (2004), the
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authors focused on the stabilisation of a network of identical agents with linear dynamics whilst
in Cai et al. (2011) the authors suggested necessary and sufficient conditions for swarm stability
of high-order linear time-invariant (LTI) multi-agent systems. Swarm-stabilisation problems for
high-order LTI singular multi-agent systems with homogeneous agents was investigated in Xi et
al. (2013). A distributed output regulation approach for cooperative control of linear multi-agent
systems in the presence of communication delays was subsequently presented in Yu and Wang
(2014). Additionally, cooperative consensus and pining control for identical linear time-invariant
agent dynamics was investigated in Movric and Lewis (2014). In Liu and Jiang (2013) the authors
investigated a cyclic small gain approach to distributed output feedback control of nonlinear multi-
agent systems to guarantee the convergence of the agent’s outputs to a time-invariant agreement
value. In a Leader-Follower setting, consensus was investigated for multi-agent systems with lin-
ear/first/higher order dynamics in Wang et al. (2014), Hong et al. (2006) and Liu et al. (2015).
However these methodologies often require special assumptions in order to be applied to the entire
network, and can often lead to conservative results.
In this paper a general class of networked heterogeneous nonlinear systems is considered. Unlike

the previous methodologies which consider linear models to represent the vehicles’ motion, in this
work, a nonlinear representation of the dynamics of a group of UAV systems, with constraints
on angular and linear velocity, is investigated. Contrary to Movric and Lewis (2014) and Liu and
Jiang (2013), the proposed methodology considers a systematic analysis for the tracking problem
in a more general class of nonlinear systems that can be represented in Takagi-Sugeno (TS) form
(Takagi and Sugeno (1985)), in a substitution in which the reference trajectory is time varying.
Motivated by the work described in Menon and Edwards (2009), a systematic analysis was suggested
in references Kladis et al. (2011a) and Kladis et al. (2011b) for the design of control laws in the
TS framework. The synthesis of the controller in Kladis et al. (2011a) and Kladis et al. (2011b)
involves a two step procedure, which is enforced locally at node level in a decentralised manner,
and produces cooperative behaviour in the network as a whole. The limitation in Kladis et al.
(2011b) is that the reference trajectory is common to all vehicles, which may not accommodate
realistic real-world scenarios. In this paper, the TS design methodology from Kladis et al. (2011b)
is adopted for the solution of the problem of stabilisation/tracking for a swarm of heterogeneous
nonlinear systems.
The TS fuzzy model (Takagi and Sugeno (1985)) can represent, with reduced mathematical

complexity, a large class of nonlinear systems (Tanaka and Wang (2001)), and due to the structure
of the TS system, which is a fuzzy blending of linear local models, a systematic approach for proving
stability is available. Interesting work addressing the design aspects for TS controllers exists in the
literature: see for example, Tanaka and Wang (2001), Guerra et al. (2006), and Lendek et al. (2010).
Specifically, in this paper, the model of the error dynamics of the UAV, as developed in Klančar

and Skrjanc (2007) and Kladis et al. (2011), is employed. In the first step of the procedure, the
error dynamics of a set of heterogeneous single UAV systems is considered, and a node level
control law is designed ignoring interconnections. The node level control law utilises a Parallel
Distributed Compensation (PDC) structure as suggested in Wang et al. (1995) and the feedback
gains are synthesised, subject to certain design criteria, in the form of Linear Matrix Inequalities
(LMIs). Thereafter, via an intermediate step, utilising the resulting feedback gains, less conservative
conditions are introduced for the synthesis of the Lyapunov matrices, which are used at a later
step. Subsequently, in the second step, dependencies and interconnections among the UAVs are
considered and a distributed control law is introduced which is shown to guarantee stability for
the entire swarm.
The novelty of this work is that it proposes a methodology for the analysis of a network of hetero-

geneous nonlinear systems. An intermediate step (the creation of an equivalent TS representation
form) allows “decoupling” of the network into node level dynamics. This structure facilitates a
systematic analysis using Lyapunov theory for stabilisation/tracking. Eventually it is shown that
the resulting Lyapunov matrices, arising from node level analysis, can be used to create a Lyapunov
function at the network level. The benefit of the proposed approach is that the analysis and design
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is performed at a node level, and thus the problem of stabilisation/tracking is decoupled from the
network’s large scale topology. Furthermore the methodology can be applied to a reasonably large
class of nonlinear systems.
The remainder of the paper is structured as follows: in Section 2.1 the notation is introduced

and in Section 2.2 the graph theory tools which are used, and their relevance to a network of
systems, are presented. In Sections 2.3 and 2.4, the nonlinear model under investigation and the
equivalent TS model are described. Thereafter in Section 3 the architecture of the controller and
the LMI conditions to stabilise the system at node (Subsection 3.1) and network (Subsection 3.2)
level are described. A swarm based UAV tracking example is included in Section 4, demonstrating
the proposed analysis. In Section 5 concluding remarks and possible future research directions are
stated.

