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Abstract

This paper considers zonotopic fault detection observer design in the finite-frequency domain for

discrete-time Takagi-Sugeno fuzzy systems with unknown-but-bounded disturbances and measure-

ment noise. We present a novel fault detection observer structure, which is more general than the

commonly used Luenberger form. To make the generated residual sensitive to faults and robust

against disturbances, we develop a finite-frequency fault detection observer based on generalized

Kalman-Yakubovich-Popov lemma and P -radius criterion. The design conditions are expressed

in terms of linear matrix inequalities. The major merit of the proposed method is that residual

evaluationa can be easily implemented via zonotopic approach. Numerical examples are conducted

to demonstrate the proposed method.

Keywords: Fault detection, Takagi-Sugeno fuzzy systems, Finite-frequency domain, Observer

design, Zonotopes.

1. Introduction

As an e↵ect way to improve safety and reliability, model-based fault detection has been in-

tensively studied in the past decades (Xu et al., 2014; Ren et al., 2017; Pan & Yang, 2017). The

main tasks of model-based fault detection are residual generation and residual evaluation(Li &

Yang, 2015; Basseville et al., 1993). Among the existing residual generation methods, observer
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and filter design are predominant, see e.g. Zhuang et al. (2016); Li et al. (2018). In practice,

model uncertainty, disturbance and measurement noise are inevitable. To avoid false alarms, an

appropriate threshold is necessary. However, as pointed out in (Khan & Ding, 2011), few work on

residual evaluation and threshold computation has been done. So far, how to design an appropriate

threshold for fault detection is still a challenge.

Based on a general assumption that the uncertainties are unknown but bounded, set-membership

method has been proved to be an e↵ective way to handle the e↵ect of uncertainties. In the lit-

erature, di↵erent geometries are used to bound the uncertainties, e.g. ellipsoid (Kurzhanski &

Varaiya, 2000), interval (Räıssi et al., 2012) and zonotope (Wang et al., 2018). Among the ex-

isting set-membership methods, due to the flexibility, less complexity and the high computation

e�ciency, the zonotopic approach has been widely studied in recent years (Le et al., 2013a). In

Alamo et al. (2005), segment minimization and volume minimization are used to minimize the size

of the obtained zonotopes. Based on Alamo et al. (2005), Le et al. (2013b) proposes P -radius

minimization which can achieve a good trade-o↵ between segment minimization and volume min-

imization. Tornil-Sin et al. (2014); Xu et al. (2014); Puig (2010) extend the zonotopic approach

to fault detection. The main idea behind these methods is to check the consistence between the

observed system behaviour and that predicted by a fault-free model. However, the aforementioned

references only consider the robustness to uncertainties, without taking the fault sensitivity into

consideration.

In Wang et al. (2017a), a preliminary result by combining the zonotopic method with fault

sensitivity analysis is presented. Note that Wang et al. (2017a) only considers sensor fault detection

in full frequency domain, and it may have conservatism. In practice, fault often emerges in finite-

frequency domain, e.g. incipient fault (Chen & Patton, 2012). By using weighting functions, Liu

et al. (2005) first extends the fault sensivity H� index into finite-frequency case. However, it is
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time-consuming to search for approximate weighting functions (Wang & Yang, 2008). Fortunately,

the generalized Kalman-Yakubovich-Popov (GKYP) lemma proposed in Iwasaki & Hara (2005)

provides an e↵ective way to handle the design problem in finite-frequency domain. Based on

the GKYP lemma, many researches about fault detection in finite-frequency domain have been

reported in recent years (Zhou et al., 2017; Wang et al., 2017b).

Many practical systems are nonlinear systems and the established linear system theory can

not be applied directly. Fortunately, Takagi-Sugeno (T-S) fuzzy system provides an e↵ective way

to describe a class of nonlinear systems and is a bridge between the linear system theory and

nonlinear systems (Tanaka & Wang, 2004). As a result, control and observer design based on T-S

fuzzy systems have attracted much attention, see e.g. Zhang et al. (2015); Chang et al. (2014);

Zhai et al. (2018) and the reference therein. Chibani et al. (2016) proposes a finite-frequency

unknown input observer design method for T-S fuzzy systems. This method is further extended

to fault detection in Chibani et al. (2017). Chadli & Karimi (2013) proposes an unknown input

observer design method to decouple the e↵ect of unknown inputs for T-S fuzzy systems. However,

restrictive rank conditions are required. Youssef et al. (2017) considers a proportional intergral

observer to reconstruct actuator and sensor faults for T-S fuzzy systems. However, Youssef et al.

