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ABSTRACT
This paper analyzes the stabilization of two coupled systems described by difference
equations via an N -periodic feedback control. For this, it is considered a discrete-
time approach with two compartmental systems, where each system has commu-
nication with the other one. An N -periodic controller is proposed to attenuate the
interconnections affecting to stability of the process. It is designed so in each interval
of amplitude N , the control is only added at initial time and there is not control in
the rest of the time. This feedback control ensures the stability of the closed-loop
system. Finally, an example is given to illustrate the theoretical results.
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1. Introduction

Compartmental models are composed of homogeneous interconnected subsystems (or
compartments), i. e. models in which the dynamic units are divided into a set of dif-
ferent groups. It is important to point out the use of dynamic models to predict the
future evolution of a real process, in particular, non-negative and compartmental mod-
els are applied to several classes of coupled systems in engineering, biology, chemistry,
ecology and epidemiology, see Cantó et al. (2014a) and Van den Hof (1998). In par-
ticular, non-negative systems are used to model processes involving conservations laws
for describing transfer or accumulation between compartments where a variable has an
effect on other variables of the model. It is the case, for example, of models involving
a network, Li & Shuai (2010) and Boccaletti et al. (2014) and the references given
there. Many of these applications can be modeled by a discrete-time linear system,
and a topic of continuing interest is designing control systems that maintain stability,
structural properties and performance in presence of constrained signals, Álvarez et
al. (2016); Cantó et al. (2014b); Ellis et al. (2014) and Su et al. (2012).

On the other hand, periodic control actions are commonly used in control theory,
which leads us to a closed model with an N -periodic state matrix. The periodic systems
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are useful for multirate control where the measurement samples and control calcula-
tions must be performed at different frequencies. Examples in engineering applications
such as electrical circuit networks, aerospace engineering and chemical processing, can
be found in Ahn et al. (2010) and Tadeo & Rami (2010). Furthermore, for non-
negative systems, the condition of positivity of the state variables restricts the kind of
control that we can use. Note that, at all times we must ensure that the closed-loop
system has non-negative solution.

In this paper, we consider a discrete-time model formed by two interconnected
systems, initially independents, but with interactions between them. For example, we
consider a network which consists of two compartments interconnected. The usual
approach to model such systems is to use graphs whose nodes represent states and the
directed links stand for the interactions between them. In our case we use an algebraic
approach to model coupled systems. This allows us to use matrix theory techniques
and methods to show for new properties in our model.

The connections between the compartments produce perturbations.These distur-
bances may affect, for instance, stability of the network even from asymptotically
stable subsystems. In this case, we need to eliminate these disturbances in order to
that the full system is also asymptotically stable. When a large-scale system is con-
sidered it is usual to partition the stabilization analysis into tractable sub-problems,
for instance, an study of the stability problem for coupled systems is given in Li &
Shuai (2010). As result, the full process is controlled by several independent con-
trollers which all together represent a decentralized controller. Adaptive control and
sliding mode techniques are often used when there exist disturbances due to estima-
tion of some parameters, see Mahmoud & Qureshi (2012); Zhang et al. (2000). The
approach developed in this work is not based to uncertainties caused by the presence
of unknown parameters. The proposed control scheme is a state feedback applied to all
subsystems but on times separated by a periodic amplitude. The designed N- periodic
feedback controller is not decentralized controller but it ensures stability and achieves
economic efficiency versus an invariant feedback.

To achieve these objectives the feedback is designed so that its action on the cou-
pled systems leads to a periodic disconnection between the subsystems.So, the main
contribution of this work is the construction of an N- periodic feedback that allows
us to apply the control action in a single instant to stabilize the model. This is one
of the advantages of this control design compared to others, since we only need to
act on the coupled systems once every period of time. This makes the feedback prob-
lem an economically viable option that involves some benefits in the performance of
the closed-loop system. Moreover, we obtain the optimal period such that we can be
without acting on the system and it to remain stable. In addition, the designed feed-
back has advantages over the application of an invariant feedback which acts at all
times, specifically, in the case that the application of the feedback is interpreted as a
disconnection.

