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Abstract

This paper develops a novel stabilising sliding mode (SM) for
systems involving uncertainties as well as measurement data packet
dropouts. In contrast to the existing literature that designs the switch-
ing function by using unavailable system states, a novel linear sliding
function is constructed by employing only the available communicated
system states for the systems involving measurement packet losses.
This also equips us with the possibility to build a novel switching
component for discrete-time sliding mode control (DSMC) by using
only available system states. Finally, using a numerical example, we
evaluate the performance of the designed DSMC for networked sys-
tems.

1 Introduction
Progressively, practising control engineers exploit real-time communication
networks in the construction of control systems, establishing a new thread
of control systems known as networked control systems (NCSs) [31]. NCSs
offer several substantial advantages, in comparison with traditional control
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systems, including lower overall cost, high reliability, smaller wiring system,
as well as simple installation and maintenance etc. Communication net-
works, however, may induce possible random time-delays and/or data packet
dropouts arising from their limited bandwidth [29], which may lead to perfor-
mance degradation of the control system. As a result, to be more realistic,
the random communication time-delays and data packet losses should be
taken into account for the stability analysis and control synthesis of NCSs
[31, 29, 37, 21, 4, 9, 5, 7]. For example, [6] considers the joint design of dy-
namic output feedback controller and network access assignment sequences
for NCSs while sufficient communication channels are not available. More-
over, the stability analysis and controller synthesis for LTI systems exploiting
a network of sensors and actuators which are triggered in groups by random
events are addressed by [8]. Additionally, [35] and [34] give a unified model for
dealing with several phenomena in NCSs such as the nonuniform sampling,
the measurement size reduction, the transmission rate reduction, the signal
quantization, and the measurement missing. A unified framework is pre-
sented in [36] for cyber-physical systems (CPSs) to cope with the randomly
occurring sensor saturation, signal quantization, packet dropouts along with
the medium access constraint.

Moreover, because time-delays and packet losses in communication net-
works are mainly time-varying by nature, the existing techniques for the
design of robust control systems dealing with deterministic time-delays may
not be beneficial [28]. Several mathematical schemes have been employed
to model the random network time-delays and packet losses with regard to
the characteristics of sources and destinations. The so-called Bernoulli dis-
tribution has widely been used to model network packet losses, due to its
practicality and simplicity [27, 13, 23].

Sliding Mode Control (SMC) is a well-known control strategy which can
be considered as a special thread of Variable Structure Control (VSC). The
basic idea of SMC is to steer the system state trajectories onto a pre-designed
sliding manifold and remain there thereafter. For the design of sliding sur-
face, a wide range of approaches has been developed, such as eigenstruc-
ture assignment, pole placement, optimal quadratic methods [3]. Moreover,
LMI approaches have been proposed in [2, 10, 30]. However, traditionally
SMC has been designed for the systems not involving random time-delays
and packet losses; see e.g. [33, 14, 2]. Recently, several research papers have
studied the problem of SMC design for networked systems with packet losses.
For instance, [32] develops an integral SMC in continuous-time for offshore
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steel jacket platforms involving state time-delays. Moreover, designing the
discrete-time SMC (DSMC) for NCSs with packet losses is considered in [18].
Nonetheless, the existing DSMC in the literature suffers from the following
major drawbacks:
- The switching function is designed based on the system states which, due
to the occurrence of packet loss in the communication channel, may not be
accessible; cf. [18], [1].
- The existing approaches employ several inequalities to provide a sufficient
LMI condition derived for stability analysis of the obtained closed-loop sys-
tem and design the switching surface, which may lead to a very conservative
LMI condition.

The main objective of this paper is to stabilise an uncertain NCS with
consecutive data packet losses using sliding mode control approach while re-
solving the aforementioned drawbacks. In doing so, a novel sliding function
is introduced by employing the available communicated system states involv-
ing packet losses, which is substantially different from the existing DSMC in
the literature; see [18, 1]. In addition to this substantial contribution, this
paper includes the following innovations:
- The proposed DSMC is applicable to unstable systems directly and obvi-
ates the need to pre-stabilisation step; cf. [18, 19].
- A novel LMI-based stability condition is developed for sliding surface design
which has a wider region of applicability relative to the existing approach in
the literature.
- Assuming an underlying system involving smooth and bounded exogenous
disturbances, a novel stochastic disturbance observer is developed. A more
practical switching function is then provided in the controller using the pro-
posed disturbance estimator with the aid of the sign function. The proposed
DSMC that employs the novel switching function has effectively better per-
formance in terms of reducing the boundary layer thickness in comparison
to the linear controller.

The rest of this paper is organised as follows: The problem formulation
and preliminaries are given in Section 2. Section 3 is devoted to the problem
of stochastic sliding surface design. A novel variable structure discontinuous
component (VSDC) for DSMC is introduces in Section 4. In Section 5, the
effectiveness of the given theory is evaluated through numerical examples.
Finally, Section 6 will conclude this paper.
Notation We denote the symmetric elements of a symmetric block matrix
by {⋆}. 𝑟(⋅) denotes the rank of a matrix. ‖⋅‖ is the Euclidean norm.
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𝔼{⋅} denotes the mathematical expectation of a stochastic variable. Prob{⋅}
stands for the occurrence probability of an event. 𝜆min(⋅) (𝜆max(⋅)) is used for
denoting the smallest (largest) eigenvalue of a matrix.

2 Problem Formulation and Preliminaries
Let us consider the following uncertain linear system,

𝑥(𝑘 + 1) = [𝐺 + Δ𝐺(𝑘)]𝑥(𝑘) + 𝐻[𝑢(𝑘) + 𝑑(𝑘)], (1)

where the vectors 𝑥(𝑘) ∈ ℝ𝑛, 𝑢(𝑘) ∈ ℝ𝑚 and 𝑑(𝑘) ∈ ℝ𝑚 are the system states,
control inputs, and external disturbances, respectively. We also assume that
𝑚 ≤ 𝑛, the control input matrix 𝐻 is full rank, and further, the matrix pair
(𝐺, 𝐻) is stabilisable. The mismatched uncertainty matrix Δ𝐺(𝑘) is of the
form Δ𝐺(𝑘) = ℰℱ(𝑘)𝒢 , in which ℰ and 𝒢 are known matrices and besides
ℱ(𝑘) is an unknown matrix satisfying ‖ℱ(𝑘)‖ ≤ 1,∀𝑘 ≥ 0. The external dis-
turbance is assumed to be bounded by a known bound, i.e. ‖𝑑(𝑘)‖ ≤ ̄𝑑.

In the developed control system, the measured signals are transmitted
to the controller utilising a communication network subject to data packet
losses. We exploit the following estimator to provide the communicated sys-
tem states, dented by 𝑥𝑐(⋅) ∈ ℝ𝑛 in order to distinguish it from the system
states 𝑥(⋅), for the controller:

𝑥𝑐(𝑘) = (1 − 𝛽(𝑘))𝑥(𝑘) + 𝛽(𝑘)𝑥𝑐(𝑘 − 1), (2)

where the stochastic scalar variable 𝛽(𝑘) is Bernoulli distributed white se-
quence with

Prob{𝛽(𝑘) = 1} = 𝔼{𝛽(𝑘)} = ̄𝛽
Prob{𝛽(𝑘) = 0} = 1 − 𝔼{𝛽(𝑘)} = 1 − ̄𝛽,

(3)

where 0 ≤ ̄𝛽 < 1 implies the data packet dropout probability in the commu-
nication channel.