2. Preliminaries

2.1. Notation

The following notation is used throughout this work. The expression A > 0 denotes that the
A matrix, of appropriate dimensions, is symmetric positive definite. AT and A−1 correspond to
the transpose and inverse of any square matrix A. The notation diag{A1, . . . ,AN} represents a
block diagonal matrix with diagonal elements Ai for i = 1, . . . , N and u(t) = col(u1(t), . . . , uN (t))
represents the concatenation of the vectors ui(t). The symbol ‖.‖ corresponds to the spectral norm
of a matrix, |.| the length of a vector, and ⊗ corresponds to the Kronecker product notation.
Finally, sinc(θ(t)) is equal to sin(θ(t))/θ(t) for θ(t) �= 0.

2.2. Graph theory for a swarm of UAV systems

In this section graph theory preliminaries and their relevance with respect to modelling a swarm
of UAV systems is described. Adopting the notation in Royle and Godsil (2001), a graph G is an
ordered pair (V,E), where V is the set of vertices or nodes (V = {1, . . . N}) and E is the set
of edges, (E = {c1, . . . , cl}), which represent every possible connection between a pair of nodes.
In this work a node coincides with a UAV system within the swarm, and the set E denotes the
communication links between UAV systems j and i. A graph G can be represented in the form of
the adjacency matrix A(G) = [αij ] ∈ R

N×N and is defined by:

αij =

{
1, ∀(i, j) ∈ E and i �= j
0, otherwise

(1)

For bidirectional graphs, αij = αji and the adjacency matrix is symmetric. The degree D(G) =

[dij ] ∈ R
N×N of a graph is a diagonal matrix for which dii =

∑N
i=1 αij and dij = 0, ∀i �= j. The

Laplacian of a graph L(G) = [�ij ] ∈ R
N×N is equal to:

L(G) = D(G)−A(G) = [�ij ] =

⎧⎪⎨
⎪⎩

N∑
j=1

αij , i = j

−αij , i �= j

(2)

According to Royle and Godsil (2001), for undirected (bidirectional) graphs, the Laplacian matrix

is symmetric positive semi-definite and satisfies
∑N

j=1 �ij = 0, ∀i ∈ V . In this paper the swarm’s
communication topology is assumed bidirectional and static.

2.3. UAV model and the tracking problem

The kinematics of the ith (i = 1, . . . , N , where N the number of UAVs within the swarm) point-
mass UAV satisfies (3), under the assumptions that the UAV is moving in 2D, the thrust and
velocity vector are collinear, and there is no slip in the lateral direction. The equations are given
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by

ẋi
c(t) = vier cos θ

i
c(t)

ẏic(t) = vier sin θ
i
c(t)

θ̇ic(t) = wi
er

(3)

where the control inputs wi
er and vier, are the linear and angular velocity, respectively. P i

c(x
i
c, y

i
c, θ

i
c)

will be used to represent the current posture of the UAV with xic, y
i
c the position coordinates, and

θic the heading angle. As in Klančar and Skrjanc (2007) and Kladis et al. (2011), for the purpose
of tracking, the error in posture is utilised in this work. In particular, the error posture model of
a vehicle is generated with the aid of the reference P i

ref (x
i
ref , y

i
ref , θ

i
ref ) and the current posture

P i
c(x

i
c, y

i
c, θ

i
c) utilising the kinematics in (3). It should be noted that in this work each vehicle is

required to track a unique path P i
ref (.).