(2017) only considers the point estimation, which is less representative when the uncertainties are

large. Unlike Chadli & Karimi (2013) and Youssef et al. (2017), we propagate unknown inputs

using zonotopic set-membership method. Consequently, the restrictive rank conditions can be

relaxed and the generated zonotopes can be used as admissible sets of states.

Note that the existing results on fault detection based on set-membership method only consider

the disturbance robustness, without considering the fault sensitivity. To the best of our knowledge,

only Wang et al. (2017a) considers fault sensitivity in zonotopic observer design. However, Wang

et al. (2017a) uses Luenberger observer form for linear system and does not take the finite-frequency
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characteristics of fault into consideration, which may lead to conservatism. In view of this, we

develop a zonotopic fault detection observer design method for T-S fuzzy systems in finite-frequency

domain. The main contributions of this paper are three-fold:

• We present a novel observer structure for discrete-time T-S fuzzy systems. Compared with

conventional Luenberger form in Xu et al. (2014); Wang et al. (2017a), the merit of the proposed

observer is that it can reduce conservatism and enhance performance by providing more design

parameters.

• Note that conventional set-membership fault detection methods, e.g. Zhang & Yang (2017);

Xu et al. (2014); Puig (2010), only consider disturbance robustness, without considering fault

sensitivity. To improve fault detection performance, we consider fault sensitivity by introducing

finite-frequency H� index.

• Note that conventional finite-frequency fault detection methods, e.g. Wang et al. (2017b); Chen

et al. (2015); Zhou et al. (2017), focus on residual generation, extra residual evaluation func-

tions are needed. By applying zonotopic approach, the proposed method can achieve residual

generation and residual evaluation simultaneously.

The remainder of this paper is organized as follows. Problem statement and some preliminaries

about zonotope are given in Section 2. Based on P -radius minimization and GKYP lemma, the

main results on zonotopic fault detection observer design in finite-frequency domain are presented

in Section 3. Numerical simulations are conducted in Section 4 to demonstrate the e↵ectiveness of

the proposed method. Finally, the conclusions are given in Section 5.

2. Problem statement and preliminaries

2.1. Preliminaries

In the following, we introduce some notations and definitions which will be used in this paper.
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Throughout this paper, we use the following notations: Rn and Rn⇥m denote the n dimensional

Euclidean space and the set of n ⇥m real matrices, respectively. j denotes the imaginary unit, I

denotes the identity matrix with compatible dimensions, k·k represents the L2-norm. For a matrix

A, AT stands for its transposition, A⇤ stands for its complex conjugate transpose, A? stands for its

orthogonal complement, and He(A) is used to denote He(A) := A+AT . For a symmetric matrix

P , P > 0 (P < 0) indicates that P is positive definite (negative definite). An asterisk ? is used to

represent a term induced by symmetry.

Definition 2.1: A zonotope Z 2 Rn is defined as follows

Z = hp,Hi = {p+Hb, b 2 Bm},

where p 2 Rn is the center of the zonotope, B = [�1, 1] is the unit interval, and H 2 Rn⇥m is the

generator matrix of zonotope Z.

Definition 2.2 (Le et al., 2013b): The P -radius of a zonotope Z is defined as

R
P

= max
z2Z

||z � p||2
P

= max
z2Z

(z � p)TP (z � p),

where P = P T > 0 is a symmetric and positive definite matrix.

Definition 2.3: The Minkowski sum � and linear product � in zonotope operation are defined

as follows:

hp1, H1i � hp2, H2i = hp1 + p2, [H1, H2]i,

L� hp,Hi = hLp, LHi.

The following lemmas are used in this paper.

