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ABSTRACT

In this paper, sensor fault diagnosis of a singular delayed linear parameter varying (LPV) system is con-
sidered. In the considered system, the model matrices are dependent on some parameters which are
real-time measurable. The case of inexact parameter measurements is considered which is close to
real situations. Fault diagnosis in this system is achieved via fault estimation. For this purpose, an aug-
mented system is created by including sensor faults as additional system states. Then, an unknown
input observer (UIO) is designed which estimates both the system states and the faults in the presence
of measurement noise, disturbances and uncertainty induced by inexact measured parameters. Error
dynamics and the original system constitute an uncertain system due to inconsistencies between
real and measured values of the parameters. Then, the robust estimation of the system states and the
faults are achieved with H_ performance and formulated with a set of linear matrix inequalities (LMIs).
The designed UIO is also applicable for fault diagnosis of singular delayed LPV systems with unmea-
surable scheduling variables. The efficiency of the proposed approach is illustrated with an example.

ARTICLE HISTORY
Received 5 May 2016
Accepted 1 October 2017

KEYWORDS

Singular delayed LPV system;
unknown input observer
(U10); fault diagnosis; inexact
parameters; uncertain
system approach

1. Introduction

In recent years, fault diagnosis has become an essential
part of industrial systems. Great effort has been carried
out to develop several approaches for fault diagnosis in
different systems. Model-based methods which are based
on the comparison between the estimated behaviour of
the system using a mathematical model and the physical
one obtained from sensor measurements have attracted
much attention in the control system community (see
Chen and Patton (2012), Ding (2008) and references
therein). Fault diagnosis via fault estimation is one of
the trends in this area which can be addressed using the
descriptor system approach. In this approach, the fault
vector is augmented with the state vector that leads to
a descriptor system representation for the augmented
system. Then, the new state vector can be estimated in
the presence of unknown inputs including disturbances
and faults (Aouaouda, Chadli, Cocquempot, & Tarek
Khadir, 2013; Gao & Ding, 2007; Lopez-Estrada, Ponsart,
Astorga-Zaragoza, Camas-Anzueto, & Theilliol, 2015). In
this way, the three stages of fault diagnosis, namely fault
detection, isolation and estimation, are fulfilled directly
in a one-step procedure. Moreover, the residual gener-
ation and evaluation are not needed which reduces the
computational burden of this method.

Nonlinear systems’ fault diagnosis has attracted much
attention during the past decades (Bokor & Szabo,
2009; De Persis & Isidori, 2001; Frank, 1994; Jiang
& Chowdhury, 2005). One approach to deal with
nonlinear systems is the multiple model represen-
tation. The local models in this approach can be
either linear (Hamdi, Rodrigues, Mechmeche, & Braiek,
2012a) or nonlinear (Moodi & Farrokhi, 2013). Linear
parameter varying (LPV) systems, also called lin-
ear parameter dependent (LPD) systems (Botmart &
Niamsup, 2010; De Souza, Trofino, & De Oliveira, 2003;
Karimi, 2006), are a powerful multiple model representa-
tion for nonlinear systems. An LPV system is defined with
a linear structure but with parameter varying (depen-
dent) matrices as coefficients of the model. LPV systems
were first proposed by Shamma (1988) as a generalisation
of the gain-scheduling control systems. The LPV repre-
sentation has been used for many real applications in var-
ious control problems (de Oca, Puig, Witczak, & Dziekan,
2012; Giarré, Bauso, Falugi, & Bamieh, 2006; Masub-
uchi, Kato, Saeki, & Ohara, 2004; Rodrigues, Sahnoun,
Theilliol, & Ponsart, 2013). The considered parameters
in the LPV systems allow representing the entire system
behaviour when working in different operating points.
These parameters are usually either functions of the sys-
tem states or functions of the system inputs/outputs. The

CONTACT Amir Hossein Hassanabadi @ a.hassanabadi@aut.ac.ir
© 2017 Informa UK Limited, trading as Taylor & Francis Group


http://www.tandfonline.com
https://doi.org/10.1080/00207721.2017.1390700
http://crossmark.crossref.org/dialog/?doi=10.1080/00207721.2017.1390700&domain=pdf
mailto:a.hassanabadi@aut.ac.ir

knowledge of these parameters is needed for adapting
the system parameters to the system operating point. In
the case that these parameters are functions of the sys-
tem states, they are unmeasurable and their exact val-
ues are not known. In the case that they are functions of
the system inputs/outputs, they may be measurable but
measurement noises or sensor/actuator faults can devi-
ate them from their true values. So, in both cases the
exact knowledge of these parameters may be unavailable
or inaccurate. In the observer design for fault diagno-
sis of LPV systems, the knowledge of these parameters
is needed to schedule the observer and as a consequence
some uncertainty is induced because of inexact knowl-
edge of parameters. Theilliol and Aberkane (2011) and
Lépez-Estrada, Ponsart, Astorga Zaragoza, Theilliol, and
Aberkane (2014), Yoneyama (2009) have considered LPV
systems with unmeasurable parameters and Jetto and
Orsini (2010) have considered these systems with mea-
surable but uncertain parameters. The difference between
these two situations is that in the case of an unmea-
surable set of parameters, the convergence of parameter
estimation error to zero can lead to asymptotic conver-
gence of the observer; but in the case of uncertain or
noisy measurable parameters, there is always a bounded
error in the state estimation of the observer according
to the level of uncertainty or noise in the parameter
measurements.