According to Nelson and Cox (1988), the tracking error for each UAV in its body axis is governed
by:

ei(t) =

⎡
⎣ cos(θic(t)) sin(θic(t)) 0
−sin(θic(t)) cos(θ

i
c(t)) 0

0 0 1

⎤
⎦ (P i

ref (t)− P i
c(t)) (4)

where ei(t) = col(xie(t), y
i
e(t), θ

i
e(t)) is the tracking error in the state for the ith UAV. The compo-

nents represent errors in the x−y plane and heading direction, respectively. As in Klančar and Skr-
janc (2007) uier = uiF (t)+ui(t) is defined as the control input where uiF (t) = [virefcos(θ

i
e(t)), w

i
ref ]

T

is the feedforward control action vector, and ui(t) = col(uiv, u
i
w) is the feedback control action vec-

tor. Here viref , u
i
v(t) are the reference and current linear velocities, and wi

ref , u
i
w(t) are the reference

and current angular velocities. Following the approach in Section 3.1 of Kladis et al. (2011), taking
the time derivative of (4), due to the nonholonomic constraint (i.e. ẋirefsin(θ

i
ref ) = ẏirefcos(θ

i
ref )),

the error dynamics satisfy:
ėi(t) = fi(e

i(t)) + gi(e
i(t))ui(t) (5)

where

fi(e
i(t)) =

⎡
⎣ 0 wi

ref 0
−wi

ref 0 virefsinc(θ
i
e(t))

0 0 0

⎤
⎦ , gi(e

i(t)) =

⎡
⎣−1 yie(t)

0 −xi
e(t)

0 −1

⎤
⎦ (6)

Employing the analysis shown in Kladis et al. (2011b), the dynamics in (5) can be transformed
into an equivalent TS representation (Takagi and Sugeno (1985)). The task is to design a control
law ui(t) = col(uiv(t), u

i
w(t)) for the nonlinear system (5), such that ei(t) → 0 as t → ∞.

2.4. Equivalent Takagi-Sugeno (TS) representation

In this section the TS fuzzy model and the derivation of the equivalent system (5) in TS form
are shown. Consider a group of nonidentical UAV systems i = 1, . . . , N described by (5), where
ei(t) = col(xie(t), y

i
e(t), θ

i
e(t)), u

i(t) = col(uiv(t), u
i
w(t)), are the state and input vector respectively.

The nonlinear model in (5) can be represented in a compact region of the state-space X ⊆ R
3 by

a TS fuzzy model utilising the sector nonlinearity approach of Kawamoto et al. (1992).
Adopting the notation in Tanaka and Wang (2001), for vehicle i, the TS fuzzy model is formed

by κ = 1, . . . , r local linear subsystems, where the number of rules r is determined according to
the length of the chosen premise vector z, and is equal to r = 2|z|. In particular, here zi(t) =
col(zi1(t), . . . , z

i
4(t)) is a known premise vector, which may depend on the state vector. Where the

premise variables for the model illustrated in (5) are chosen as zi1(t) = wi
ref , z

i
2(t) = virefsinc(θ

i
e(t)),

zi3(t) = yie(t) and zi4(t) = xie(t). The premise variables are required to be bounded and the bounds
need to be a priori defined in order for the TS to exactly represent the nonlinear model considered
(Tanaka and Wang (2001)). Here, for simplicity, it is assumed that zi1(t) ∈ [ai1 min, a

i
1 max], z

i
2(t) ∈

[ai2 min, a
i
2 max], z

i
3(t) ∈ [ai3 min, a

i
3 max] and zi4(t) ∈ [ai4 min, a

i
4 max]. In particular, it is assumed
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in this work that, xie(t), y
i
e(t),∈ [−10, 10], and θie(t) ∈ [−π/4, π/4], while zi1 and zi2 depend on the

reference linear and angular velocities.

Remark 1. The latter bounds on the state are selected according to the specifications of the UAV
in order not to lose controllability of the system. These are a priori defined and guarantee the TS
exactly represents the nonlinear model considered in Tanaka and Wang (2001). It should be noted
that the choice of a different set of bounds may yield a different response of the system.

The TS is represented by implications of IF−THEN form or Input-Output form. Since q = 4,
the number of rules in the fuzzy system is equal to r = 16. For the ith system, the general layout
for the κth model rule according to Tanaka and Wang (2001) is:
IF zi1(t) is Πi

κμ AND zi2(t) is Ωi
κμ AND zi3(t) is Ψi

κμ AND zi4(t) is Θi
κμ THEN ėi(t) = Ai

κe
i(t) +Bi

κu
i(t)

where the symbols Πi
κμ(z

i
1(t)), Ω

i
κμ(z

i
2(t)), Ψ

i
κμ(z

i
3(t)), and Θi

κμ(z
i
4(t)) denote the fuzzy sets and are

normalised to unity. The fuzzy sets are generated utilising the sector nonlinearity approach from
Kawamoto et al. (1992). In the model rules, Ai

κ ∈ R
3×3, Bi

κ ∈ R
3×2, are constant matrices.