The paper is organized as follows. In the next Section, we formulate the problem
and introduce some preliminary results. In Section 3, we design and analyze a feedback
control to solve the proposed problem. An example to illustrate the theoretical results
obtained in the paper is presented in Section 4 and conclusions are given in Section 5.
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2. Problem formulation

Models from real processes with non-negative states are considered. Note that, the
model presented can be applied to any number of compartments, provide that the
model structure is maintained. The choice of only two interconnected compartments
or systems is due to simplification of some proofs of the results. Mathematically stated,
the discrete-time system is described by

x(k + 1) = Ax(k) +Bu(k) (1)

where x(·) =

(
x1(·)
x2(·)

)
, xi(·) ∈ Rn+, i = 1, 2, and u(·) ∈ R2n

+ , such that the solution of

the system is non-negative for all k ∈ Z. To ensure this property, the matrices of the
system must be non-negative, that is, each entry of the matrix must be non-negative
with at least one of them positive. In this case, we denote A ≥ 0 and B ≥ 0, see
Berman & Plemmons (1994), and the system by (A,B) ≥ 0.

The network considered is formed by two systems

xj(k + 1) = Ajxj(k), j = 1, 2,

where each state influences the following states in both compartments. Then, the state
matrix of the full system x(k + 1) = Ax(k) is given by

A =

(
A1 D1

D2 A2

)
, (2)

where Aj , Dj are non-negative lower triangular matrices with diag(Aj) =
(
aij

)n
i=1

,

0 < aij < 1 and diag(Dj) =
(
dij

)n
i=1

, j = 1, 2 with diag(·) denoting the entries on the

diagonal of a matrix. Note that the entries of the matrix Dj , j = 1, 2, represent the
interactions caused by one subsystem on the other one.

It is known that the stability of a discrete-time linear system is related to the
stability of its state matrix. In the positive case, if the interconnected system x(k+1) =
Ax(k), with A given in (2), is asymptotically stable, then the subsystems xj(k+ 1) =

Ajxj(k), j = 1, 2, are asymptotically stable. That is because ρ

(
A1 O
O A2

)
≤ ρ(A)

when the matrices are non-negative (ρ(·) denotes the spectral radius of a matrix). But
reciprocally, the effect of the disturbances that appears by the coupling between the
systems can lead to the destabilization of the full process.

In system (1)-(2) we assume that the subsystems xj(k + 1) = Ajxj(k), j = 1, 2
are asymptotically stable systems, that is ρ(Aj) < 1, j = 1, 2, see Bhatia (1997), but
system (1)-(2) is unstable when u(·) ≡ 0. If this occurs, the transfer matrix of system
(1), G(z) = (zI − A)−1B, has at least a pole in modulus greater than or equal to 1,
or equivalently, the matrix A is not stable, ρ(A) ≥ 1.

3



2.1. About the spectrum of matrix A

Now, we fix our attention in the structure of matrix A. By a suitable permutation
matrix P we can reorder the rows and columns of the matrix A, such that PAP T = Ã
is a lower triangular block matrix which diagonal is given by diag(A) = (Ãi)

n
i=1 where

Ãi is a non-negative matrix with positive diagonal entries given by

Ãi =

(
ai1 di1
di2 ai2

)
, i = 1, . . . , n.

So matrix Ã is similar to matrix A and both matrices have the same spectrum. From
now on σ(·) denotes the spectrum of a matrix.

The characteristic polynomial of A is given by |λI − A| =

n∏
i=1

|λI − Ãi|. It is clear

that σ(A) is directly related to σ(Ãi).
We study σ(Ãi) in terms of the entries of matrix Ãi. The eigenvalues of matrix Ãi

are λi1,2 =
ai1 + ai2 ±∆i

2
with ∆i =

√
(ai1 − ai2)2 + 4di1d

i
2 ≥ 0.

For each i = 1, 2 . . . , n :

a) di1d
i
2 = 0 : If ai1 = ai2 and we have ∆i = 0 and λi1 = λi2 = ai1. If ai1 6= ai2, λ

i
1 = ai1

and λi2 = ai2. From ρ(Aj) < 1 we have λij < 1, j = 1, 2.

b) di1d
i
2 6= 0 : We have ∆i 6= 0 and λi1 > λi2. Moreover if ai1 6= ai2, from ∆i >

∣∣ai1 − ai2∣∣
it is straightforward to see that aij − λi2 > 0, j = 1, 2.