Remark 1. The estimation scheme (2), employed in e.g. [1], is essentially
different from the one which has frequently been used in the literature [23, 27,
29, 17, 18]. Indeed, when a packet dropout occurs, this scheme provides the
last available system state estimate (𝑥𝑐(𝑘 − 1)), rather than the last system
state 𝑥(𝑘 − 1) which may not necessarily be available [23, 27, 29, 17, 18], for
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the controller. Instead, the aforementioned references employ a measurement
model as

𝑥𝑐(𝑘) = (1 − 𝛽(𝑘))𝑥(𝑘) + 𝛽(𝑘)𝑥(𝑘 − 1). (4)

The above estimation scheme is valid only if packet dropouts in the communi-
cation channel do not happen consecutively, which does not seem to be a very
practical assumption. The scheme (2) can alternatively deal with the succes-
sive packet losses. Employing the model (2), when a packet loss occurs, the
controller receives the last available system information, i.e. 𝑥𝑐(𝑘) = 𝑥𝑐(𝑘−1),
otherwise, the controller utilises the new arrival system information, i.e.
𝑥𝑐(𝑘) = 𝑥(𝑘). Notice also that 𝑥𝑐(𝑘 − 1) in the model (2) can be 𝑥(𝑘 − 1), or
𝑥(𝑘 − 2) etc. While in this estimation scheme the number of possible con-
secutive packet losses is not bounded, an implicit stochastic constraint would
bound the number of consecutive losses, indicated by the Bernoulli variable
𝛽(𝑘) as 𝑃 𝑟𝑜𝑏{𝛽(𝑘) = 1} = 𝔼{𝛽(𝑘)} = ̄𝛽; i.e. if ̄𝛽 is a small value, the num-
ber of possible consecutive dropouts decreases and vice versa. The scheme
(2) has also the ability to cope with the communication random delays in
the discrete-time systems. If the sampling period is long compared with 𝜏𝑑
(communication random time-delay), the controller would receive the system
state’s information at 𝑘-th sampling time, i.e. 𝑥𝑐(𝑘) = 𝑥(𝑘). However, if 𝜏𝑑
is longer than one sampling period, then 𝑥𝑐(𝑘) = 𝑥𝑐(𝑘 − 1). The controller,
in such a case, utilises the last available information. Here 𝑥𝑐(𝑘 − 1) denotes
literally 𝑥(𝑘 − 𝜏𝑑).

In what follows, the brief 𝛽 and Δ𝐺 are used rather than 𝛽(𝑘) and Δ𝐺(𝑘),
respectively. Moreover, the remaining of this section is devoted to recalling
some materials from the literature which will be employed in what follows in
this paper.
Note that a matrix inequality problem involving an uncertain negative quadratic
term is not easy to be directly converted to an LMI problem. To deal with
this issue, using auxiliary inequalities seems to be beneficial, but it could
also impose a great loss on the problem. This note alternatively uses a loss-
less method to convert the matrix inequality to a form that can be simply
arranged as an LMI. Indeed, this technique extremely widens the applicabil-
ity region of the given DSMC compared with the existing methods for the
DSMC [18].
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Lemma 2.1 ([15]). Consider the following inequality:

Π(𝑌 ) − Ω𝑇 (𝑌 )Θ−1(𝑌 )Ω(𝑌 ) < 0. (5)

The feasibility of the above inequality, with respect to the variable 𝑌 , is
equivalent to the feasibility of

Π(𝑌 ) + ϝ𝑇 Θ(𝑌 )ϝ + ϝ𝑇 Ω(𝑌 ) + Ω𝑇 (𝑌 )ϝ < 0, (6)

with respect to the variables 𝑌 and ϝ, in which Π(𝑌 ), Θ(𝑌 ) and Ω(𝑌 ) are
functions of 𝑌 , Θ(𝑌 ) > 0, and further ϝ is an auxiliary matrix.

Lemma 2.2 ([11]). Consider a given matrix 𝑊 ∈ ℝ𝑝×𝑞 with 𝑟(𝑊 ) = 𝑞, and

𝑊 = 𝑈𝑤 󰂮
Σ𝑤
0 󰂯𝑉 𝑇

𝑤 , (7)

where 𝑉𝑤 ∈ ℝ𝑞×𝑞 and 𝑈𝑤 ∈ ℝ𝑝×𝑝 are orthogonal matrices, and Σ𝑤 ∶= diag(𝜎𝑤,1,⋯,𝜎𝑤,𝑞),
with 𝜎𝑤,𝑖, (𝑖 = 1,⋯,𝑞) denoting nonzero singular values of 𝑊 . Now, suppos-
ing that 0 < 𝑋 ∈ ℝ𝑝×𝑝, it can be shown that there exists an invertible matrix
𝒵 ∈ ℝ𝑞×𝑞 such that

𝑋𝑊 = 𝑊 𝒵, (8)

if and only if 𝑋 is of the following structure

𝑋 = 𝑈𝑤 󰂮
𝑋11 0

0 𝑋22󰂯𝑈 𝑇
𝑤 ,

where 0 < 𝑋11 ∈ ℝ𝑞×𝑞 and 0 < 𝑋22 ∈ ℝ(𝑝−𝑞)×(𝑝−𝑞).

3 Sliding Surface Design
Consider the following stochastic discrete-time switching surface,

𝒮 = {𝑥𝑐 ∶ 𝑠𝑐(𝑘) ≜ 𝐹 𝑥𝑐(𝑘) = 0}, (9)

where the matrix 𝐹 ∈ ℝ𝑚×𝑛 will be derived later in this paper so that it
ensures the non-singularity of 𝐹 𝐻 . It is worth mentioning that the switching
surface introduced in (9) is essentially different from the one proposed in
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[18, 1] for NCSs involving packet losses. The proposed sliding surface in
[18] ([1]) is constructed using the system states 𝑥(𝑘) and 𝑥(𝑘 − 2) (𝑥𝑠(𝑘 − 2)),
and cannot be employed directly in the VSDC strategy, since because of
the packet loss in the communication network, 𝑥(𝑘) and 𝑥(𝑘 − 2) are not
accessible.
Let 𝑑(𝑘) = [𝑑1(𝑘),⋯,𝑑𝑚(𝑘)]𝑇 , and 𝑑𝑖 ≤ 𝑑𝑖(𝑘) ≤ 𝑑𝑖, 𝑖 = 1,⋯,𝑚. We define

𝑑𝑖,𝑎 =
𝑑𝑖 + 𝑑𝑖

2
, 𝑑𝑖,𝑏 =

𝑑𝑖 − 𝑑𝑖
2

, 𝑖 = 1,⋯,𝑚, (10)

and introduce

𝒟𝑎 = [𝑑1,𝑎,⋯,𝑑𝑚,𝑎]𝑇 , 𝒟𝑏 = [𝑑1,𝑏,⋯,𝑑𝑚,𝑏]𝑇 . (11)