In Input-output form, the defuzzification process of the model’s rules can be represented by the
following polytopic form:

ėi(t) =

r∑
κ=1

λκ(z
i(t))[Ai

κe
i(t) +Bi

κu
i(t)] (7)

where r = 16, the λκ(z
i(t)) are normalised weighting functions defined by:

λκ(z
i(t)) = (

q∏
μ=1

M i
κμ(z

i
μ(t)))/(

r∑
κ=1

q∏
μ=1

M i
κμ(z

i
μ(t))) (8)

In (8) M i
κμ(z

i
μ(t)) = {Πi

κμ(z
i
1(t)),Ω

i
κμ(z

i
2(t)),Ψ

i
κμ(z

i
3(t)),Θ

i
κμ(z

i
4(t))} is the truth value of ziμ(t) in

the fuzzy set M i
κμ. The weighting terms λκ(z

i(t)) satisfy the convex sum property for all t (i.e.∑r
κ=1 λκ(z

i(t)) = 1). From the path planning phase, N trajectories are generated for each vehicle
to follow, and each TS model (7) represents a nonlinear model in (5).

3. Control law description and swarm tracking

In this section a control law is proposed for the stabilisation of the system in (7). Adopting the
notation in Kladis et al. (2011b), the control law is composite and has the form

ui(t) = uτ (e
i(t)) + γF

i
N∑
j �=i

αij(e
i(t)− ej(t)), i = 1, . . . , N (9)

where the positive scalar γ defines the level of contribution of the coupling term to the control law

ui(t), and the F
i ∈ R

2×3 are feedback gains associated with the network level components. In (9)
the term uτ (e

i(t)) represents the node level component, and is responsible for stabilising the ith

system in (7), while the network level component aims to create co-operative behaviour among the
vehicles. The node level control component uτ (e

i(t)) will be designed based on TS concepts and
has the form referred to in the literature as PDC (Wang et al. (1995)). The task is to create co-
operative behaviour within the entire network of N vehicles. Following the methodology in Kladis
et al. (2011a) and Kladis et al. (2011b), the control law design is accomplished in two steps for the
equivalent TS fuzzy model in (7) of the nonlinear system in (5). In the first step individual vehicles
are isolated from the swarm and the interconnections are ignored in the control law (9). Using
Lyapunov theory tools the control law for the closed loop node level system is synthesised using an
alternation-like procedure. Thereafter, in the second step (network level analysis), the synthesised
control law in (9) is used (including the interconnections among vehicles) and it is shown that the
entire swarm is stable.
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3.1. Step (A): Node level Tracking analysis

In the first step of the analysis, ignoring interconnections, the PDC controller uτ (e
i(t)) applied to

the ith system in (7), is equal to:

uτ (e
i(t)) = −

r∑
κ=1

λκ(z
i(t))Fi

κe
i(t) (10)

for κ = 1, . . . , r, where the Fi
κ ∈ R

2×3 are the feedback gains. By substitution of the control law
(10) into (7), the node level closed-loop error dynamics are equal to:

ėi(t) =
r∑

κ=1

r∑
μ=1

λκ(z
i(t))λμ(z

i(t))Ai
κμe

i(t) (11)

where A
i
κμ = Ai

κ −Bi
κF

i
μ. According to Wang et al. (1996) the dynamics in (11) expand to:

ėi(t) =
r∑

κ=1

λκ(z
i(t))2Ai

κκe
i(t) + 2

r∑
κ=1

r∑
κ<μ

λκ(z
i(t))λμ(z

i(t))(
A

i
κμ + A

i
μκ

2
)ei(t) (12)

The task is to determine the feedback gains Fi
κ, and a symmetric positive definite matrix Pi ∈ R

3×3,
such that a local performance criteria for stability is satisfied. Here Pi ∈ R

3×3 is assumed to have
the form:

Pi =

[
P1 P2

PT
2 Pi

3

]
, i = 1, . . . , N (13)

where P1 is a scalar, P2 ∈ R
2×1, and Pi

3 ∈ R
2×2. Consider a potential Lyapunov function

υi(t) = ei(t)TPiei(t) (14)

for i = 1, . . . , N where Pi has the structure in (13). The objective is to ensure the derivatives υi(t)
are negative definite for all ei(t) �= 0. Taking the derivative of (14), and using (11), creates a set of
Bilinear Matrix Inequalities (BMIs) for the synthesis of the feedback gains Fi