Recently, many researchers have focused on fault diag-
nosis of singular systems. Fault diagnosis of this type of
systems has been considered with a UIO based on eigen-
structure assignment in the linear case (Duan, Howe,
& Patton, 2002) and with a fault estimation approach
in the nonlinear case (Gao & Ding, 2007). Singular
LPV systems fault diagnosis has attracted the atten-
tion of researchers very recently. Actuator fault estima-
tion for discrete singular LPV systems is carried out
in Astorga-Zaragoza, Theilliol, Ponsart, and Rodrigues
(2012) and Wang, Rodrigues, Theilliol, and Shen (2015),
with the assumption that the exact knowledge of schedul-
ing parameters is available. In Hamdi, Rodrigues, Mech-
meche, Theilliol, and Braiek (2012b) and Rodrigues,
Hamdji, Braiek, and Theilliol (2014), a proportional inte-
gral unknown input observer (PIUIO) for actuator fault
detection and isolation (FDI) and a fault tolerant con-
trol (FTC) system based on an adaptive observer for
continuous singular LPV systems have been designed
respectively, both with the assumption that the param-
eters are exactly known for the observer operation. For
the case of unmeasurable parameters, an LPV observer
for sensor fault estimation is suggested in Lopez-Estrada
et al. (2015) while a robust fault detection observer based
on the H_/H,, approach to characterise the unknown
input robustness and the fault sensitivity conditions

simultaneously is proposed in Estrada, Ponsart, Theilliol,
and Astorga-Zaragoza (2015).

Time delay occurs in the dynamics of many sys-
tems which can lead to poor performance or instability.
Fault diagnosis in systems which have delayed dynam-
ics has attracted much attention recently. A fault detec-
tion filter for both retarded and neutral time delay sys-
tems is designed based on the geometric approach in
Meskin and Khorasani (2009b) while in Meskin and Kho-
rasani (2009a), FDI for distributed time delay systems has
been considered. The problem of robust fault detection
based on UIO design for uncertain time delay systems
is addressed in Ahmadizadeh, Zarei, and Karimi (2014)
such that the fault sensitivity is guaranteed by model-
matching the residual dynamics with a suitable reference
model. Fault detection for singular delayed systems has
been considered in Chen, Zhong, and Zhang (2011) based
on the Hy, fault detection filter and in Zhai, Zhang, and
Li (2014) based on the H_ /H,, approach.

Singular delayed LPV systems have been considered
recently. These systems present a general class of non-
linear systems in the LPV format in which delayed
dynamics and static relations between states are also con-
sidered. The applications of these systems have been
considered in open flow canal systems (Hassanabadi,
Shafiee, & Puig, 2016b) and in sewer systems (Has-
sanabadi, Shafiee, & Puig, 2016a). Robust admissibility
and H,, filtering of continuous-time systems have been
considered in Li and Zhang (2012) and Li and Zhang
(2013), respectively, while the robust stability of discrete-
time counterparts are addressed in Zhang and Zhu
(2012). Actuator FDI system design based on perfect
unknown input decoupling has been carried out in Has-
sanabadi et al. (2016b). Hassanabadi et al. (2016a) have
considered robust actuator fault detection for these sys-
tems based on the Hy, theory of delayed LPV systems and
model matching the residual with some suitable reference
models to guarantee the minimum fault sensitivity. Sys-
tems with singular delayed LPV models such as open-
flow water networks can be prone to faults in their sensors
(flow transmitters). To the best of authors’ knowledge, the
problem of sensor fault diagnosis in singular delayed LPV
systems has not been considered yet.

The goal of this paper is to consider the sensor fault
diagnosis problem of singular delayed LPV systems.
Moreover, the uncertainty in the scheduling parameters
of the system (which are either due to the unmeasura-
bility of the parameters or inexactness in the parame-
ter measurements) will be considered. Singular delayed
LPV systems under considering this uncertainty have
not been considered yet in the literature. Fault diagno-
sis is achieved with a direct fault estimation method by
making use of the descriptor system approach. In this



method, the state vector and the sensor fault vector are
augmented and then the new state is estimated with a
UIO. The advantage of this direct fault diagnosis method
is the reduction in computation burden of the diagno-
sis unit because the residual computation and evaluation
steps are not required. In the proposed method, the error
dynamics of the estimation procedure depends on both
real and inexact parameters. The uncertainty induced
by inexact parameters is considered by formulating the
error dynamics in an uncertain system structure as in
Theilliol and Aberkane (2011) and Lopez-Estrada et al.
(2014), Yoneyama (2009). Then, the robust convergence
of the designed UIO in terms of the robust stability of
the uncertain error dynamics system is addressed with a
related bounded real lemma (BRL) and formulated with
a set of LMIs. The designed UIO provides the state and
fault estimates which can be used for both diagnosis and
control.

The remaining of the paper is organised as follows: In
Section 2, problem formulation is introduced. In Section
3, the structure of UIO for the systems under considera-
tion is proposed. In Section 4, the UIO design procedure
and fault diagnosis are addressed. In Section 5, the effec-
tiveness of the proposed approach is illustrated with an
example. Section 6 concludes the main paper results.

Notation

Throughout this paper, the following notation will be
used. R is the set of real numbers. I,, is the n-dimensional
identity matrix. For a matrix X, X T indicates its trans-
pose. X! is the inverse and X is the pseudo inverse
of X. x is used to show the elements induced by sym-
metry in a symmetric matrix. sym{A} is a short notation
for A+ AT. For a symmetric matrix X, X > 0 (X < 0)
denotes that it is positive (negative) definite. A ® B indi-
cates the Kronecker product between the matrices A and
B. For a square integrable function x(¢), its L, -norm is

defined as ||x(t) ||, =/ x(0) x@®)dr.

2. Problem formulation

In this paper, a class of singular delayed LPV systems
with sensor faults, disturbances and measurement noise
is considered:

Ex(t) = Ag(O(t)x(t) + A1 (0 ()x(t — T(t))
+B(O@))u(t) +R(@(1))d(t)

y(t) = Cx(t) + Dy f(t) + Dyn(t)

0<7t() < 1m

() <

x(t) = ¢(¢)

(1)

—T,<t<O0

where x(t) € R™, u(t) € R*, y(t) € R™, d(t) € R,
n(t) € R and f(t) € R are vectors of states, input sig-
nals, output signals, exogenous disturbances, measure-
ment noise and sensor faults, respectively. In (1), E €
R™>™ s a constant square matrix that may have rank defi-
ciency (rank(E) = r < ng). Ag(0(¢)), A1 (0()), B(O(t))
and R(0(t)) are matrices with appropriate dimensions
which depend affinely on the time-varying parameter
vector 6(t) € R that is real-time measurable. C, D ¢ and
D, are constant matrices with appropriate dimensions.
7(t) is a time-varying delay. t,,, and p are the maximum
bounds on delay and delay derivative values, respectively.
¢ (t) is a continuous vector-valued initial function. The
time-varying parameter vector is assumed to be bounded
in a hyperbox:

O <ot) <OM k=1,..,1 )

Definition 2.1 (Dai, 1989): The matrix pencil (E, A) is
regular if det(sE — A) is not identically zero.