Now, consider the following control law:

𝑢(𝑘) = −(𝐹 𝐻)−1𝐹 𝐺𝑥𝑐(𝑘) − 𝜓(𝑘), (12)

where 𝜓(𝑘) is a component to minimise the harmful influence of the exoge-
nous disturbance 𝑑(𝑘) on the boundary layer thickness. Denoting 𝑑𝜓 (𝑘) ≜
𝑑(𝑘) − 𝜓(𝑘), the component 𝜓(𝑘) is assumed to be bounded while satisfying

‖𝑑𝜓 (𝑘)‖ ≤ 𝜛 ‖𝒟𝑏‖, (13)

where 𝜛 is a positive scalar. It is worth mentioning that the component 𝜓
has the following general form in the literature:

𝜓(𝑘) = 𝜍 + 𝜌sgn(𝑠𝑐(𝑘)), (14)

where 𝜍 and 𝜌 are two constants associated with the bounds of 𝐹 𝐻𝑑(𝑘),
i.e. 𝒟𝑎 and diag(𝒟𝑏) where diag(𝒟𝑏) = diag(𝑑1,𝑏,⋯,𝑑𝑚,𝑏) (see (11)). Nev-
ertheless, it should be mentioned that exploiting the above discontinuous
variable structure component in a discrete-time control law leads the system
state trajectories to chatter around the sliding surface with a frequency equal
to the digital system’s sampling frequency and thus a boundary layer with
thickness 𝑂(𝑇 ) [25]. On the other hand, with the assumption of boundedness
and smoothness of the exogenous disturbance, a different manner has been
developed in the literature for deterministic DSMC, using the idea of distur-
bance estimation. A novel choice for 𝜓(𝑘) will be presented later in Section 4
employing a disturbance observer scheme which is specifically suitable for
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stochastic systems. We apply the control law in (12) to the system (1) to
obtain the closed-loop system as

𝑥(𝑘 + 1) =󰀺𝐺 + Δ𝐺 − (1 − 𝛽)𝐺̂󰀻𝑥(𝑘) − 𝛽𝐺̂𝑥𝑐(𝑘 − 1) + 𝐻𝑑𝜓 (𝑘), (15)

where 𝐺̂ = 𝐻(𝐹 𝐻)−1𝐹 𝐺. In addition, it can be seen that

𝑠𝑐(𝑘 + 1) =(1 − 𝛽𝑘+1)[𝛽𝑘𝐹 (𝐺 + Δ𝐺) + (1 − 𝛽𝑘)𝐹 Δ𝐺]𝑥(𝑘) − 𝛽𝑘(1 − 𝛽𝑘+1)𝐹 𝐺𝑥𝑐(𝑘 − 1)
+ (1 − 𝛽𝑘+1)𝐹 𝐻𝑑𝜓 (𝑘) + 𝛽𝑘+1(1 − 𝛽𝑘)𝐹 𝑥(𝑘) + 𝛽𝑘+1𝛽𝑘𝐹 𝑥𝑐(𝑘 − 1). (16)

3.1 Stability analysis
This subsection analyses the stability of the closed-loop system (15) as well
as the derived sliding motion dynamics (16). It is worth noting that in terms
of dealing with systems involving exogenous disturbances, the DSMC can
only guarantee the system state trajectories ultimately enter into a boundary
layer about 𝒮 = {𝑥𝑐 ∶ 𝐹 𝑥𝑐(𝑘) = 0}. Moreover, as the system (1) involves the
mismatched uncertainty Δ𝐺, reachability analysis of the quasi-sliding mode
(QSM) using a separate sufficient condition may not be possible. As an alter-
native scheme to analyse simultaneously the reachability of the QSM in ad-
dition to the stability of the system states, whilst the exogenous disturbance
is absent, the following theorem is given. The boundedness characterisation
of the augmented system states will be carried out later in Theorem 3.2 (see
Subsection 3.2). Nonetheless, since we also need to consider the cross-terms
between the overall system state and 𝑑𝜓 (𝑘) in Theorem 3.2, the proof of The-
orem 3.1 is done by including the external disturbance and the term 𝑑𝜓 (𝑘).
This can help us avoid repetition of the technical manipulations in Theo-
rem 3.2. Eventually, letting 󰀺

𝑑𝜓 (𝑘)
𝜓(𝑘) 󰀻 = 0, the sufficient LMI stability condition

exploited for the controller synthesis purposes will be obtained. Notice also
that the LMI-based stability condition proposed in the following theorem to
design the sliding manifold is constructed based on the notion of exponential
mean-square stability; see e.g. Definition 1 in [29].

Theorem 3.1. When no external disturbances exist in the system (1), the
control law (12) drives the state trajectories onto the switching surface intro-
duced in (9), and the closed-loop system state is exponentially mean-square
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stable, if there exist 𝑃 ∶= 𝑈󰀺
𝑃11 0
0 𝑃22 󰀻𝑈 𝑇 > 0, 𝑄 > 0, 𝑋𝑖, 𝑖 = 1,2,3, and scalar

variables 𝜖 > 0, 𝜈 > 0 satisfying the following LMI:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ψ̌11 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
0 Ψ̌22 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

𝜇1𝐻𝑇 𝑃 𝐺 −𝜇1𝐻𝑇 𝑃 𝐺 −𝐻𝑇 𝑃 𝐻 ⋆ ⋆ ⋆ ⋆ ⋆
0 0 0 −𝐻𝑇 𝑃 𝐻 ⋆ ⋆ ⋆ ⋆

𝐻𝑋2 0 0 0 −𝑃 ⋆ ⋆ ⋆
𝑃 𝐺 + 𝐻𝑋1 0 0 0 0 −𝑃 ⋆ ⋆

0 𝐻𝑋3 0 0 0 0 −𝑃 ⋆
0 0 𝜇1ℰ𝑇 𝑃 𝐻 𝜇2ℰ𝑇 𝑃 𝐻 0 ℰ𝑇 𝑃 0 −𝜖𝐼

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0, (17)

where Ψ̌11 = −𝑃 + 𝑄̄ + (1 − ̄𝛽)(𝑋𝑇
2 𝐻𝑇 + 𝐻𝑋2) + 𝜈𝐼 + 𝜖𝒢 𝑇 𝒢 , Ψ̌22 = −𝑄̄ +

𝛿(𝑋𝑇
3 𝐻𝑇 + 𝐻𝑋3) + 𝜈𝐼 , 𝜇1 = √ ̄𝛽(2 − ̄𝛽), 𝜇2 = √(1 − ̄𝛽)(2 − ̄𝛽), 𝛿 = √ ̄𝛽(1 − ̄𝛽)

and 𝑄̄ = (1 − ̄𝛽)𝑄. Also, 𝑈 is an orthogonal matrix coming from singular
value decomposition of 𝐻 (refer to (7) in Lemma 2.2), and 𝐹 = 𝐻𝑇 𝑃 .