We summarize the previous comments in the following result.

Lemma 2.1. Consider the matrix A given by (2). If ρ(A) ≥ 1 then there is at least
i ∈ {1, · · · , n} such that di1d

i
2 6= 0

3. Control design. N-periodic feedback approach

To attenuate the disturbance effect we propose an N -periodic approach. Moreover, we
make a theoretical treatment of closed-loop stability with a periodic feedback. So, we
establish a procedure from a periodic control law in order to ensure that under this
control, the closed-loop model remains stable. We also determine the maximum value
of the period that allows achieving this goal.

On the system (1) we apply an N -periodic control feedback, N ∈ Z, u(k) =
−F (k)x(k) such that the N -periodic closed-loop system is given by

x(k + 1) = Â(k)x(k), Â(k +N) = Â(k), k ≥ 0, (3)

with Â(k) = A−BF (k), k ≥ 0.
It is known that an N -periodic system has associated a collection of N invariant

systems (see Bittanti (1986); Meyer & Burrus (1975)), given by

xs(k + 1) = Âsxs(k), k ≥ 0, s = 0, 1, . . . , N − 1,
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where xs(k) = x(kN + s) and Âs = ΦÂ(N + s, s), being ΦÂ(k, k0) defined as

ΦÂ(k, k0) =

k−1∏
i=k0

Â(k0 + k − 1− i), k > k0

and ΦÂ(k0, k0) = In. The coefficient matrix Âs is called the monodromy matrix of
time s.

It is known (see Bittanti (1986); Bru & Hernández (1989)) that the non-negativity
and asymptotic stability properties are transferred between an N -periodic model and
its N associated invariant systems. Then, the system (3) is non-negative and asymp-

totically stable if and only if the monodromy matrix Âs = ΦÂ(N + s, s) ≥ 0 and

ρ(Âs) < 1, s = 0, 1, . . . , N − 1.
From definition of the monodromy matrix, it is clear that if the periodic matrices,

Â(k), k = 0, 1, . . . , N−1 are non-negative then Âs is non-negative for s = 0, 1, . . . , N−
1. On the other hand, all matrices Âs have the same spectrum, then we only need to
study the case s = 0, ρ(Â0) = ρ(ΦÂ(N, 0)) < 1 (see, for instance Cantó et al. (2014c)).

Before addressing our study, we recall that a matrix X ∈ Rq×p is called an {1}-
inverse of A ∈ Rp×q if AXA = A. An {1}-inverse of A is denoted by A(1).The con-
struction of {1}-inverses for an arbitrary finite matrix A of rank r > 0 is given in
Ben-Israel & Greville (1974).

The following result is easy to check.

Lemma 3.1. Consider B ∈ Rn×m and M ∈ Rn×n. If there exists some B(1) such
that (I −BB(1))M = 0 then the matrix F = B(1)M is a solution of the matrix system
BF = M.

The main aim of this section is the construction of the N -periodic control feedback.
This construction is given in the following result.

Lemma 3.2. Consider the system (A,B) given in (1), M ∈ Rn×n and B(1) satisfying
(I − BB(1))M = 0. If ρ(AN−1(A −M)) < 1 for some N ∈ Z, then there exists an
N -periodic feedback such that the N -periodic closed-loop system (3) is asymptotically
stable.

Proof. From Lemma 3.1 we have that F = B(1)M satisfies BF = M , then, we
consider the N -periodic control u(k) = −F (k)x(k) defined as

F (0) = B(1)M, and F (k) = O, k = 1, . . . , N − 1. (4)

We apply this N -periodic control feedback, u(k) = −F (k)x(k) to the system (A,B).
Then, we obtain an autonomous periodic closed-loop system where the state matrices
are Â(k) = A−BF (k), k ≥ 0, where

Â(0) = A−M and Â(k) = A, k = 1, · · · , N − 1.

For studying the asymptotic stability we consider the N invariant systems associated
with the periodic system. Since all matrices Âs have the same spectrum, we look at
Â0 = ΦÂ(N, 0) = AN−1(A −M). So, if ρ(AN−1(A −M)) < 1 the collection of N
invariant systems will be asymptotically stable and consequently will be the periodic
system.
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At this point, the construction of the N -periodic control feedback is done
using some matrix M made from the structure of the matrix A. Denoting

Qlj =

(
O O
O Ij

)
∈ R2j×2j and Quj =

(
Ij O
O O

)
∈ R2j×2j , we consider two cases to

construct this periodic feedback.