Lemma 2.1 (Finsler’s Lemma) (Boyd et al., 1994): Letting x 2 Rn,L 2 Rn⇥n and U 2 Rn⇥m,

then the following statements are equivalent:

(i) xTL x < 0, 8x 6= 0,U ?x = 0;

(ii) U ?L (U ?)T < 0;
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(iii) 9Y 2 Rm⇥n such that L + U Y + Y TU T < 0;

where U ? is any matrix that satisfies U ?U = 0.

Lemma 2.2 (Wang et al., 2014): Given matrices B and Y, there exists a matrix X such that

XB = Y if and only if

rank

2

4 B

Y

3

5 = rank(Y).

Moreover, the general solution to XB = Y is given by

X = YB† + S(I � BB†)

where S is an arbitrary matrix.

2.2. System description

In this paper, we consider T-S fuzzy system, which is described by IF-THEN rules as follows:

Rule i: IF ⇠1k is M
i1,· · · and ⇠

gk

is M
ig

, THEN
8
<

:
x
k+1 = A

i

x
k

+B
i

u
k

+ F
i

f
k

+D
i

w
k

y
k

= Cx
k

+ Ev
k

, i = 1, 2, · · · , s, (1)

where x
k

2 Rn

x is the state vector, y
k

2 Rn

y is the output vector, u
k

2 Rn

u is the input vector,

f
k

is the actuator fault vector, w
k

2 Rn

w denotes the process disturbance and v
k

2 Rn

v denotes

the measurement noise. A
i

2 Rn

x

⇥n

x , B
i

2 Rn

x

⇥n

u , F
i

2 Rn

x

⇥n

f , D
i

2 Rn

x

⇥n

w , C 2 Rn

y

⇥n

x

and E 2 Rn

y

⇥n

v are known constant matrices, s is the number of IF-THEN rules, ⇠1
k

, · · · , ⇠
gk

are

measurable premise varibles and M
i1, · · · ,Mig

are the fuzzy sets.

The overall fuzzy system can be described as
8
><

>:

x
k+1 =

sP
i=1

h
i

(⇠
k

) {A
i

x
k

+B
i

u
k

+ F
i

f
k

+D
i

w
k

} ,

y
k

= Cx
k

+ Ev
k

,
(2)

where 8
>>>>><

>>>>>:

⇠
k

= [⇠1k, ⇠2
k

, · · · , ⇠
gk

]T ,

h
i

(⇠
k

) =
⇣
i

(⇠
k

)P
s

i=1 ⇣i(⇠k)
,

⇣
i

(⇠
k

) =
gQ

j=1
M

ij

(⇠
j

k

).

(3)
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Herein, the term M
ij

(⇠
j

k

) represents the grade of membership of ⇠
j

k

in M
ij

. Without loss of

generality, it is assumed that ⇣
i

(⇠
k

) � 0, i = 1, 2 · · · , s. Then, the weighting functions h
i

(⇠
k

), i =

1, · · · , s satisfy: 8
><

>:

sP
i=1

h
i

(⇠
k

) = 1,

h
i

(⇠
k

) � 0, i = 1, · · · , s.
(4)

For the sake of brevity, we rewrite system (2) as follows:
8
<

:
x
k+1 = A(h)x

k

+B(h)u
k

+ F (h)f
k

+D(h)w
k

,

y
k

= Cx
k

+ Ev
k

,
(5)

where

A(h) =
sX

i=1

h
i

(⇠
k

)A
i

, B(h) =
sX

i=1

h
i

(⇠
k

)B
i

, (6a)

F (h) =
sX

i=1

h
i

(⇠
k

)F
i

, D(h) =
sX

i=1

h
i

(⇠
k

)D
i

. (6b)

In this paper, we assume that the process disturbance, measurement noise and initial state are

all unknown but bounded as follows:

w
k

2 W = h0, H
w

i, v
k

2 V = h0, H
v

i, x(0) 2 X0 = hp0, H0i, (7)

where p0 denotes the center of zonotope X0, Hw

, H
v

and H0 are the corresponding known generator

matrices of zonotopes.

Remark 2.1: To simplify the computation, W and V are assumed to be centered at the origin.

Note that, if this assumption is not satisfied, a change of coordinates can be used.