Proof. Define the Lyapunov candidate function as

𝑉 (𝜉(𝑘)) = 𝑥𝑇 (𝑘)𝑃 𝑥(𝑘) + 𝑥𝑇
𝑐 (𝑘 − 1)𝑄𝑥𝑐(𝑘 − 1) + 𝑠𝑇

𝑐 (𝑘)(𝐹 𝐻)−1𝑠𝑐(𝑘),

where the augmented system state vector is 𝜉(𝑘) = 󰀺𝑥𝑇 (𝑘) 𝑥𝑇
𝑐 (𝑘 − 1) 𝑠𝑇

𝑐 (𝑘)󰀻
𝑇 ,

𝑃 > 0 and 𝑄 > 0 are symmetric matrices and sliding function matrix 𝐹 is
considered to be 𝐹 = 𝐻𝑇 𝑃 . Notice that as 𝑃 > 0, 𝐹 𝐻 = 𝐻𝑇 𝑃 𝐻 is invertible.
Then, defining Δ𝑉 (𝜁(𝑘)) ≜ 𝔼{𝑉 (𝜉(𝑘+1))󰁈𝜉(𝑘)}−𝑉 (𝜉(𝑘)), it can be shown that

Δ𝑉 (𝜉(𝑘)) =𝔼󰀽𝑥𝑇 (𝑘 + 1)𝑃 𝑥(𝑘 + 1) + 𝑥𝑇
𝑐 (𝑘)𝑄𝑥𝑐(𝑘) + 𝑠𝑇

𝑐 (𝑘 + 1)(𝐹 𝐻)−1𝑠𝑐(𝑘 + 1)󰁈𝜉(𝑘)󰀾
− 𝑥𝑇 (𝑘)𝑃 𝑥(𝑘) − 𝑥𝑇

𝑐 (𝑘 − 1)𝑄𝑥𝑐(𝑘 − 1) − 𝑠𝑇
𝑐 (𝑘)(𝐹 𝐻)−1𝑠𝑐(𝑘). (18)

It follows then

𝔼{𝑥𝑇 (𝑘 + 1)𝑃 𝑥(𝑘 + 1)󰁈𝜉(𝑘)} (19)

=𝔼󰂁𝑥𝑇 (𝑘)󰀺𝐺 + Δ𝐺 − (1 − 𝛽)𝐺̂󰀻
𝑇 𝑃 󰀺𝐺 + Δ𝐺 − (1 − 𝛽)𝐺̂󰀻𝑥(𝑘)

− 2𝑥𝑇 (𝑘)󰀺𝐺 + Δ𝐺 − (1 − 𝛽)𝐺̂󰀻
𝑇 𝑃 𝛽𝐺̂𝑥𝑐(𝑘 − 1)

+ 𝛽2𝑥𝑇
𝑐 (𝑘 − 1)𝐺𝑇 𝐹 𝑇 (𝐹 𝐻)−1𝐹 𝐺𝑥𝑐(𝑘 − 1)

+ 2𝑥𝑇 (𝑘)󰀺𝐺 + Δ𝐺 − (1 − 𝛽)𝐺̂󰀻
𝑇 𝐹 𝑇 𝑑𝜓 (𝑘)

− 2𝛽𝑥𝑇
𝑐 (𝑘 − 1)𝐺𝑇 𝐹 𝑇 𝑑𝜓 (𝑘) + 𝑑𝑇

𝜓 (𝑘)(𝐹 𝐻)𝑑𝜓 (𝑘)󰂌𝜉(𝑘)󰂂.
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Additionally as 𝔼{𝛽(1 − 𝛽)} = 0, 𝔼{𝛽2} = ̄𝛽 and 𝔼{(1 − 𝛽)2} = 1 − ̄𝛽, we have

𝔼󰂁𝑥𝑇 (𝑘)󰀺𝐺 + Δ𝐺 − (1 − 𝛽)𝐺̂Δ + (1 − 𝛽)Δ𝐺̂󰀻
𝑇 𝑃

× 󰀺𝐺 + Δ𝐺 − (1 − 𝛽)𝐺̂Δ + (1 − 𝛽)Δ𝐺̂󰀻𝑥(𝑘)󰂌𝜉(𝑘)󰂂
=𝑥𝑇 (𝑘)[(𝐺 + Δ𝐺)𝑇 𝑃 (𝐺 + Δ𝐺) − (1 − ̄𝛽)(𝐺 + Δ𝐺)𝑇 𝐹 𝑇 (𝐹 𝐻)−1𝐹 (𝐺 + Δ𝐺) (20)

+ (1 − ̄𝛽)Δ𝐺𝑇 𝐹 𝑇 (𝐹 𝐻)−1𝐹 Δ𝐺]𝑥(𝑘),

where 𝐺̂Δ = 𝐻(𝐹 𝐻)−1𝐹 (𝐺 + Δ𝐺), Δ𝐺̂ = 𝐻(𝐹 𝐻)−1𝐹 Δ𝐺, and

𝔼󰂁 − 2𝑥𝑇 (𝑘)󰀺𝐺 + Δ𝐺 − (1 − 𝛽)𝐺̂󰀻
𝑇 𝑃 𝛽𝐺̂𝑥𝑐(𝑘 − 1)󰂌𝜉(𝑘)󰂂

= − 2 ̄𝛽𝑥𝑇 (𝑘)(𝐺 + Δ𝐺)𝑇 𝐹 𝑇 (𝐹 𝐻)−1𝐹 𝐺𝑥𝑐(𝑘 − 1), (21)

𝔼󰂁𝛽2𝑥𝑇
𝑐 (𝑘 − 1)𝐺𝑇 𝐹 𝑇 (𝐹 𝐻)−1𝐹 𝐺𝑥𝑐(𝑘 − 1)󰂌𝜉(𝑘)󰂂

= ̄𝛽𝑥𝑇
𝑐 (𝑘 − 1)𝐺𝑇 𝐹 𝑇 (𝐹 𝐻)−1𝐹 𝐺𝑥𝑐(𝑘 − 1), (22)

𝔼󰂁2𝑥𝑇 (𝑘)󰀺𝐺 + Δ𝐺 − (1 − 𝛽)𝐺̂Δ + (1 − 𝛽)Δ𝐺̂󰀻
𝑇 𝐹 𝑇 𝑑𝜓 (𝑘)󰂌𝜉(𝑘)󰂂

=2𝑥𝑇 (𝑘)( ̄𝛽𝐺 + Δ𝐺)𝑇 𝐹 𝑇 𝑑𝜓 (𝑘), (23)

𝔼󰂁 − 2𝛽𝑥𝑇
𝑐 (𝑘 − 1)𝐺𝑇 𝐹 𝑇 𝑑𝜓 (𝑘)󰂌𝜉(𝑘)󰂂

= − 2 ̄𝛽𝑥𝑇
𝑐 (𝑘 − 1)𝐺𝑇 𝐹 𝑇 𝑑𝜓 (𝑘). (24)