Case 1: M = AQln. In this case, Â0 = ΦÂ(N, 0) = AN−1(A −M) = ANQun. The key
to solve the stabilization problem is the following theorem.

Theorem 3.3. Consider the unstable system given in (1)-(2) and suppose that Aj, j =

1, 2, is stable and ai1a
i
2−di1di2 > 0, i = 1, . . . , n. If for some B(1), (I−BB(1))AQln = O,

then there exists an integer N? such that the N?-periodic control feedback constructed
as in (4) provides a non-negative and asymptotically stable closed-loop system (3).

Proof. From Lemma 3.1, there exists a matrix F such that BF = AQln, then, we
define the N -periodic control u(k) = −F (k)x(k) as in (4). The N -periodic closed-loop
system has the state matrices

Â(0) = A−AQln = AQun ≥ 0 and Â(k) = A ≥ 0, k = 1, · · · , N − 1.

Then, the N -periodic closed-loop system is non-negative and the monodromy ma-
trix at time 0 is Â0 = ANQun ≥ 0. From Lemma 3.2 we have to analyze the

spectral radius of the matrix Â0. Note that, using the permutation matrix P =
(e1 e3 · · · e2n−1 e2 e4 · · · e2n), where ei is the ith-unit vector, i = 1, . . . , 2n, we

have that PÂ0P
T is a lower triangular block matrix with diag(PÂ0P

T ) =
(
ÃNi Q

u
1

)
.

Thus,

|λI − Â0| =
n∏
i=1

|λI − ÃNi Qu1 |,

and we need to study the eigenvalues of matrices ÃNi Q
u
1 , i = 1, 2, . . . , n.

Since the system (1) is not stable we know that at least one block Ãi is not
stable, with ρ(Ãi) = λi1 ≥ 1. If λi1 = λi2, from Lemma 2.1 both would be less
than one and this contradicts the starting hypothesis, thus λi1 6= λi2. Moreover, us-

ing T =

(
λi
1−ai

2

di2

λi
2−ai

2

di2
1 1

)
, we have that

TÃNi Q
u
1T
−1 =

(
0 ∗
0 ρ(ÃNi Q

u
1)

)
with ρ(ÃNi Q

u
1) =

λi1
N

(λi1 − ai2) + (ai2 − λi2)λi2
N

λ1
i − λ2

i

,

and ∗ denotes a suitable scalar. In order to analyze the spectral radius of Â0 = ANQun,
we consider the set of indices J = {i ∈ I / λi1 ≥ 1}. If λi1 = 1, we have ρ(ÃNi Q

u
1) =

(1− ai2) + (ai2 − λi2)λi2
N

1− λ2
i

. Since λi2 < λi1, it is easy to prove that ρ(ÃNi Q
u
1) < 1, ∀N >

0. Thus, we focus our attention in the case λi1 > 1. It satisfies
λi1 − λi2
ai2 − λi2

> 0 and we
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want to find a value Ni such that

λi1
Ni − λi2

Ni

λi1
Ni − 1

>
λi1 − λi2
ai2 − λi2

. (5)

To guarantee the existence of Ni, we define a continuous function

g(z) =
λi1

z − λi2
z

λi1
z − 1

, (6)

which satisfies g(1) >
λi1 − λi2
ai2 − λi1

. From a1, a2 < 1 and ai1a
i
2 − di1di2 > 0 it follows that

0 < λi2 < 1. As λi2 < 1 < λi1, we have g(z) > 1 for all z ≥ 1 and

lim
z−>∞

g(z) = lim
z−>∞

1− (λ
i
2

λi
1
)z

1− ( 1
λi
1
)z

= 1.

In addition, the function g(z) is decreasing, for it is enough to prove that g′(z) < 0.
The sign of g′(z) will be given by the numerator, which in a simplified way, is given
by

(λi2)zln(λi2)− (λi1)zln(λi1) + (λi1)z(λi2)z(ln(λi1)− ln(λi2).