Definition 2.2 (Dai, 1989): The matrix pencil (E, A) is
impulse-free if deg(det(sE — A)) = rank(E).

Definition 2.3 (Li & Zhang, 2012): System (1) is regu-
lar and impulse-free if the matrix pencils (E, A¢(0(¢)))
and (E, Ap(0(t)) + A1(6(t))) are regular and impulse-
free for the all domains of 6(¢) defined in (2).

Definition 2.4 (Li & Zhang, 2012): System (1) is admis-
sible if it is regular, impulse free and stable.

Assumption 2.1: System (1) is assumed to be admissible.

Remark 2.1: For simplicity of notation, the case of linear
measurement equation is considered in (1). The method-
ology presented in this paper could be extended to the
case with parameter varying output equation. To see the
needed modifications, the interested reader is referred to
Ichalal, Marx, Ragot, and Maquin (2009).

The singular delayed LPV system (1) has matrices that
depend on the time-varying parameter 6 (¢). A common
way of treating these systems is to convert them to poly-
topic format (Hassanabadi et al., 2016b) in which the
whole system is represented by a weighted summation of
linear subsystems in the h = 2! vertices of hyperbox (2).
This approach allows extending the methods present in
the literature for LTI systems to LPV systems. The asso-
ciated weights of vertex subsystems are represented by
p(0(t)) € R" which satisfy:

0=<pi@) =1 i=1---,h 3)
h
PIICIONES )

i=1



The polytopic representation of (1) is:

h
Ex(t) =Y pi(0(1)[Aoix(t) + Apx(t — T(t))
i=1
+ Biu(t) + Rid(t)]
y(t) = Cx(t) + Dy f(t) + Dyn(t)

(5)

In (5), for every i € [1, h], the matrices Ag;, Ay;, B, R,
C, Dy and D, constitute the linear subsystem defined in
the ith vertex of the hyperbox and the summation mecha-
nism in structure (5) allows approximating the parameter
varying model (1).

Remark 2.2: The subsystem matrices Ay;, Ay;, B;, R; and
the subsystem weights p; (6 (¢)) can be calculated with the
method presented in Hassanabadi et al. (2016a) for any
number of parameters.

In order to estimate the states and sensor faults in sys-
tem (5) simultaneously, a new state vector is constructed
by augmenting the state vector of (5) with the fault vec-

tor:
i) = [jﬁ((ttﬂ . ©6)
The augmented system is presented by:
) h
Ex(t) =) pi(0 () Ani(t) + Ayt — T (1))
+ But) + Rd ) + Ef )]

y(t) = CX(t) + Dyn(t)
(7)

where
- [E0] - Agi 0
E = L=
0 0i| o |: 0 _kaj| 7

~ [A4; 0 B;
Ali: . ]1 i:[ot]s

(00
- R, - 0 -
R = _0],1:: [ka],cz[CDf]

o

Remark 2.3: The order of augmented system (7), is n =
1o + ks and all the matrices are with appropriate dimen-
sions.

3. UIO formulation

In order to estimate the states of the augmented system (7)
in the presence of unknown inputs, the following UIO is

proposed:

h

2(t) =) pi(0(t)[Noiz(t) + Nujz(t — T (1))
i=1

R +Loy(t) + Luy(t — t(t)) + Giu(t)] (8)

x(t) = zz(At) + Hyy(t)

j(t) = Cx(t)

zt) =0 —1,<t<0

where ;Z(t) € R", y(t) € R™ and z(t) € R" are the vec-
tors of the augmented state estimate, output estimate and
observer state, respectively. No;, Ni;, Loi» L1, G and Hy
are observer matrices with appropriate dimensions to be
computed. 6(t) is the inexact measured parameters vec-
tor and p,»(é(t)) fori =1, ..., hare the weighting func-
tions scheduling between different UIO subsystems cor-
responding to the inexact measured set of parameters.
The state estimation error of UIO (8) is:

e(t) = i(t) — x(t). )
According to (7)-(8), the error becomes:

e(t) = X(t) — z(t) — H,Cx(t) — HyDyn(t)
= (I, — LO)X(t) — z(t) — HyDyn(t). (10)

Now, a matrix H; € R"*" with the following constraint is
considered:

H,E = I, — H,C. (11)
Thus:
e(t) = HiEX(t) — z(t) — HyD,n(t). (12)
So, the error dynamics is described by means of:
é(t) = HiEx(t) — 2(t) — HyD,n(t).  (13)
Substituting (7) and (8) in (13) results in:
h
ét) =3 PO HiAE(t) + HiAuE(t = 7(1)
-:Hlé,-u(t) + HiRid(t) + HiF f(t)]
- i pi(6 () [Noiz(t) + Nyiz(t — (1))
P

+ LoiCX(t) + LoiDan(t) 4+ Li,CR(t — T(t))
+ L1iDyn(t — t(t)) + Giu(t)] — HyD,n(t). (14)



Considering (12):

h
ét) =Y pi(0() [ HAgik(2)

i=1
+ H At — t(t)) + H Bu(t)

h
+HRid(t)+HFf(6)] =) pi(t))[ — Noje(t)

i=1
+ NoiH1EX(t) — No;H,D,n(t) — Nye(t — (1))
+ NyHiEX(t — 7(t)) — NyHaDyn(t — (1))
+ LoiCx(t) + LoiDyn(t) + Li,CX(t — (1))
+ LyD,n(t — t(t)) + Giu(t)] — HbD,n(t). (15)

the following mathematical manipulation of the terms of
pi(0(1)) :

h
> oi@)Xi
i=1
h h ~
=Y pi@W)Xi = Y _1(pj(0(1) — pj @ (t)]X;
i=1 j=1

h h h
=Y piOO)Xi =Y p01)) Y [pj(O(1))
i=1 i=1 j=1

—pj()X; (16)
allows to transform (15) into:
e(t)
h ~ ~ ~ ~
= Z pi(0 () {(H Ao — NoiH1E — LoiC)x(t) + (H1Ay;
i=1