In addition, it can readily be demonstrated that

𝔼󰂁𝑥𝑇
𝑐 (𝑘)𝑄𝑥𝑐(𝑘)󰂌𝜉(𝑘)󰂂

=(1 − ̄𝛽)𝑥𝑇 (𝑘)𝑄𝑥(𝑘) + ̄𝛽𝑥𝑇
𝑐 (𝑘 − 1)𝑄𝑥𝑐(𝑘 − 1), (25)

𝔼{𝑠𝑇
𝑐 (𝑘 + 1)(𝐹 𝐻)−1𝑠𝑐(𝑘 + 1)|𝜉(𝑘)}

=𝛿2𝑥𝑇 (𝑘)(𝐺 + Δ𝐺)𝑇 𝐹 𝑇 (𝐹 𝐻)−1𝐹 (𝐺 + Δ𝐺)𝑥(𝑘)
+ (1 − ̄𝛽)2𝑥𝑇 (𝑘)Δ𝐺𝑇 𝐹 𝑇 (𝐹 𝐻)−1𝐹 Δ𝐺𝑥(𝑘)
− 2𝛿2𝑥𝑇 (𝑘)(𝐺 + Δ𝐺)𝑇 𝐹 𝑇 (𝐹 𝐻)−1𝐹 𝐺𝑥𝑐(𝑘 − 1) + 2𝛿2𝑥𝑇 (𝑘)(𝐺 + Δ𝐺)𝑇 𝐹 𝑇 𝑑𝜓 (𝑘)
+ 2(1 − ̄𝛽)2𝑥𝑇 (𝑘)Δ𝐺𝑇 𝐹 𝑇 𝑑𝜓 (𝑘) + 𝛿2𝑥𝑇

𝑐 (𝑘 − 1)𝐺𝑇 𝐹 𝑇 (𝐹 𝐻)−1𝐹 𝐺𝑥𝑐(𝑘 − 1)
− 2𝛿2𝑥𝑇

𝑐 (𝑘 − 1)𝐺𝑇 𝐹 𝑇 𝑑𝜓 (𝑘) + (1 − ̄𝛽)𝑑𝑇
𝜓 (𝑘)(𝐹 𝐻)𝑑𝜓 (𝑘) + 𝛿2𝑥𝑇 (𝑘)𝐹 𝑇 (𝐹 𝐻)−1𝐹 𝑥(𝑘)

+ ̄𝛽2𝑥𝑇
𝑐 (𝑘 − 1)𝐹 𝑇 (𝐹 𝐻)−1𝐹 𝑥𝑐(𝑘 − 1), (26)
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𝔼{𝑠𝑇
𝑐 (𝑘)(𝐹 𝐻)−1𝑠𝑐(𝑘)|𝜉(𝑘)}

=(1 − ̄𝛽)𝑥𝑇 (𝑘)𝐹 𝑇 (𝐹 𝐻)−1𝐹 𝑥(𝑘) + ̄𝛽𝑥𝑇
𝑐 (𝑘 − 1)𝐹 𝑇 (𝐹 𝐻)−1𝐹 𝑥𝑐(𝑘 − 1), (27)

in which 𝔼{𝛽𝑘+1𝛽𝑘} = ̄𝛽2, 𝔼{(1 − 𝛽𝑘+1)𝛽𝑘} = 𝔼{(1 − 𝛽𝑘)𝛽𝑘+1} = ̄𝛽(1 − ̄𝛽) ≜ 𝛿2

and 𝔼{(1 − 𝛽𝑘)(1 − 𝛽𝑘+1)} = (1 − ̄𝛽)2. Employing the inequalities (19)-(27), it
follows from (18) that

Δ𝑉 (𝜉(𝑘)) =
⎡
⎢
⎢
⎣

𝑥(𝑘)
𝑥𝑐(𝑘 − 1)

𝑑𝜓 (𝑘)

⎤
⎥
⎥
⎦

𝑇
⎡
⎢
⎢
⎣

Ψ11 Ψ12 Ψ13
Ψ𝑇

12 Ψ22 Ψ23
Ψ𝑇

13 Ψ𝑇
23 Ψ33

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

𝑥(𝑘)
𝑥𝑐(𝑘 − 1)

𝑑𝜓 (𝑘)

⎤
⎥
⎥
⎦

, (28)

where

Ψ11 =(𝐺 + Δ𝐺)𝑇 𝑃 (𝐺 + Δ𝐺) − (1 − ̄𝛽)2(𝐺 + Δ𝐺)𝑇 𝐹 𝑇 (𝐹 𝐵)−1𝐹 (𝐺 + Δ𝐺)
+ (1 − ̄𝛽)(2 − ̄𝛽)Δ𝐺𝑇 𝐹 𝑇 (𝐹 𝐻)−1𝐹 Δ𝐺 − 𝑃 + (1 − ̄𝛽)𝑄 − (1 − ̄𝛽)2𝐹 𝑇 (𝐹 𝐻)−1𝐹 ,

Ψ12 = − ̄𝛽(2 − ̄𝛽)(𝐺 + Δ𝐺)𝑇 𝐹 𝑇 (𝐹 𝐻)−1𝐹 𝐺,
Ψ22 = ̄𝛽(2 − ̄𝛽)𝐺𝑇 𝐹 𝑇 (𝐹 𝐻)−1𝐹 𝐺 − 𝛿2𝐹 𝑇 (𝐹 𝐻)−1𝐹 − (1 − ̄𝛽)𝑄,

and Ψ13 = (2− ̄𝛽)[ ̄𝛽𝐺+Δ𝐺]𝑇 𝐹 𝑇 , Ψ23 = − ̄𝛽(2− ̄𝛽)𝐺𝑇 𝐹 𝑇 , and Ψ33 = (2− ̄𝛽)𝐹 𝐻 .
Letting 𝑑𝜓 (𝑘) = 0, one may claim that the system is stable if

Υ ∶= 󰂮
Ψ11 Ψ12
Ψ𝑇

12 Ψ22󰂯 < −𝜈𝐼, (29)

where 𝜈 > 0 is a scalar variable. Introducing 𝐹 = 𝐻𝑇 𝑃 and exploiting
Lemma 2.1, the feasibility of the inequality in (29) is equivalent to that
of

⎡
⎢
⎢
⎢
⎣

Ψ̃11 ⋆ ⋆ ⋆
0 Ψ̃22 ⋆ ⋆

𝜇1𝐻𝑇 𝑃 (𝐺 + Δ𝐺) −𝜇1𝐻𝑇 𝑃 𝐺 −𝐻𝑇 𝑃 𝐻 ⋆
𝜇2𝐻𝑇 𝑃 Δ𝐺 0 0 −𝐻𝑇 𝑃 𝐻

⎤
⎥
⎥
⎥
⎦

< 0, (30)

where 𝜇1 = √ ̄𝛽(2 − ̄𝛽), 𝜇2 = √(1 − ̄𝛽)(2 − ̄𝛽), 𝑄̄ = (1 − ̄𝛽)𝑄 and

Ψ̃11 =(𝐺 + Δ𝐺 + 𝐻𝐿1)𝑇 𝑃 (𝐺 + Δ𝐺 + 𝐻𝐿1) + 𝐿𝑇
2 (𝐻𝑇 𝑃 𝐻)𝐿2 + (1 − ̄𝛽)𝐿𝑇

2 𝐻𝑇 𝑃
+ (1 − ̄𝛽)𝑃 𝐻𝐿2 − 𝑃 + 𝑄̄ + 𝜈𝐼, (31)