κ and the Lyapunov
matrices Pi to ensure that the systems at node level are stable. Finding a solution of these BMIs is,
if not impossible, certainly not a trivial task. To overcome this problem, and since in this work only
sufficient solutions are required, a procedure based on “alternation” is utilised: see for example Goh
et al. (1995). In essence, firstly the feedback gains Fi

κ and a common symmetric positive definite
matrix P ∈ R

3×3 (as in (13) with Pi
3 = P3) are calculated such that the derivatives of

υi(t) = ei(t)TPei(t) (15)

are negative definite. Thereafter using the resulting feedback gains Fi
κ, and P1, P2, the positive

definite matrices Pi ∈ R
3×3 (as in (13)) are calculated such that the derivatives of (14) are negative

definite. The latter procedure will prove helpful at a network level analysis.
In the first step of the node level stabilisation process, utilising the closed loop dynamics in (12),

the time derivative of the Lyapunov functions (15) is equal to:

υ̇i(t) =
r∑

κ=1

λ2
κ(z

i(t))[ei(t)T (Ai
κκ

TP+PA
i
κκ)e

i(t)]

. . .+ 2
r∑

κ=1

r∑
κ<μ

λκ(z
i(t))λμ(z

i(t))

[
ei(t)T

(
(Ai

κμ + A
i
μκ)

TP+P(Ai
κμ + A

i
μκ)

2

)
ei(t)

] (16)

Using Theorem 7 (pp.51 in Tanaka and Wang (2001)), the stabilisation of the ith TS system in
(16) is ensured via the PDC control law in (10) if there exists a symmetric positive matrix X > 0

6



November 17, 2015 International Journal of Systems Science 17˙11˙2015˙IJSS˙UAV˙swarm˙tracking˙v01˙01

(X ∈ R
3×3) and matrices Ξi

μ ∈ R
2×3 for μ = 1, . . . , r such that the following conditions hold:

⎧⎨
⎩

X > 0
Υi

κκ < 0 , κ = 1, . . . , r
Υi

κμ +Υi
μκ ≤ 0 , κ < μ, κ, μ = 1, . . . , r, λκ(z

i(t)) ∩ λμ(z
i(t)) �= ∅

(17)

for i = 1, . . . , N , where
Υi

κμ = XAi
κ
T +Ai

κX−Ξi
μ
TBi

κ
T −Bi

κΞ
i
μ (18)

In (17) letting X = P−1, and Ξi
μ = Fi

μX, the feedback gains can be recovered as:

Fi
μ = Ξi

μX
−1 (19)

The conditions in (17) can be modified to include performance characteristics: for example by the
introduction of a decay rate η > 0 and constraints on the control effort. The introduction of a
decay rate is equivalent to ensuring:

υ̇i(t) + 2ηυi(t) < 0 (20)

and the conditions in (17) are replaced by
⎧⎨
⎩

X > 0
Υi

κκ + 2ηX < 0 , κ = 1, . . . , r
Υi

κμ +Υi
μκ + 4ηX ≤ 0 , κ < μ, κ, μ = 1, . . . , r, λκ(z

i(t)) ∩ λμ(z
i(t)) �= ∅

(21)

for i = 1, . . . , N , where Υi
κμ is equal to (18).

In order to constrain the control effort, a generalised eigenvalue problem subject to (17) or
(21), can be used as suggested in Boyd et al. (1994). Provided that the initial conditions are a-
priori known, the control effort can be constrained to satisfy ‖uτ (ei(t))‖2 ≤ ν by the optimisation
problem:

min
X,Ξi

1,...,Ξ
i
r

ν (22)

subject to the LMIs (17) or (21) and [
1 e(0)T

e(0) X

]
≥ 0 (23)[

X Ξi
κ
T

Ξi
κ ν2I

]
≥ 0 (24)

for κ = 1, . . . , r. Provided the feedback gains Fi
μ are chosen for a common Lyapunov matrix P

satisfying conditions (17) (or (21)), and (23), (24), stability can be guaranteed for any set of initial
conditions ei(0) ∈ X ⊆ R

3.
Now, at the second step of the node level stabilisation process, the resulting Fi

μ, P1, and P2 from

the solution of the above LMIs is utilised to determine Pi in (13) such that the derivatives of (14)
are negative definite. Using the closed loop dynamics in (12) and taking the time derivative of (14)
the block matrices