— NiHE — LiiO)X(t — t(t)) + Nose(t)
+ Nyje(t — T(t)) + (H\B; — G)u(t) + HiRid(t)
+HFf(t) + (No;H,D,, — Lo;D,)n(t) + (Ny;H,D,

h
—LuDy)n(t — T(1) + Y (0;0(1)) — p;(0(1)))

j=1
x {(No;HiE + Lo;C)%(t) — Noje(t) + (Ni;H, E
+ L1 O)x(t — T(£)) — Nyje(t — T(1)) + Gju(t)
— (NojH2Dyy — LojDy)n(t) — (N1;H2 Dy — LyjDy)

X n(t — t(t))} — HyDyi(t)). 17)
If the following conditions are satisfied:
HE+H,C=1, (18)
NoHiE + LoiC = H, Ay (19)
NyHiE + LiiC = Hi Ay, (20)
G; = H,B; (21)

(22)
(23)

HiR;
H,

0
0

™
Il

the error dynamics can be written as:

et) = Xh: pi(0()){Noie(t) + Nye(t — 7(t)) + (NoiH; D,
1—:1LOiD,l)n(t) + (NyHyD, — LiD,)n(t — (1))
+ i (pj(0(t)) — p; (B () {H1Agji(t) — Noje(t)
=
+H A E(E — T() — Nyje(t — (1) + Gu(t)

— (NojHzDyy — LojDy)n(t) — (NyjH Dy — L1;Dy)

x n(t — ()} — HyD,in(t)). (24)
Now, by defining a set of new variables as follows:
Ki = L — NsiH, (25)

fors=0,1andi=1,..., h, (19)-(20) are transformed to
a unified representation:

Nsi = HiAsi — KsiC (26)

Moreover, by using (25), (24) is simplified to:

h
et) = Z pi(0 (1)) {Noie(t) + Nyje(t — T(t)) — Ko;Dun(t)

i=1
h
— KuDyn(t — (1)) + Y _ (pj(0() — p;(B(£)))
j=1
x {HiAg;x(t) — Noje(t) + HiAyE(t — T (1))
—Nlje(t — T(t)) + G]u(t) + Koann(t)

+Ky;Dyn(t — t(t))} — HyD,n(t)}. (27)
Now, by considering a new state vector as
s =[50 e®"] (28)

and a new input vector as
T
it = [u®)" A" fOT 1) nt - @) A"
(29)
the error dynamics system (27) is augmented with system
(7) to form the following uncertain system:

h
EE(t) =) pi(0(t){ (Ao + AAg)E (1) + (Ay;
i=1

+AAYER —T(t) + (B + AB)u(t))  (30)
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B, R, F 0 0 0
0

and the uncertain terms are defined by:

AAgi = Ma, S (t)Ny (31)
AA; = My, Za(t)Ny (32)
AB; = Mp¥p(t)Ng (33)

where!

i 0 0
MA = ~ ~ )
0 _[H1A01 HlAOh] - [Nm e Noh] -

i 0 0
MA = ~ ~
! _[HIAII ttt HlAlh] - [Nll e Nlh] 2nx2mh

[Q.t) o
YAt) = s
A() L 0 QX(t)i|2nh><2nh
Q. (t) = diag(8,(t), ..., 0 (1)) ® I,

8(t) = p;(0(1) = (1) (for j=1,....h),

I,
(]
w=bo] e
* L2nhxan

" nhxn

[ 0 00 0 0 o]
[Gi -+ Gu] 00 [KnDy -+ KopDu ] [KuDy - KD ] 0],

ki = ky + ka + kg + 3Ky,

Tp(t) = diag(Q, (1), Q. L5, Qu(t), Qu(t), Q).

Q,(t) = diag(8:(t), ..., 8 (1)) ® L,, Q2a = Oyhxckshs
Q= Okphxkns Q2n(t) = diag(d1(t), ..., 8n(t)) ® I,

Q= Ok, hxk,h

Ny = diag(¢u, da, B 1, Pns du, Bn)

I,
Pu=1|": s Pa = Okghsckys DF = Okpxkss
[ L, | kuhxk,
]
b= , & = Ok ik,
Lk _ knhxk,

Remark 3.1: Due to the convex properties of scheduling
functions:

—1<p;j(0()) — pjB(t) <1
8;(t)
= diag(87(t), ... 8,(t)) < I,

So:

a0 BA) < Lo (34)

Tp(t) Tp(t) < Iin (35)

4. UIO design and fault diagnosis

4.1. Description and preliminary results

In this section, the matrices of UIO introduced in (8) are
determined such that (18)-(23) are satisfied. By augment-
ing (18) with (22)-(23), the following matrix equality is
obtained:

[ Hi HZ]E 2015 §:|=[In00] (36)
T T

where X = [R,---R,], HeRx>rtm y¢
R(n+m)><(n+hkd+k/) and ¥ € Rnx(n+hkd+kf).
Remark 4.1: In the case of a constant disturbance dis-
tribution matrix (R; = R for all subsystems), the formu-
lation derived in (36) is valid by introducing ¥; = R=
[RT 0]" and replacing hk, with k; in the dimension of
the related matrices.
Remark 4.2: Matrix equation (36) is solvable if
Y
rank|[ w
condition (Koenig, 2005):

] = rank(Y') which is equivalent to the following

rank(Y) = n + rank(Xj) + rank (F) (37)
The solution of matrix equation (36) is:
H=WY"4+KIyym—YY") (38)

where Y1 is the pseudo inverse of matrix Y and K is a
gain factor with compatible dimension. This gain adds an
additional degree of freedom that helps in the design of a
suitable UIO. Then, (38) is partitioned as follows:

H=[H HL]|=¥[""L"]|+K[V V]