Ψ̃22 = − 𝑄̄ + 𝜈𝐼 + 𝐿𝑇
3 (𝐻𝑇 𝑃 𝐻)𝐿3 + 𝛿𝐿𝑇

3 𝐻𝑇 𝑃 + 𝛿𝑃 𝐻𝐿3, (32)
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in which 𝐿𝑖, 𝑖 = 1,2,3, are auxiliary variables as in Lemma 2.1. Referring to
Lemma 2.2 and by letting 𝑃 ∶= 𝑈󰀺

𝑃11 0
0 𝑃22 󰀻𝑈 𝑇 > 0, where 0 < 𝑃11 ∈ ℝ𝑚×𝑚 and

0 < 𝑃22 ∈ ℝ(𝑛−𝑚)×(𝑛−𝑚), there exists 𝑍 ∈ ℝ𝑚×𝑚 so that 𝑃 𝐻 = 𝐻𝑍. It follows
from (31) that

Ψ̃11 =[𝑃 (𝐺 + Δ𝐺) + 𝐻𝑍𝐿1]𝑇 𝑃 −1[𝑃 (𝐺 + Δ𝐺) + 𝐻𝑍𝐿1] + 𝐿𝑇
2 𝑍𝑇 𝐻𝑇 𝑃 −1𝐻𝑍𝐿2

+ (1 − ̄𝛽)𝐿𝑇
2 𝑍𝑇 𝐻𝑇 + (1 − ̄𝛽)𝐻𝑍𝐿2 − 𝑃 + 𝑄̄ + 𝜈𝐼. (33)

Ψ̃22 = − 𝑄̄ + 𝜈𝐼 + 𝐿𝑇
3 𝑍𝑇 𝐻𝑇 𝑃 −1𝐻𝑍𝐿3 + 𝛿𝐿𝑇

3 𝑍𝑇 𝐻𝑇 + 𝛿𝐻𝑍𝐿3. (34)

By employing the Schur complement and Claim 1 in [22] and introducing
𝑍𝐿𝑖 = 𝑋𝑖, 𝑖 = 1,2,3, the inequality in (30) is implied by the LMI (17).

3.2 Boundedness characterisation
Theorem 3.1 in the previous subsection gives a framework to design a DSMC
that stabilises the NCS in (1) with consecutive packet losses. Nevertheless,
Theorem 3.1 does not characterise the augmented closed-loop system states
boundedness when the external disturbance exists is not considered in The-
orem 3.1 and is the subject of the following theorem.

Theorem 3.2. Given 𝑃 > 0, 𝑄 > 0 and 𝜈 > 0, obtained from solving the
LMI in (17), then augmented closed-loop system state 𝜉(𝑘) = [𝑥𝑇 (𝑘), 𝑥𝑇

𝑐 (𝑘 −
1), 𝑠𝑇

𝑐 (𝑘)]𝑇 is exponentially mean-square bounded as follows

∃𝑘† > 0, ∀𝑘 > 𝑘†,∀𝜀 > 0, s.t. 𝔼󰀽‖𝜉(𝑘)‖2󰀾 ≤
𝜆max(𝑀)

̂𝜈𝜆
𝛾 + 𝜀, (35)

where 𝜆 = 𝜆min 󰀷diag(𝑃 ,𝑄,(𝐹 𝐻)−1)󰀸, 𝐌 = diag(𝑀𝑝,𝑄) with 𝑀𝑃 = 𝑃 +𝑃 𝐻(𝐻𝑇 𝑃 𝐻)−1𝐻𝑇 𝑃 ,
and 𝛾 = 𝜛2 ‖Π + (2 − ̄𝛽)𝐹 𝐻‖‖𝒟𝑏‖

2, and ̂𝜈 > 0 and Π > 0 are the solutions of
the following LMI:

⎡
⎢
⎢
⎢
⎣

( ̂𝜈 − 𝜈)𝐼 + ̄𝜖𝒢 𝑇 𝒢 ⋆ ⋆ ⋆
0 ( ̂𝜈 − 𝜈)𝐼 ⋆ ⋆

𝜇2
1𝐻𝑇 𝑃 𝐺 −𝜇2

1𝐻𝑇 𝑃 𝐺 −Π ⋆
0 0 (2 − ̄𝛽)ℰ𝑇 𝑃 𝐻 − ̄𝜖𝐼

⎤
⎥
⎥
⎥
⎦

< 0, (36)

where ̄𝜖 is a positive scalar variable.
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Proof. Defining 𝑥̃(𝑘) = 󰀺𝑥𝑇 (𝑘) 𝑥𝑇
𝑐 (𝑘 − 1)󰀻

𝑇 and referring to Lemma 4 in [20],
it can be represented that

2𝑥̃𝑇 (𝑘)󰂮
Ψ13
Ψ23󰂯𝑑𝜓 (𝑘) ≤𝑥̃𝑇 (𝑘)󰂮

Ψ13
Ψ23󰂯Π−1

󰂮
Ψ13
Ψ23󰂯

𝑇
𝑥̃(𝑘) + 𝑑𝑇

𝜓 (𝑘)Π𝑑𝜓 (𝑘), (37)

where Π > 0 has appropriate dimension. We can follow from (28), (29) and
(37) to have

Δ𝑉 (𝜉(𝑘)) ≤ − 𝑥̃𝑇 (𝑘)󰂱𝜈𝐼 − 󰂮
Ψ13
Ψ23󰂯Π−1

󰂮
Ψ13
Ψ23󰂯

𝑇

󰂲𝑥̃(𝑘) + 𝑑𝑇
𝜓 (𝑘)[Π + Ψ33]𝑑𝜓 (𝑘).

(38)

Choosing Π > 0 such that

̂𝜈𝐼 < 𝜈𝐼 − 󰂮
Ψ13
Ψ23󰂯Π−1

󰂮
Ψ13
Ψ23󰂯

𝑇
, (39)

where 0 < ̂𝜈 < 𝜈, it follows from (38) that

Δ𝑉 (𝜉(𝑘)) ≤ − ̂𝜈𝑥̃𝑇 (𝑘)𝑥̃(𝑘) + 𝑑𝑇
𝜓 (𝑘)[Π + Ψ33]𝑑𝜓 (𝑘). (40)

Besides, the Lyapunov candidate function in (3.1) can be rearranged as

𝑉 (𝜉(𝑘)) = 𝑥̃𝑇 (𝑘)󰂮
𝑀𝑃 0

0 𝑄󰂯𝑥̃(𝑘)

≜ 𝑥̃𝑇 (𝑘)𝑀𝑥̃(𝑘),

where 𝑀𝑃 = 𝑃 + 𝑃 𝐻(𝐻𝑇 𝑃 𝐻)−1𝐻𝑇 𝑃 , and hence one may show that

𝜆min(𝑀)‖𝑥̃(𝑘)‖2 ≤ 𝑉 (𝜉(𝑘)) ≤ 𝜆max(𝑀)‖𝑥̃(𝑘)‖2 . (41)