2.3. Problem statement

The main task of this paper is to design a zonotopic observer in finite-frequency domain. First,

motivated by Wang et al. (2012) and Wang et al. (2015), we construct the following fault detection

observer: 8
>><

>>:

�
k+1 = TA(h)x̂

k

+ TB(h)u
k

+ L(h)(y
k

� Cx̂
k

),

x̂
k

= �
k

+Ny
k

,

r
k

= y
k

� Cx̂
k

,

(8)
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where x̂
k

2 Rn

x is the state estimation vector, �
k

2 Rn

x is intermediate variable, r
k

2 Rn

y is the

residual vector. T 2 Rn

x

⇥n

x , N 2 Rn

x

⇥n

y and L(h) 2 Rn

y

⇥n

x are the matrices to be designed.

L(h) has the following form:

L(h) =
sX

i=1

h
i

(⇠
k

)L
i

, (9)

Besides, T and N should be designed to satisfy the following equation:

T +NC = I
n

x

. (10)

According to Lemma 2.2, the general solution to (10) is

T = C̄⌘1 + S(I
n

x

+n

y

� C̄C̄†)⌘1, (11a)

N = C̄⌘2 + S(I
n

x

+n

y

� C̄C̄†)⌘2, (11b)

where S 2 Rn

x

⇥(n
x

+n

y

) is a predetermined matrix and matrices C̄ 2 R(n
x

+n

y

)⇥n

x , ⌘1 2 R(n
x

+n

y

)⇥n

x

and ⌘2 2 R(n
x

+n

y

)⇥n

y are

C̄ =

2

4Inx

C

3

5
†

, ⌘1 =

2

4Inx

0

3

5 , ⌘2 =

2

4 0

I
n

y

3

5 , (12)

Remark 2.2: Note that if we choose T = I
n

x

and N = 0, observer (8) reduces to the commonly

used Luenberger form, e.g. in Xu et al. (2014); Wang et al. (2017a). It is obvious that the proposed

structure can provide more design degrees of freedom by introducing matrices T and N .

To analyze and synthesize the observer (8), we define the following state estimation error:

e
k

= x
k

� x̂
k

. (13)

Subtracting (8) from (5), we obtain the following error dynamic system:

8
<

:
e
k+1 = [TA(h)� L(h)C]e

k

+ TF (h)f
k

+ TD(h)w
k

� L(h)Ev
k

�NEv
k+1,

r
k

= Ce
k

+ Ev
k

.
(14)
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Inspired by Wang et al. (2017b), we split error dynamic system (14) into three subsystems as

follows: 8
<

:
e
d

k+1
= [TA(h)� L(h)C]e

d

k

+ TD(h)w
k

� L(h)Ev
k

�NEv
k+1,

r
d

k

= Ce
d

k

+ Ev
k

,
(15)

8
<

:
e
f

k+1
= [TA(h)� L(h)C]e

f

k

+ TF (h)f
k

,

r
f

k

= Ce
f

k

,
(16)

8
<

:
ẽ
f

k+1
= [TA(h)� L(h)C]ẽ

f

k

+ TF (h)f̃
k

,

r̃
f

k

= Cẽ
f

k

,
(17)

where

e
k

= e
f

k

+ e
d

k

+ ẽ
f

k

,

with e
f

(0) = 0, e
d

(0) = e(0), ẽ
f

(0) = 0 and f
k

is split as

f
k

= f
k

+ f̃
k

such that

ej#w
1X

k=0

(e
f

k+1
� ej#1e

f

k

)(e
f

k+1
� ej#2e

f

k

)⇤  0, (18)

where #
w

= (#2 � #1)/2, #1 and #2 are known scalars, which describe the interested frequency

range in fault sensitivity analysis.

Remark 2.3: According to Iwasaki et al. (2005), inequality (18) is the time-domain interpretation

of frequency range #1 ⇠ #2. In other words, e
f

k

belongs to the interested frequency range #1 ⇠ #2.

Similar statement can be found in Ding & Yang (2010) and Wang et al. (2017b).

Motivated by the definitions given in Wang et al. (2017b), we define the finite-frequency H�

index for the purpose of fault detection as follows.