UY; T +KV, ¥Y,t +KV,

———
Hi Hy
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where Y" =Y*T} and Y, =Y*T, in which T} =
[I Ouxm 1T and T = [0yxn Ly ]7. In a similar manner,
V1 = VTl and V2 = VT2 in whichV = n+m — YY+

Now, a Lemma that will be used to guarantee the
robust convergence of UIO is stated:

Lemma 4.1: Consider the following singular delayed LPV
system:

h
Ex(t) = z 0i(0 () [Apix(t) + Ayx(t — T (t)) + Biw(t)]

z(t) = Cx(t)
(40)

where w(t) is a L, -norm bounded exogenous input and
z(t) is the measured output and all the matrices are with
compatible dimensions. For a given y > 0, if there exist
matrices P and Q > 0 such that the following conditions
holdfori=1,...,h:

PTE=E"P>0 (41)

PTAy+ALP+Q+CT'C  PTA,; PTB
e = s —-1-wQ 0 |<o0
* * -y
(42)

then, system (40) is asymptotically stable for w(t) =0
and ||z(®) |l < yllw(®)]||, for zero initial conditions.

Proof: The following Lyapunov-Krasovskii functional is
considered:

t

xT (W)Qx(M)dr  (43)
O

V(t,x) = xT(t)PTEx(t)+/

t—1(t)

in which PTE = ETP > 0,Q= Q" > 0 and x, := x(t +
) where w € [—1,, 0]. Consider the index:

] = /oo [z()Tz(t) — y*w(t) w(t)]dt. (44)
0

Showing that J < 0 for zero initial condition case and
V(t, x;) < 0 for zero input case proves the lemma. J can
be written as follows:

J = /OO [z z(t) — Y2w () w(t) + V (¢, x)]dt
0
+ V(t’ xt)|t=0 - V(t’ xt)|t:oo (45)

in which V (¢, x;)|1=0 = 0 and V (¢, x;)[1=cc > 0, s0:

J< foo [z)Tz(t) — Y2w ) w(t) + V (¢, x)]dt.
’ (46)

Considering the convex property of weighting
functions (4) and the maximum bound of delay derivative

(w):
o~ h '
1= [ Yaeoxoecwd @)
0 =

where ¢ (1) = [x()T x(t — ()T w®)T17. So, O < 0
assures J < 0. The asymptotic stability of (40) is deduced

from negative definiteness of the following submatrix of
O

|:PTA(),' + A(Y);P + Q PTAli ]
* —1-mwQ

which results in V (¢, x;) < 0 in the non-actuated case.

Remark 4.3: The robust stability criterion presented in
Lemma 4.1 is a delay derivative dependent and delay
independent condition. This Lemma will be used in the
forthcoming parts to derive the UIO design procedure
in LMI format. A delay dependent condition for singular
delayed LPV systems’ robust stability has been presented
in Li and Zhang (2012) but using that condition to guar-
antee the convergence of the UIO needs resolving some
nonlinearities in the matrix inequalities which is beyond
the scope of the current study.

Lemma 4.2: (Yang, Wang, Hung, & Shu, 2005): Let M, N
and T1 be real matrices with appropriate dimensions and
matrix X(t) satisfying £ (t)T Z(t) < I, then

M+MEN+N'ETMT <0 (48)

if and only if there exists a positive scalar ¢ such that

1
M+ -MMT +eNTN <0 (49)
&

4.2. Main results

Using the material introduced so far, the following Theo-
rem can be stated.

Theorem 4.1: Considering system (7), if there exist sym-
metric positive definite matrices Po, Q1 and Q , matrices Py,
M and M fors = 0, land i = 1, ..., hand positive scalars
V> €4y €4, and ep obtained from the solution to the follow-
ing optimisation problem:

min y (50)
PP, Q1, Qo M, M, €464, €8

subject to the following LMI constraints fori = 1, ..., h:

PTE=E"P >0 (51)



Qe Qp
* *x Qb
where
o — sym{PT Agi} + Q, _ 0 -
= 0 sym{P] HigAo; + MV1Ao; — MoiC} + 1+ Q,
Qi — |:P1TAU .0 i
12 0 PzTHloAli + MViAy; — M;;C ’
o _[-@-wa o
22 — _ —
0 (1—wQ
o PTB; PTR, PTF 0 0 0
B~ 0 0 0 —MyD, —M;D, —PIHyD, —MV,D, |’

0 0

$ = 0.9 = —y1 @y, = |:[F01 Foh] —[I:()I :

-l

To; = PFHyoAgj + MV, Ay},

FOj = PZTHI()AO]' +MV1A0] - M()]é (fOI' ] = 1, veey h)
Q, =0, QL =0,Q, =—esl

0
Qés = |:8AO¢XT 0

QL. =0,Q.=0,Q.=0,
0 8A0¢;:| 25 35 45

Q= [ 0 0 ]
16 [Fll"‘rlh]_[rll"'rlh]
I = PZTHIOAIJ' + MVIAIja
1:‘1]' = PZTHI()AU +MV1A1] — Mljé (for ] = 1, ceey h)

QL o=0,Q =0, Q=0 Q=0 Q =—esl

1

. . 8A1¢T 0
Q. =0, sz;7=[ S eppl

QL =0, Q=0 Q,=—eyl

1

:|v 92720» 92720»

o — [ 0 00 0 0 0]
B[R] 00 [MoDy - MopDy | [MuiDy -+ MipDy ] 0
Y; = PIH\oB; + MViB; (for j=1,...h)

i i i i
=0, Qs =0, Qg=0, Qy=0,
[ A [ — [ —
Qi =0, Qg=0, Q= —epl
Qo =0, Qg =0, Qb =diagend,, endy . e8d(, b, > endy  E5, )
Qg =0, Qi =0, Qi, =0, Q; =0, Qi =0, Qy=—epl

then, the robust state and fault estimator (8) with the
attenuation level y = /y exists and by means of the fol-
lowing variables:

K=P'M (53)
Ki=P'M; fors=0,1andi=1,...h, (54)

the UIO matrices G;, Hy, N;; and L,; can be calculated
from (21), (39), (26) and (25), respectively.