Since λi2 < 1 we have (λi1)zln(λi1) < (λi1)z(λi2)zln(λi1) and since λi1 > 1 we have
(λi2)zln(λi2) < (λi1)z(λi2)zln(λi2). Thus,

−(λi2)zln(λi2) + (λi1)zln(λi1) > (λi1)z(λi2)z(ln(λi1)− ln(λi2),

and this implies that g′(z) < 0. Hence, there is some value z0 such that g(z) >
λi1 − λi2
ai2 − λi1

,

for all z ≤ z0. Thus, it is sufficient to take Ni as the integer part of z0. Then, from (5)
we have that

λi1 − λi2
ai2 − λi2

((λi1)Ni − 1) < (λi1)Ni − (λi2)Ni ,

λi1 − aij
aij − λi2

(λi1)Ni + (λi2)Ni <
λi1 − λi2
aij − λi2

,

(λi1)Ni(λi1 − aij) + (λi2)Ni(aij − λi2) < λi1 − λi2.

So we have obtained ρ(ÃNi

i Qu1) < 1. Taking N? = min{Ni, i ∈ J} we can ensure

that the matrix Â0 = ΦÂ(N?, 0) is stable and the closed-loop system of period N? is
asymptotically stable.

Remark 1. The effect of the feedback control is a disconnection between the two
subsystems. We want to delay as much as possible this control action to optimize the
costs. Then, we look for the maximum period N such that the N -periodic system (3)
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is asymptotically stable, or equivalently, we are interested in the maximum value of
N such that ρ(ΦÂ(N, 0)) < 1 and ρ(ΦÂ(N + 1, 0)) > 1.

Using the function g(z) defined in (6), as g(z) is decreasing we can ensure that there
exists Ni (the integer part of z0) such that

g(1) > · · · > g(Ni) =
(λi2)Ni − (λi1)Ni

1− (λi1)Ni
>
λi1 − λi2
ai2 − λi2

>
(λi2)Ni+1 − (λi1)Ni+1

1− (λi1)Ni+1
= g(Ni + 1).

So, it is sufficient to take N? = min{Ni, i ∈ J} as the optimal period which makes
the closed-loop system (3) is asymptotically stable. That is, the N -periodic system is
asymptotically stable if N ≤ N? and it is unstable if the period is N > N?.

We summarize the previous comments on the following result.

Corollary 3.4. N? = min{Ni, i ∈ J} is the optimal period which makes the closed-
loop system (3) asymptotically stable.

Case 2: M = AQun. In this case, Â0 = ΦÂ(N, 0) = AN−1(A − M) = ANQln. The
stabilization problem is solved in the following theorem.

Theorem 3.5. Consider the unstable system given in (1)-(2) and suppose that Aj, j =

1, 2, is stable and ai1a
i
2−di1di2 > 0, i = 1, . . . , n. If for some B(1), (I−BB(1))AQun = O,

then there exists an integer N? such that the N -periodic control feedback constructed
as in (4) provides a non-negative and asymptotically stable closed-loop system (3) if
N ≤ N? and unstable when N > N?.

Proof. From Lemma 3.1, there exists a matrix F such that BF = AQun, then, we
define the N -periodic control u(k) = −F (k)x(k) as (4). To analyze the eigenvalues

of the matrix Â0 we observe that, in this case, Â0 = ANQln. By a simple calculation
we can determine that the spectral radius of this matrix can be calculated from the
eigenvalues using the following expression

ρ(ÃNi Q
l
1) =

λi1
N

(λi1 − ai1) + (ai1 − λi2)λi2
N

λi1 − λi2

We can now proceed analogously to the proof of Theorem 3.3, by simply changing ai2
by ai1, and we obtain the desired result.

Remark 2. It is clear that applying the invariant feedback u(k) = −Fx(k) to the
initial system is not profitable because that would mean completely decoupling the
system. However, with periodic feedback we decouple it only in an instant, allowing
the system to stay connected during the remaining steps.

Remark 3. Note that, if B is a non-singular matrix, the equation BF = AQun has
solution. Moreover, for example, in some biological applications, when the matrices
Ai represents the transition matrix and F represents the reproduction or infection
matrix, the matrix B = I.
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4. Example

There exists several real processes of different areas where the results obtained in this
work can be applied. For instance, a communication networks where the state variable
are the hosts files and the links represent the physical connections among them or a
social network that reflects friendship relationships among end-users. In both cases
the periodic feedback can be interpreted as a disconnection of the system.