Also, it is clear that

𝜆‖𝜉(𝑘)‖2 ≤ 𝑉 (𝜉(𝑘)) ≤ 𝜆‖𝜉(𝑘)‖2 , (42)

where 𝜆 = 𝜆min 󰀷diag(𝑃 ,𝑄,(𝐹 𝐻)−1)󰀸 and 𝜆 = 𝜆max 󰀷diag(𝑃 ,𝑄,(𝐹 𝐻)−1)󰀸. There-
fore, from (40) and (41), one can show that

Δ𝑉 (𝜉(𝑘)) ≤ − ̂𝜈
𝜆max(𝑀)

𝑉 (𝜉(𝑘)) + 𝛾, (43)
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where

𝛾 = 𝜛2 ‖Π + (2 − ̄𝛽)𝐹 𝐻‖‖𝒟𝑏‖
2 . (44)

Eventually, from Lemma 1 in [29] and (43) one can achieve the bound given
in (35). Now for obtaining Π > 0 and ̂𝜈 utilised in (35), we need to check
the feasibility of (39). Given 𝑃 > 0, 𝑄 > 0 and 𝜈 > 0, we then use the Schur
complement and Claim 1 in [22] to illustrate that the inequality in (39) is
sufficed by the LMI in (36).

Remark 2. Note that from (29), it follows that: ∀𝑥̃(𝑘) ≠ 0

𝔼󰂁𝑉 (𝜉(𝑘 + 1))󰁈𝑑𝜓 (𝑘)=0󰂌𝜉(𝑘)󰂂 − 𝑉 (𝜉(𝑘)) = 𝑥̃𝑇 (𝑘)Υ𝑥̃(𝑘)

< −𝜈𝑥̃𝑇 (𝑘)𝑥̃(𝑘). (45)

One may readily show that 𝔼󰂁𝑉 (𝜉(𝑘 + 1))󰁈𝑑𝜓 (𝑘)=0󰂌𝜉(𝑘)󰂂 > 0, and therefore,
from (45) and (41), it can be claimed that 𝜆max(𝑀) > 𝜈. Therefore

̂𝜈
𝜆max(𝑀)

< 1.

This makes the proof of the above theorem in line with Lemma 1 of [29].

Remark 3. Since the control input matrix 𝐻 is full column rank, if 𝑃 > 0
the columns of 𝐻 and 𝑃 𝐻 are linearly independent. As a result, if 𝑃 > 0
and 𝑍 satisfy 𝑃 𝐻 = 𝐻𝑍, it can easily be shown that

𝑟(𝑍) ≥ 𝑟(𝐻𝑍) = 𝑟(𝑃 𝐻) ≥ 𝑟(𝐻) = 𝑚.

This indeed implies that 𝑍 is invertible. Then, letting 𝐻 = 𝑈 󰀺 Σ
0 󰀻𝑉 𝑇 , where

𝑉 ∈ ℝ𝑚×𝑚 and 𝑈 ∈ ℝ𝑛×𝑛 are orthogonal matrices, and Σ ∶= diag(𝜎1,⋯,𝜎𝑚),
with 𝜎𝑖, (𝑖 = 1,⋯,𝑚) denoting nonzero singular values of 𝐻 , we have

𝑍 = 󰀷𝑉 Σ−1𝑃 −1
11 Σ𝑉 𝑇 󰀸

−1 .

The novel framework employed in the proof of Theorem 3.1 provides
a substantially less-conservative sufficient condition relative to the existing
conditions in the field [18]. In this paper, in contrast to [18] which exploits a
conservative trivial inequality [20] to handle the negative terms in Δ𝑉 (𝜉(𝑘))
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to construct a convex problem, we employ a lossless technique (according to
Lemma 2.1) which indeed imposes no unnecessary conservatism on the LMI
condition derived for switching function design. Additionally, as expressed in
the proof of Theorem 3.1, the feasibility region of the LMI condition used for
control synthesis must not be influenced by the cross-terms between 𝑑𝜓 (𝑘)
and the system state (𝑥(𝑘), 𝑥𝑐(𝑘 − 1)). This manuscript avoids using any
conservative inequality to remove the cross-terms and lets the cross-terms
be in the original form. On the other hand, the LMI (36) is derived for the
purposes of boundedness characterisation of the system state trajectories as
well as the switching function, and has no effect on the achieved controller
parameters, and further, the boundary layer thickness. Indeed, the solution
of the LMI (36) gives only an upper bound on 𝜉(𝑘). Moreover, if the LMI
in (17) is feasible, the LMI in (36) will definitely be feasible and the upper
bound presented in (35) exists. Finally, it is worth noting that one may solve
the LMIs in (17) and (36) subject to a specific criteria in order to achieve a
more accurate upper bound.

Remark 4. It should be emphasised that it is, broadly speaking, a commonly
adopted method in the literature of SMC (e.g. see [2]) that with a norm
bounded matched disturbance (uncertainty) in the system, a bounded nonlin-
ear part that contains a discontinuous component can be employed to induce
a sliding motion on a certain sliding manifold, whilst the linear controller
maintains sliding. However, in the case of applying DSMC to discrete-time
systems involving exogenous disturbances, the closed-loop system should be
analysed in terms of boundedness. Further, as the VSDC is considered as a
bounded component in this work, in order to make the proofs of Theorem 3.1
and 3.2 more general and in the meantime briefer, we preferred to use the
general 𝜓(𝑘) to show any nonlinear component in the controller and prove
the stability and boundedness of the augmented closed-loop system in gen-
eral form. We later will specify the defined parameters associated with the
system’s boundedness characterisation (e.g. 𝛾 and 𝜛) for the certain discon-
tinuous controller proposed in Section 4. Fig. 1 demonstrates the idea behind
Theorem 3.1 and 3.2. Indeed, if the closed-loop system in the absence of the
external disturbance is stable, it will remain bounded in the presence of 𝑑(𝑘).
Our contribution in Section 4 is to introduce a novel VSDC for use in DSMC
applying to NCSs with packet losses so that it leads to a better performance
in terms of less chattering in the trajectories of system state and switching
function, as well as the reduction of the boundary layer thickness.
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Figure 1: Schematic of the proposed control problem

4 A Novel Variable Structure Discontinuous
Controller

As mentioned in [25], when the exogenous disturbance is smooth and bounded,
𝑑(𝑘 − 1) can be used as an acceptable estimate of 𝑑(𝑘). Let us temporarily
assume that the system signals in (1) are not subject to packet losses, we can
write

𝑑(𝑘 − 1) = (𝐹 𝐻)−1𝐹 [𝑥(𝑘) − 𝐺𝑥(𝑘 − 1) − Δ𝐺(𝑘 − 1)𝑥(𝑘 − 1) − 𝐻𝑢(𝑘 − 1)].