Proof: System (30) is considered with the output defined
asz(t) = CE(t) = [0 1, ]&(t) = e(t). Lemma 4.1 is used
to guarantee the robust stability of this system. Applying
the conditions of Lemma 4.1 on uncertain system (30)
results in:

PTE=E"P>0 (55)
sym{PT (Ag; + Adg)} + Q+C'C PT(Ay; + AAy;) PT(B; + AB;)
I; = * —(1-wQ 0
* * —y2I
<0 (56)
O

which can be transformed into:

I1; = I + sym{T1;*} + sym (I} 4 sym {148} < 0

(57)
where
PTAu+ALP+Q+C'C PTA; PTB
) = * -1-wQ 0 |,
i * * -y
PTAAy; 00 0 PTAA;; 0
e = s 00,0 =% o0 o],
| % * 0 * * 0
[0 0 PTAB;
N ={x0 o0
KX 0

Considering (31)-(33), (57) transforms into:

IT; = 119 + sym{Ma, 4 (t)Na,} + sym{My, X4 (t)Na, }

+ sym{MBZB(t)NB} <0 (58)
where
PTM,, PTMy, PT Mj
MAO == 0 5 MAl - 0 s MB == 0 )
0 0 0

Ny =[Na00],Nsy =[0Ns0],Ng=[00Nz]

Due to properties (34) -(35) and by applying Lemma 4.2,
(58) can be rewritten as follows:

0 1 - T SN 1 - T
I + _MAOMAO + €A0NA0NA0 + _MAlMAl
€4, €A,

ST 1 - -7 ST
+<9A1NA1NA1 + S_MBMB +83NBNB <0 (59)
B



Downloaded by [University of Florida] at 14:26 29 October 2017

and then by applying the Schur complement Lemma, (59)
results in:

_H? MAO 8A0N§0 Mz‘h SAIN}; MB SBNg_
* —go ] 0 0 0 0 0
* % —g I 0 0 0 0

* ok x*  —gul 0 0 0 < 0.
* ok * *  —g4l 0 0
* * * * * —egl O

L * * * * * * —epl |

(60)
Now, by choosing the following matrix blocks as
Lyapunov-Krasovskii matrices when using Lemma 4.1:

Ao Q0
r=[on]e=[Vel
the condition PTE = ETP >0 is equivalent with (51)
and P, = PI > 0. Substituting the corresponding terms
ofl'I MAO, NAO, MAI, NAI,MB and Nj based on the matri-
ces of augmented system (30) in (60) and then by applying

the following change of variables to resolve the nonlinear-
ities in the matrix inequality obtained

M := BK (61)
M;:=PK; fors=0,1andi=1,..,h (62)
y =7 (63)

the LMI (52) is derived. Whenever the optimisation prob-
lem (50) under LMIs (51)-(52) is solved, K and Kj; are,
respectively, obtained by (53) -(54) which result from
(61) to (62). The unknown matrices of UIO (8) are then
calculated from (21), (39), (26) and (25). So, the robust
convergence of the state and fault estimator (8) with the
unknown input attenuation level y = /7 is achieved
considering Lemma 4.1. This ends the proof.

Remark 4.4: Theorem 4.1 has the constraint P/E =
E Tp, > 0in its formulation which may result in numeri-
cal problems. To avoid these problems, this constraint can
be considered by parameter ising P, as P; = PE + SX
where P, > 0 and X € R"~">" are the parameter matri-
cesand S € R™ =" is any full column rank matrix which
satisfies ETS = 0 (Lam & Xu, 2006).

Corollary 4.1: Considering the system (7), if there exist
symmetric positive definite matrices P;, P, Q; and Q,
matrices X, M and My; for s=0,1and i=1, ..., h and
positive scalars y, €4,, €4, and ep obtained as the solution
to the following optimisation problem:

min % (64)

PPy, Q1,Qp, X, M, M;i, 84,64, »€B

subject to the following LMI constraints fori = 1, ..., h:

Qo
Q= 4, -~ = |<0 (65)

i
* * Qo

where all blocks of ' are equal with the corresponding
blocks of Q' defined in Theorem 4.1 except the blocks
QIH, Qi, and Qi, in which P, is substituted with P, =
P,E 4+ SX and § € R"™ "= is any full column rank matrix
which satisfies E”S = 0. Then, the robust state and fault
estimator (8) with the unknown input attenuation level
¥y = /7 exists. The matrices K and Kj; are obtained by
(53) —(54) and the UIO matrices G;, H,, Ns; and Lg; are
then calculated, respectively from (21), (39), (26) and
(25).

Remark 4.5: The formulation in this paper is derived
for the singular delayed LPV systems with inexact mea-
sured parameters. However, the results can also be used
for polytopic LPV systems with unmeasurable scheduling
functions as in Theilliol and Aberkane (2011) and Lépez-
Estrada et al. (2014). In this case, systems (5) and (7) are
scheduled according to p;(x(¢)) and UIO (8) is sched-
uled accordmg to p;(x(t)). Cons1der1ng the substitution
of pi(0()), pi(0(t)), p;(O(t)) and p; (A (t)), respectively,
with p; (x(t)), pi(x(t)), pj(x(t)) and p; (x(t)) in the cor-
responding equations, the results obtained are also valid
for the singular delayed LPV systems with unmeasurable
scheduling variables.

4.3. Fault diagnosis

The UIO (8) designed in this paper can be used for state
estimation and fault diagnosis in singular delayed LPV
systems with inexact parameters which can include both
cases of inexact measured parameters and unmeasur-
able parameters. The state estimation of this UIO is valid
both in fault free and faulty situations in comparison to
residual-based approaches for fault detection in which
state estimates are just valid in fault free conditions and
they deviate from true values in faulty conditions. Thus,
this UIO could be used for implementing an observer
based fault tolerant controller.