Definition 2.4: The error system in (14) is said to have a finite-frequency H� index �, if its

subsystem (16) satisfies the following inequality

1X

k=0

r
f

T

k

r
f

k

� �2
1X

k=0

f
T

k

f
k

, (19)
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where f
k

is a part of f
k

such that (18) holds.

Remark 2.4: The reason for splitting the error dynamic system (14) to three subsystems are

two-fold. First, the initial condition of fault subsystem is zero. Thus, Definition 2.4 does not

require the zero initial condition assumption, which is necessary in Ding & Yang (2010) and Li &

Yang (2014). Second, e
k

may not belong to the specified finite-frequency domain. In view of this,

we split error dynamic system (14) into three subsystems such that e
f

k

in fault subsystem (16)

belongs to finite-frequency range.

On the other hand, the e↵ect of uncertainties on residual is described by the size of zonotopes.

According to (5) and (10), we have

x
k+1 =(T +NC)x

k+1 + L(h)(y
k

� Cx
k

� Ev
k

)

=(T +NC)[A(h)x
k

+B(h)u
k

+ F (h)f
k

+D(h)w
k

] + L(h)(y
k

� Cx
k

� Ev
k

)

=[TA(h)� L(h)C]x
k

+ TB(h)u
k

+ TF (h)f
k

+ L(h)y
k

+Ny
k+1 + TD(h)w

k

�L(h)Ev
k

�NEv
k+1. (20)

Considering the state x
k

in (5) is bounded by a zonotope x
k

2 X
k

= hp
k

, H
k

i, then, according to

(7) and (20), we have

x
k+1 2 X

k+1 = hp
k+1, Hk+1i

= [TA(h)� L(h)C]� hp
k

, H
k

i � TB(h)u
k

� TF (h)f
k

� L(h)y
k

�Ny
k+1

� TD(h)� h0, H
w

i � L(h)E � h0, H
v

i �NE � h0, H
v

i. (21)

Using the zonotopic operation defined in Definition 2.3, the center p
k+1 and the generated matrix

H
k+1 of X

k+1 are calculated as

p
k+1 =TA(h)p

k

+ TB(h)u
k

+ TF (h)f
k

+ L(h)(y
k

� Cp
k

) +Ny
k+1, (22a)

H
k+1 =[(TA(h)� L(h)C) #

l

(H
k

) TD(h)H
w

LEH
v

NEH
v

]. (22b)
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Then, the corresponding residual zonotope r
k+1 2 R

k+1 = hpr
k+1, H

r

k+1i has the following form:

pr
k+1 = y

k+1 � Cp
k+1, H

r

k+1 = CH
k+1. (23)

Substituting (22) into (23), (23) yields

pr
k+1 = (I � CN)y

k+1 � CL(h)y
k

� (CTA(h)� CL(h)C)p
k

� CTB(h)u
k

� CTF (h)f
k

, (24a)

Hr

k+1 = [C(TA(h)� L(h)C) #
l

(H
k

) CTD(h)H
w

CLEH
v

CNEH
v

]. (24b)

Remark 2.5: Note that the orders of zonotope X
k

and R
k

increase at each integration step, the

computation load becomes quickly prohibitive. Thus, to reduce the computational load, the re-

duced operator #
l

(·) from Combastel (2015) is adopted. For more details, please refer to Combastel

(2015).

We now present the zonotopic fault detection observer design problem, as follows.

Zonotopic fault detection observer design : Given the finite frequency ranges (i.e. #1 and

#2 ), we aim to design fault detection observer (8) for T-S fuzzy system (5) such that

(i) The error system (15) is asymptotically stable.

(ii) The zonotopic observer in (8) is robust to uncertainties, more specifically, the P -radius of

zonotopes generated by (14) is minimized.

(iii) The error system in (14) has a finite-frequency H� index �.

To facilitate the observer design, the following lemma is presented and will be used in the later

development.