Then, 𝑑(𝑘 − 1) can be estimated by

̂𝑑(𝑘) = (𝐹 𝐻)−1𝐹 [𝑥(𝑘) − 𝐺𝑥(𝑘 − 1) − 𝐻𝑢(𝑘 − 1)]. (46)

The above equation can also be rewritten as

̂𝑑(𝑘) = (𝐹 𝐻)−1𝐹 Δ𝐺(𝑘 − 1)𝑥(𝑘 − 1) + 𝑑(𝑘 − 1).

For the balanced uncertainty Δ𝐺, one may readily show that (𝐹 𝐻)−1𝐹 Δ𝐺(𝑘−
1)𝑥(𝑘 − 1) is also balanced and will not change the mean values of the vector

̂𝑑𝑐(𝑘). Besides, while the system state is bounded, the vector (𝐹 𝐻)−1𝐹 Δ𝐺(𝑘−
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1)𝑥(𝑘 − 1) remains also bounded. Hence, with the proper choice of 𝐹 and for
the small uncertainty Δ𝐺, it can be stated that the magnitude of (𝐹 𝐻)−1𝐹 Δ𝐺(𝑘−
1)𝑥(𝑘−1) would remain very small compared with that of 𝑑(𝑘−1). However,
due to the packet dropout which exists in the communication network, ̂𝑑(𝑘) in
(46) is not applicable. Hence, the following stochastic disturbance estimator
is proposed instead:

̂𝑑𝑐(𝑘) =(𝐹 𝐻)−1𝐹 [𝑥𝑐(𝑘) − 𝐺𝑥𝑐(𝑘 − 1) − 𝐻𝑢(𝑘 − 1)]. (47)

Then, we put the component 𝜓(𝑘) in (12) as

𝜓(𝑘) = 𝒟𝑎 + 1
2

diag(𝒟𝑏)sgn( ̂𝑑𝑐(𝑘) − 𝒟𝑎), (48)

where diag(𝒟𝑏) = diag(𝑑1,𝑏,⋯,𝑑𝑚,𝑏). In this case, 𝜛 = 1.5 in (13) and 𝛾 =
9
4 ‖Π + (2 − ̄𝛽)𝐹 𝐻‖‖𝒟𝑏‖

2 in (35). Note that this bound is the worst case
scenario bound and, due to slowness assumption of the exogenous disturbance
in the system (1), with the perfect position estimation, this upper bound can
be reduced to the one with 𝜛⋆ = 0.5 and 𝛾⋆ = 1

4 ‖Π + (2 − ̄𝛽)𝐹 𝐻‖‖𝒟𝑏‖
2.

Thus, the controller (12) can be chosen as

𝑢(𝑘) = −(𝐹 𝐻)−1𝐹 𝐺𝑥𝑐(𝑘) − 𝒟𝑎 − 1
2

diag(𝒟𝑏)sgn( ̂𝑑𝑐(𝑘) − 𝒟𝑎), (49)

where ̂𝑑𝑐(𝑘) is defined in (47). Using the component (48) in the discrete-time
sliding mode controller leads the state trajectories to chatter around the
sliding surface with a frequency equal to the frequency of the exogenous
disturbance. Moreover, for smooth and bounded exogenous disturbances, it
is able to reduce the boundary layer thickness about the switching surface.

5 Simulation Results
In order to evaluate the proposed theory, a numerical example is given in
this section. We used YALMIP [16] as well as SDPT3 [26] to solve the LMI
feasibility problems. An un-interruptible power system (UPS) is considered
here [29]. We aim to robustly regulates the output AC voltage of the PWM
inverter at the desired setting. The capacity of UPS is 1 KVA. The sampling
time 0.01 𝑠 at the half-load operating point is used to obtain the discrete-time
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model as:

𝐺 =
⎡
⎢
⎢
⎣

0.9226 −0.6330 0
1.0 0 0
0 1.0 0

⎤
⎥
⎥
⎦

, 𝐻 =
⎡
⎢
⎢
⎣

1
0
0

⎤
⎥
⎥
⎦

.

As seen, the open-loop system is unstable. In order to design a state-feedback
controller, we assume that all the system states are available. We also con-
sider the following modelling uncertainty parameters in the system:

ℰ = 󰀺0.05 0.15 0.08󰀻
𝑇 , 𝒢 = 󰀺−0.05 0.06 0.10󰀻 ,

ℱ(𝑘) = 0.5sin(𝑘).

The probability of the packet loss is ̄𝛽 = 0.1. We also assume

𝑑(𝑘) = 0.1sin(𝑘
5

).

Solving the LMI (17) yields the following results:

𝑃 =
⎡
⎢
⎢
⎣

34.32 0 0
0 32.33 6.99
0 6.99 9.43

⎤
⎥
⎥
⎦

, 𝑄 =
⎡
⎢
⎢
⎣

15.34 −2.97 −0.10
−2.97 14.15 4.56
−0.10 4.56 6.30

⎤
⎥
⎥
⎦

𝐹 = 󰀺34.32 0 0󰀻 , 𝜈 = 0.08, 𝜖 = 33.49.

Further employing the achieved switching function matrix 𝐹 along with 𝒟𝑎 =
0 and 𝒟𝑏 = 0.1, we apply the control law in (49) to the system (1). Figs. 2-3
demonstrate the achieved results. Further, 𝑥(0) = 󰀺1 0 0󰀻

𝑇 . Bernoulli
sequence 𝛽(𝑘) is indicated in Fig. 4. Fig. 5 demonstrates the performance of
the novel disturbance estimator proposed in (47).
A Comparison: Let us apply the following controller:

𝑢(𝑘) = −(𝐹 𝐻)−1𝐹 𝐺𝑥𝑐(𝑘) − 𝒟𝑎 − diag(𝒟𝑏)sgn(𝑠𝑐(𝑘)), (50)

which uses a similar switching component as in [18], to the system (1). Since
the LMI condition in [18] is not feasible, we construct the controller (50)
exploiting the switching function matrix 𝐹 achieved through solving the LMI
in (17). Fig. 6 demonstrates the evolution of the sliding function using the
controller (50). As seen, the proposed DSMC in (49) that uses the practical
switching function (48), by employing the proposed disturbance estimator
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Figure 2: Evolution of the closed-loop system state trajectories using the
controller (49)
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Figure 3: Evolution of the switching function using the controller (49)
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Figure 4: Bernoulli sequence 𝛽(𝑘)
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Figure 5: a) Disturbance b) Disturbance estimator output
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Figure 6: Evolution of the switching function using the controller (50)
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(47), has effectively better performance in terms of boundary layer thickness
reduction in comparison to the one in (50). Notice that in cases that there
is no knowledge of the exogenous disturbances in the system, equipping the
DSMC with a VSDC may not necessarily be beneficial and even can have
harmful impact on the control performance [12, 24].

6 Conclusions
This paper has developed a robust stabilising SMC for networked systems
subject to multiple data packet dropouts in the measurement communication
channel. The proposed DSMC is constructed based on a less conservative
LMI scheme, which is applicable to unstable systems. The mean-square
stability notion has been employed for stability analysis and boundedness
characterisation of the closed-loop system as well as the switching function.
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