Based on this UIO, fault diagnosis is obtained directly
via estimating the size of faults in the system. The advan-
tage of this method is that unlike the common observer-
based fault detection methods, it is not needed to first
generate residuals and then evaluate them in order to
detect the possible faults in the system. Furthermore, for
the fault isolation phase, it is not needed to design a
bank of observers as being discussed in Hassanabadi et al.
(2016b), because each fault is automatically isolated when
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Figure 1. System states and their estimates in the first scenario.
its estimate starts to have a significant deviation from Algorithm 1
zero. Thus, fault estimation (last step of fault diagnosis) Step 0. Check Assumption 2. and condition (37)
is also automatically obtained. Step 1. Calculate Hyy = WY, ", Hyy = WY, *,V, = VT, and V, = VT,.
Step 2. Solve the convex optimisation problem (64) and obtain
Remark 4.6: Further research can be conducted for fault matrices P, Py, M, X, Q,, Q, and M,; (fori =1, .., hands =0,1).
diagnosis of discrete-time singular delayed LPV systems ;5:375:1) Craelsc:lactt?v}él)a/nd Ky (fori=1,....hands = 0,1)from (53)
based on discrete-time version of the UIO proposed in Step 4. Calculate H] and H, from (39).
this paper and the stability results proposed in Zhang and Stzl?;)- Ca'CU|att_e ’\I’Sf (fori=1, ... hands = 0,1)and G; from (26)
an , respectively.
Zhu (2012)' Step 6. Calculate L; (fori =1, ..., hand s = 0, 1) from (25).

4.4. Summary of the method

Algorithm 1. Robust state and fault estimation system (1)(1)83
design for singular delayed LPV systems with inexact E=1oo10|
parameters 0000
Ao (6(1))
[2.2+0.16, (1) -1.3 ~7.8 1.7 4 0.56,(t)
5. lllustrative example _ 6.1 238 —11.8 —0.36,(t) 0.5
9.2 ~2.6 — 0.26; (t) -16.7 -0.7
L 12.8 —1.9 —41-0.16,(t)  —14.4
5.1. Description 0 14020,() 0 05
An example is used to illustrate the performance of the AL6(F)) = -1.2 0 —1+40.40,(t) 0.8
proposed state and fault estimation method. System (1) ! 0 1-0.10,(t) 0 0

with the following numerical values is considered: —0.7 0 0.3 0
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Figure 2. Estimation of the faults on the first and the second sensor in the first scenario.

1+ 0.156, ()

0.5
B ®) = 2 +0.2560,(t)
0
[0 ] 11 02
1 4 -2 31
R=1os51"¢C=11 0 —15]|"
| 0 | 21 01
7107 0.5
01 0.7
Dr=1g0|"P=1| 12
100 0

The delay is 7(t) = 0.6 + 0.4 sin(¢) seconds. The range
of the two parameters are 6, (f) € [—1, 1] and 6,(¢) €
[—1.5, 1.5]. In this case, the polytopic representation (5)
consists of four subsystems defined in one of the vertices
of the parameter variation domain. The gain matrices of
theses subsystems are calculated as follows:

X1 = XO)lo,=0r, X2 = X (O g, 1= »
0, (1)=0;" 0, (t)=05"

X5 = XO)lg, )=y, Xa= XOE)|oy=0y  (66)

6, (t)=62 6, (t)=63"

where X represents Ag, A and B. X; fori=1,...,4is
the corresponding matrix in the subsystem i. The corre-
sponding time-varying weights of the four subsystems of
the polytopic singular delayed LPV system (5) are calcu-
lated as follows:

p1(0(1)) = a1 (H)az(t), p2(0(t)) = (1 — oy (1)) 2 (1),
p3(0(1) = (1 —ar (1) (1 — a2 (), pa(O(2))

= o1 (t)(1 —ax(t)) (67)

where o (t) = (OM — 01(t))/(OM — 6") and ay(t) =
(0" — 0,(1))/ (0" — 65").

5.2. Results

Now, a UIO in the form of (8) is designed based on
Algorithm 1. The convex optimisation (64) is solved with
the SeDuMi solver (Sturm, 1999) using the YALMIP
toolbox (Lofberg, 2004). The obtained UIO matrices
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Figure 3. System states and their estimates in the second scenario.

are: (i = 1) for the matrices Ny;, Ny;, Lo; and Ly; are presented
[ 0.0000 0.0000 —0.0000 —0.0000 ] here:
0.0000 0.0000 —0.1818 0.9091
4 0.0000 0.0000 —0.0909 0.4545 )
2= | 0000 00000 0.1818 00909 |’ —0.5748 —1.0027 —0.2694 —0.1468 0.2885  1.8551
—1.1054 —1.9674 —0.4884 —0.2434 0.5847  3.2651
1.0000—0.0000 —0.1818 —1.0909 N. _ | 07958 —1.1933 —0.5217 ~0.3982 0.2501  4.0811
| —0.0000 1.0000 —0.2727 0.3636 | o= | —0.0442 —0.0381 —0.0504 —0.0503 —0.0077 0.4452
- - - - 0.6190 1.0408 0.3199 0.1971 —0.2808 —2.3003
0.8500 1.1500
25199 3.6942 1.7163 13456 —0.7273 —13.5787
1.4500 2.0500 - _
0.2886  0.6303 0.0339 —0.0531 —0.2399 0.0637
2.1000 2.4000
G = .Gy = 0.4823 1.0557 0.0448 —0.0911 —0.3988 0.1496
0.2500 0.2500
0.7632 1.6542 0.1485 —0.1279 —0.6456 —0.0476
~1.1000 —1.4000 Ny =
0.0949 0.2048 0.0229 —0.0150 —0.0811 —0.0223
~7.0500 ~7.9500
- -+ - -+ —0.3835 —0.8351 —0.0568 0.0680 0.3211 —0.0414
1.1500 0.8500 | —2.5743 —5.5771 —0.5143 0.4285 2.1801 0.2096 |
1.9136 13136 T —0.0000 —0.0000 1.2711 —4.2547]
G = | OB | g | 2788 —0.0000 —0.0000 2.2602 —7.6745
0.3864 0.3864
Lo — —0.0000 —0.0000 2.6814 —8.4293
15364 12364 =1 —0.0000 —0.0000 0.2821 —0.8349 |’
| —10.4045 | | —9.5045 |