A
i
κμ =

[
Ai

11κμ Ai
12κμ

Ai
21κμ Ai

22κμ

]

(with Ai
11κμ as scalars, Ai

12κμ ∈ R
1×2, Ai

21κμ ∈ R
2×1, and Ai

22κμ ∈ R
2×2) are known for the Fi

μ

resulting from the solution of the optimisation problem (22) subject to LMIs (17) (or (21)) and
(23), (24). Using Theorem 7 (pp.51 in Tanaka and Wang (2001)), the stabilisation of the ith TS
system by the Lyapunov function (14) is ensured via the PDC control law in (10) if there exist
symmetric positive matrices Pi > 0 (Pi ∈ R

3×3 with the special structure in (13)), such that the
following conditions hold:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Pi > 0[
Υi

11κκ Υi
12κκ

Υi
21κκ Υi

22κκ

]
< 0 , κ = 1, . . . , r[

Υi
11κμ +Υi

11μκ Υi
12κμ +Υi

12μκ

Υi
21κμ +Υi

21μκ Υi
22κμ +Υi

22μκ

]
≤ 0 , κ < μ, κ, μ = 1, . . . , r, λκ(z

i(t)) ∩ λμ(z
i(t)) �= ∅

(25)

7



November 17, 2015 International Journal of Systems Science 17˙11˙2015˙IJSS˙UAV˙swarm˙tracking˙v01˙01

for i = 1, . . . , N , where
Υi

11κμ = Ai
11κμP1 + P1A

i
11

T
κμ +Ai

12κμP
T
2 + P2A

i
12

T
κμ

Υi
12κμ = Ai

11κμP2 +Ai
12κμP

i
3 + P1A

i
21

T
κμ + P2A

i
21

T
κμ

Υi
21κμ = Ai

21κμP1 +Ai
22κμP

T
2 + PT

2 Ai
11

T
κμ +Pi

3A
i
12

T
κμ

Υi
22κμ = Ai

21κμP2 + PT
2 Ai

21
T
κμ +Ai

22κμP
i
3 +Pi

3A
i
22

T
κμ

(26)

Similarly, the conditions in (25) can be modified to include performance characteristics such as
decay rate. Additionally, including the constraints on the control effort and using the resulting ν
from the optimisation problem in (22), the stabilisation of the ith TS system using the Lyapunov
function (14) is ensured via the PDC control law in (10) if there exist symmetric positive matrices
Pi > 0 (Pi ∈ R

3×3 with the special structure in (13)) such that the conditions in (25) (or the
modified ones accounting for the decay rate), and

e(0)TPie(0)− 1 ≤ 0 (27a)

ν−2Fi
κ
TFi

κ −Pi ≤ 0 (27b)

hold for κ = 1, . . . , r. In (27b) the Fi
κ are set from the previous procedure. Provided the Lyapunov

matrices Pi are chosen (for the Fi
μ from the previous step) to satisfy conditions (25), and (27a),

(27b), stability can be guaranteed for any set of initial conditions ei(0) ∈ X . It should be noted
that even in the case when the optimisation problem is infeasible, slack variables can be introduced
in the right hand side of the conditions, in order to find sufficient conditions to the problem: see
for example Tanaka and Wang (2001) and Liu and Zhang (2003).

Remark 2. Since heterogeneous systems are considered, the number of LMIs involved in the
synthesis of the control law grow rapidly for the node level analysis. For the worst case of N
different vehicles, 2×N sets of 154 LMIs are required in order to solve for Fi

κ, P and then for Pi

(based on “alternation”). To overcome this computational burden, the conditions can be modified
by applying the node level control law with feedback gains Fμ and a Lyapunov matrix P, which
will reduce the computational complexity, as illustrated in Kladis et al. (2011a) and Kladis et al.
(2011b). However the latter leads to more conservative results compared to the conditions presented
above. Additionally, common quadratic Lyapunov functions tend to be conservative and may not
exist for complex nonlinear systems. To overcome this, it is common practice to use piecewise
quadratic Lyapunov functions (see for example articles Qiu et al. (2012), and Qiu et al. (2010)).

Based on the node level stabilisation process, a second step is undertaken as discussed in the
next subsection.