The study of the population dynamic in a compartmental model that describes
the growth and dispersal of two species among two patches, for example to model a
population of idealized insects, can also be addressed using this approach. In this case,
feedback is interpreted as the application of control techniques to avoid or to minimize
the pest’s impact on the patches by applying a systemic insecticide on the patch to
prevent insect infestations or by tacking sanitation measures, such as cleaning up and
destroying any materials that come from trees or shrubs that are already infested.

So, the result given in Corollary 3.4, N0 will represent the number of stages we can
perform without disconnecting or without applying the control so that the process is
stable. Moreover, although it is possible to use constant feedback, that would not be
interesting because it means that the control action is applied at all times. In the cases
that we propose we are interested in delaying that control action to the maximum. In
the next subsection we develop the third application and illustrate the procedure that
allows us to obtain the maximum number of steps to determine the period of feedback.

4.1. Numerical example

To illustrate the applicability of the results we consider a coupled compartmental
systems that describes the growth and dispersal of two species of insects among two
patches. To simplify the example we include all the individuals in two stages: immature
stage and adult stage. The state variable depends on the age of the individual and
it is into account the existence of migration between patches. The state vector is

given by x(·) =

(
x1(·)
x2(·)

)
, with xi(·) =

(
x1i(·)
x2i(·)

)
≥ 0, i = 1, 2, such that xij(·)

denotes population density of species in the stage i of species j at time t, and taking
u(·) = (ui(·))4

i=1 ≥ 0 as a control vector, the dynamic process is represented by

x11(k + 1) = (a11 + α1)x11(k) + d112x12(k) + u1(k)
x21(k + 1) = a21x21(k) + b11x11(k) + d212x22(k) + u2(k)
x12(k + 1) = (a12 + α2)x12(k) + d121x11(k) + u3(k)
x22(k + 1) = a22x22(k) + b12x12(k) + d221x21(k) + u4(k),

(7)

where ai,j is the rate at which each stage i of species settles on the patch j, b1,i is the
rate individuals of species i changing of age-stage, dkij is the dispersal rate from patch
j to patch i of species k and αi represents the rate of replenishment of the species i.

In our model, x(k + 1) = Ax(k) + Bu(k), the state coefficient matrix is a stage-
structured population matrix and B = I. For the purpose of generating a numerical
example, we consider the following state matrix satisfying all the hypotheses of the
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x11 with period N=9

x11 with period N=10
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0.4

0.6

0.8

1.0

1.2

1.4

Figure 1. Evolution of the state of the fist compartment using an N -periodic control feedback.

Theorem 3.3:

A =

(
A1 D1

D2 A2

)
=


0.8 0 0.1 0
0.2 0.3 0 0.03
0.6 0 0.9 0
0 0.7 0.2 0.97


The matrices A1 and A2 are stable but A is unstable. We construct the N -periodic
feedback u(k) = −F (k)x(k) as in (4) where F = AQl2.

This model predicts the number of individuals in each stage through time. The
application of the periodic feedback to system may have important effects on persis-
tence and extinction of one population or both populations and the correct method of
application is very important to get the best results.

Following the steps given in the theorem we obtain an optimal value for the period.
So, for N? = 9 the closed-loop system is asymptotically stable since Â0 = ΦÂ(9, 0)

has ρ(Â0) = 0.949 but if the period is N = 10, then the matrix is not stable, since in

this case ρ(Â0) = ρ(ΦÂ(5, 0)) = 1.04. The behaviour of the solution is showed in the
Figure 1.

5. Conclusions

We consider a compartmental system where each subsystem has communication with
the other subsystem. Using a feedback control, better performance can be achieved to
stabilize the closed-loop system. That performance improvement is due to the special
structure of the model. In addition, the proposed control strategy determines the
maximum number of stages in which the closed-loop system remains stable. This
information can be crucial when designing different control strategies in real processes
of very different fields: electrical engineering, electronic engineering, chemistry, biology
or medical engineering, where a periodic type of performance is required.
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