0.0000 0.0000 —1.5532 5.0896
| 0.0000 0.0000 —8.8905 27.7928 |

Although there are four subsystems, due to space
limitations, only the results of the first subsystem
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Figure 4. The scheduling functions of the system and the UIO in the second scenario.

deviation of 0.2. The vector of faults is f(t) =
[ ) f2(t)]T. Considering the fault distribution matrix
Dy, faults fi(t) and f,(t) affect the first and the second
sensor of the system, respectively. In the first scenario,
abrupt fault, incipient fault and sinusoidal fault occur on

0.0000 0.0000 —0.2342  0.6709
0.0000 0.0000 —0.4070 1.1076
Ly = 0.0000 0.0000 —0.5411 1.8421
0.0000 0.0000 —0.0614 0.2342
—0.0000 —0.0000 0.2956  —0.9052
| —0.0000 —0.0000 1.8076 —6.2290 |

5.3. Simulation for the inexact measured
parameters case

The system under consideration and the designed UIO
have been simulated. In the simulation, the system is
actuated with the input u(¢) = cos (0.2t). The time
variation of the two parameters are 6, (t) = sin (0.3t)
and 0,(t) = 1.5¢c0s (0.8¢). The parameter measures
él (t) and éz (t) are corrupted with two zero-mean noises
with standard deviations of 0.2 and 0.3, respectively. The
measurement noise n(t) is considered as a zero-mean
noise with standard deviation of 0.1 and the disturbance
signal is considered as a zero-mean noise with standard

the two sensors as follows:

1 3<t<7s
. (t—11)/411 <t < 155
hi®) = sin(3t) 19 <t < 23s
0 otherwise
1 5<t<9s
At = (t—13)/4 13 <t < 17s
2277 ) sin(3) 21 <t < 25s
0 otherwise

The system and the estimated states are depicted in
Figure 1. As it can be observed from this figure, the
estimated states converge to real states in both fault
free and faulty situations despite the presence of noise,
disturbance, sensor fault and mismatch between the
system scheduling parameters and the UIO scheduling
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Figure 5. Estimation of the faults on the first and the second sensor in the second scenario.

parameters. In Figure 2, the fault estimates in this sce-
nario are depicted. Note from this plot that the effect of
unknown inputs and the noisy parameters are attenuated
on the fault estimates. Moreover, the faults on the two sen-
sors are detected and isolated from their estimated val-
ues as they occur. In this scenario, in the time intervals
between 5-7 seconds, 13-15 seconds and 21-23 seconds,
the faults appear simultaneously in the two sensors. Isola-
tion of the simultaneous faults in these intervals has been
successfully achieved using the fault estimation approach
that is proposed in this paper. Fast detection and
isolation of constant and time-varying faults allows to
carry out suitable fault tolerant actions manually or auto-
matically to prevent failures in the system.

5.4. Simulation for the unmeasurable set of
parameters case

In this part, it is assumed that the singular delayed LPV
system (5) is scheduled with p;(x(¢)) and according to
Remark 4.5, sensor fault diagnosis is performed for this
case. The numerical values for different subsystems are
similar to the numerical values of Section 5.1 calculated
based on (66). The scheduling functions that depend on

the unmeasurable variable x(t) are considered as follows:

wi(x(t))

() = )
PR = S )

fori=1,...,4where

1 (x(1)) = exp(x1 (t) + 1))
12(x(1)) = exp(2(x1 (t) — 1))
13 (x(t)) = exp(2(x1(t) 4 0.5)%)
1a(x(t)) = exp(2(x1(t) — 0.5)%).

In this case, the UIO (8) is scheduled based on p;(x(t)).
With the UIO that was designed in Section 5.2, a second
scenario is simulated. In this scenario, the faults on the
two sensors and the measurement noise are considered
similar to the first scenario but the disturbance is assumed
to be a pulse as it is presented in Figure 5. The real states
and the estimated states are shown in Figure 3 where
it can be seen that the estimated states converge to real
ones with a bounded error. The convergence of the UIO
scheduling functions p;(x(¢)) to the system scheduling
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functions p;(x(t)) is shown in Figure 4. Figure 5 depicts
the fault diagnosis task in this scenario despite the pres-
ence of unknown inputs and uncertainty induced by the
unmeasurable parameters in the system. Fault diagno-
sis is obtained directly via a fault estimation procedure
which combines the two phases of detection and isola-
tion in a single phase, avoiding the residual computation
and evaluation. Thus, the computation burden of the fault
diagnosis unit is remarkably reduced. In addition, it can
be observed from the results that perfect decoupling of
the unknown input signals d(¢) and f(t) on the estima-
tion has been obtained due to constraints (22)-(23) in
the design procedure while the measurement noise and
the effect of parameters inexactness have been attenuated
in the Ho, manner. Perfect decoupling of f(¢) allows to
isolate the faults that appear simultaneously as shown in
Figure 5.

6. Conclusion

In this paper, a UIO-based fault diagnosis scheme for
singular delayed LPV systems with sensor faults, dis-
turbances, measurement noise and inexact measured
parameters has been designed. The sensor faults have
been considered as additional states in an augmented
system. A UIO was designed for estimation of the new
system states in the presence of unknown inputs includ-
ing disturbances, noise and faults added by the uncer-
tainty which is induced by inexact parameters. The
mismatch between real and measured parameters is con-
sidered via an uncertain system approach. The robust
state estimation for the uncertain system with unknown
inputs is formulated using the BRL for the singular
delayed LPV system. Fault diagnosis was achieved via
fault estimation which is an alternative to methods that
require both detection and isolation phases. The results
of this paper are also applicable to the singular delayed
LPV systems with unmeasurable scheduling functions.
Further research might be conducted to extend the results
presented in this paper to the multiple delays case and
to obtain delay dependent conditions for UIO design
and fault diagnosis of singular delayed LPV systems in
LMI format by resolving the nonlinearities which appear
when using delay dependent robust stability conditions
for guaranteeing robust convergence of the proposed
UIO. Finally, applying the results obtained in this paper
to design an active fault tolerant controller for singular
delayed LPV systems will also be considered in the future.

Note

1. In the following notation, the dimension of matrix blocks
is represented as subscripts for the sake of clarity.
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