3.2. Step (B): Network level Tracking analysis

At a network level, the relative state information among neighboring UAVs is included in the control
law u(ei(t)). Utilising the Laplacian matrix defined in (2), the network control law is defined in
(9) with uτ (e

i(t)) equal to (10). Substituting the control law in (9) into system (7), and using
the Kronecker product notation (Horn and Johnson (1985)), the network error dynamics can be
written in a compact form as:

ė(t) = [A(z(t)) + γB(z(t))(L⊗ In)]e(t) (28)

where
A(z(t)) = diag{

r∑
κ=1

r∑
μ=1

λκ(z
1(t))λμ(z

1(t))A1
κμ, . . . ,

r∑
κ=1

r∑
μ=1

λκ(z
N (t))λμ(z

N (t))AN
κμ} (29)

B(z(t)) = diag{
r∑

κ=1

λκ(z
1(t))B1

κF
1
, . . . ,

r∑
κ=1

λκ(z
N (t))BN

κ F
N} (30)

and e(t) is the concatenation of the state vectors ei(t) so that e(t) = col(e1(t), . . . , eN (t)).
Define a candidate Lyapunov function for the swarm as

8
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V (t) =

N∑
i=1

ei(t)TPiei(t) (31)

where the symmetric positive definite matrices Pi are from the earlier node level synthesis in
Subsection 3.1. Taking the time derivative of (31), and substituting for the closed loop network
error dynamics yields

V̇ (t) = V1 + V2 (32)

where

V1 =
N∑
i=1

r∑
κ=1

r∑
μ=1

λκ(z
i(t))λμ(z

i(t))ei(t)T [Ai
κμ

TPi +Pi
A

i
κμ]e

i(t) (33)

V2 = 2γe(t)TPB(z(t))(L⊗ In)e(t) (34)

and P = diag{P1, . . . ,PN}. For the swarm of UAVs, where each vehicle is required to track a
predefined reference trajectory, it is sufficient to show that V̇ (t) < 0. Utilising the stabilisation
procedure from the first step of the design process in Subsection 3.1, for the choice of Lyapunov
matrices Pi and feedback gains Fi

μ, V1 < 0. Hence all that needs to be shown is that V2 is negative

semi definite for all e(t) �= 0. It is evident from the TS model that the input matrix Bi
κ is time

varying because of (6); however the first column is constant: i.e. Bi
κ = [B1,B

i
2κ]. Here by design

F
i
:= −[B1, 0]

TPi (35)

with Pi equal to (13). Using this choice of F
i

means that PB(z(t)) =
−diag{P1B1B

T
1 P

1, . . . ,PNB1B
T
1 P

N} = −(IN ⊗ Pa). By appropriate substitutions it can

be easily shown that Pa ≥ 0. As a result of F
i
, (34) becomes

V2 = −2γe(t)T (L⊗Pa)e(t) (36)

Since the Laplacian L is positive semi definite and by construction Pa ≥ 0, it follows that −(L⊗
Pa) ≤ 0 from Corollary 4.2.13 in Horn and Johnson (1985). Thus (32) is negative definite for all
e(t) �= 0 and the error dynamics of the swarm is stable.

4. Simulation example

In this section, a tracking scenario is considered where a swarm of nonidentical UAVs is deployed to
collectively follow the prescribed trajectories of a virtual leader from any initial conditions satisfying
the bounds on the state space. The derivation of the TS UAV model is performed according to
Subsection 2.4. The reference track considered for each vehicle is referred to in the literature as the
Dubins path (Dubins (1957)) and is assumed to be a-priori known from the mission planning phase.
The reference track comprises line segments and circular arcs. This is constructed via principles
from Euclidean Geometry and the design procedure can be found in Shanmugavel (2007). Here it
is assumed that each UAV is assigned an unique reference trajectory to follow, with viref = vref .

4.1. Swarm Tracking for heterogeneous UAV error dynamics

For this example 20 UAVs are deployed, starting from a common base, to collectively follow the
prescribed trajectories. They are interconnected through control law (9). Every UAV is represented
by the TS model described earlier in Subsection 2.4, and has the form of (7). Since the reference
trajectories are different for each of the UAVs (see Fig.1, dashed lines) the TS models in (7) are
different. A random static planar graph G(20, 98) with the property of algebraic connectivity is
considered. The adjacency matrix is constructed satisfying the properties addressed in Section
2.2. The task here is for all vehicles to track the predefined trajectories. Following the procedure
introduced in Section 3.1, initially ignoring interconnections among the vehicles at the first step,
the LMIs are specified from the error dynamics of the node level systems (11). The minimisation
problem subject to the LMI conditions has been solved using YALMIP (Laofberg (2004)) which is

9
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a language for advanced modeling and solution of convex and nonconvex optimisation problems.
Solving the minimisation problem in (22) subject to the LMIs in (21) and (23), (24) leads to the
feedback gains Fi

μ, with κ, μ = 1, . . . , 16, which are recovered from (19), together with a common

positive definite matrix P. The eigenvalue distribution for Ai
κ −Bi

κF
i
μ and P, is shown in Fig.3,

and denoted by “o”. The different shades of grey correspond to each of the systems i.
From the optimisation problem in (22) the resulting ν is equal to 28.7764, for η = 0.5 and ei(0) =

[10, 10, 0.078]T subject to the conditions in (21) and (23), (24). Thereafter the alternation-like
procedure is used. In the node level stabilisation process, the feedback gains Fi

μ, calculated earlier,
are used. The objective is to employ less conservative conditions in order to find the Lyapunov
matrices Pi (with the special structure in (13)) for use in the candidate Lyapunov functions (14).
For the specific parameters η, ei(0), and ν, Fi

μ, respectively, the modified conditions in (25)(with a

decay rate), (27a), and (27b) are feasible. The eigenvalues of the resulting Lyapunov matrices Pi,
with i = 1, . . . , 20, are depicted in Fig.3 and are denoted by “+”. In Pi, with the special structure
in (13), the numerical values P1 = 0.0017 and P2 =

[−0.0000 −0.0009
]
have been obtained. Then

utilising the results from the first step in Section 3.1 it can be verified that the choice of gain F̄i,
given in (35), ensures V̇ (t) < 0, and the entire network of systems is stable.
Simulating the network in (28) for these gains and using the communication channel in (9) with

γ = 0.7, the error in the state is shown in Fig.3. The overall control law (9) is synthesised and
is added to the feed-forward control action vector uiF (t) = [vrefcos(θ

i
e(t)), w

i
ref ]

T to generate uier
(depicted in Fig.4). The control input uier is used in the ith UAVmodel (3). The resulting trajectories
and the heading angles of the vehicles converge to the prescribed trajectories as depicted in Figs.1
and 2, respectively. It is noted that since all vehicles are required to have the same reference linear
velocity, then they will finish their mission at different time instances. Here it is assumed that as
soon as each vehicle follows the prescribed reference track, then it switches control mode to “idle”
(ie. with angular velocity equal to zero) in order for the operator to act accordingly.
Contrary to Li et al. (2007), Seo et al. (2009), Ren and Beard (2008), Sun and Long (2009)

which consider linear/first/second order models to represent the vehicles’ motion, in this work, a
nonlinear representation of the dynamics of a group of UAV systems, with constraints on angular
and linear velocity, was investigated. The novelty of this work is that it proposes a methodology for
the analysis of a network of heterogeneous nonlinear systems. An intermediate step (the creation
of an equivalent TS representation form) allows a “decoupling procedure” for the network into
node level dynamics. This structure facilitates a systematic analysis using Lyapunov theory for
stabilisation/tracking. As argued above, the resulting Lyapunov matrices, arising from the node
level analysis, can be used to create a Lyapunov function at the network level. The benefit of
the proposed approach is that the analysis and design is decoupled from the network’s large scale
topology. Also the methodology can be applied to a reasonably large class of nonlinear systems.
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Figure 1. Trajectories of the swarm in x− y plane (solid lines)
versus the prescribed trajectories (dashed line).
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5. Conclusions

This work has proposed a systematic analysis method for tracking problems in a network of non-
identical UAVs that can be represented in a polytopic form (TS representation). In particular, the
dependencies among the UAVs are represented using graph theory tools. Due to the structure, the
properties, and the reduced mathematical complexity of the TS representation, a decoupling of
the network into node level dynamics is achieved, which simplifies the stability analysis. It also
facilitates the design of a control law for a reasonably general class of nonlinear systems. A two step
LMI procedure is suggested for the design of the state feedback controllers. An illustrative example
was included to outline the potential of the proposed analysis. The benefit of this approach is that
the design of the controller is decoupled from the size of the network and its topology. Additionally,
it allows a convenient choice of feedback gains for the network level dynamics, and the methodology
can be applied to a reasonably large class of nonlinear systems.
There are at least two directions for potential further work. Firstly, it may worth devising strate-

gies such that less conservative conditions are employed in order to reduce the computational
complexity of the LMIs. Secondly, it may be possible to modify the underpinning system such that
the reference trajectory is available to a subset of vehicles within the swarm.
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