Lemma 2.3 : Assuming that system (16) is stable and given a constant � > 0, system (16) has

a finite-frequency performance �, if there exist matrices P (h) = P (h)T and Q = QT > 0 for any

h := (h1(⇠(k)), · · · , hs(⇠(k))), h+ := (h1(⇠(k + 1)), · · · , h
s

(⇠(k + 1))) such that

2

4TA(h)� L(h)C TF (h)

I 0

3

5
T

⌅

2

4TA(h)� L(h)C TF (h)

I 0

3

5+

2

4C 0

0 I

3

5
T

⇧

2

4C 0

0 I

3

5  0, (25)
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where

⇧ =

2

4�I 0

0 �2I

3

5

and

(i) for the low-frequency range |✓|  #
l

, we have

⌅ =

2

4�P (h+) Q

Q P (h)� 2cos#lQ

3

5 , (26)

(ii) for the middle-frequency range #1  ✓  #2, we have

⌅ =

2

4�P (h+) ej#cQ

e�j#

cQ P (h)� 2cos#
w

Q

3

5 , (27)

where

#
c

= (#1 + #2)/2, #
w

= (#2 � #1)/2,

(iii) for the high-frequency range |✓| � #
h

, we have

⌅ =

2

4�P (h+) �Q

�Q P (h)� 2cos#
h

Q

3

5 . (28)

Proof: First, we consider the middle-frequency case. Multiplying the inequality (25) by [eT
f

k

, f
T

k

]

from the left and by its transpose from the right, we have

eT
f

k

P (h)e
f

k

� eT
f

k+1
P (h+)e

f

k+1
+ �2f

T

k

f
k

� rT
f

k

r
f

k

+ tr(Q(ej#ce
f

k

e
f

T

k+1
+ e�j#

ce
f

k+1
e
f

T

k

� 2cos#
w

e
f

k

eT
f

k

))  0. (29)

Taking the summation from k = 0 to 1, in view of e
f

(0) = 0 and lim
k!1e

f

k

= 0 (due to stability

of (16)), we have

�2
1X

k=0

f
T

k

f
k

�
1X

k=0

rT
f

k

r
f

k

+ tr(QS)  0, (30)

where

S :=
1X

k=0

(ej#ce
f

k

eT
f

k+1
+ e�j#

ce
f

k+1
eT
f

k

� 2cos#
w

e
f

k

eT
f

k

).
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It can readily verify that S is equivalent to the negative of the left-hand side of (18), and thus, S

is positive semidefinite. Since Q > 0, the second term on the left-hand side of (30) is non-negative

when (18) is satisfied. Hence, (19) is satisfied. Similarly, the results follow by choosing #2 := #
l

and #1 := �#
l

for the low-frequency case and #2 := 2⇡� #
h

and #1 := �#
h

for the high-frequency

case. ⌅

Remark 2.6: Note that if we set Q = 0 in Lemma 2.3, we will get the result in the full-frequency

domain.

3. Main results

3.1. Zonotopic fault detection observer design

In this subsection, we present a design method for zonotopic fault detection observer (8). Based

on GKYP lemma and P -radius minimization method in Le et al. (2013b), we present the following

theorem:

Theorem 3.1: For given scalars � > 0, the designed zonotopic observer (8) is robust against

disturbance and has a finite-frequency performance �, if there exist a scalar  > 0, matrices

Q = QT > 0 2 Rn

x

⇥n

x , P
fi

= P T

fi

2 Rn

x

⇥n

x , P
di

= P T

di

> 0 2 Rn

x

⇥n

x , G 2 Rn

x

⇥n

x , W
i

2 Rn

x

⇥n

y

and Y 2 Rn

x

⇥(n
x

+n

y

) for all i, j = 1, 2 · · · , s such that

P
di

� I
n

x

, (31)

2

664

�̃11 ? ?

�̃21 �̃22 ?

�̃31 �̃32 �P
fj

�G�GT

3

775 < 0, (32)

2

666666664

�̃11 ? ? ? ?

�̃21 �̃22 ? ? ?

�̃31 0 �̃33 ? ?

�̃41 0 0 �̃44 ?

�̃51 �̃52 �̃53 �̃54 P
dj

�G�GT

3

777777775

< 0, (33)
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where

�̃11 = P
fi

� 2cos#
w

Q� CTC +He{↵1(GC̄⌘1Ai

+ Y (I � C̄C̄†)⌘1Ai

�W
i

C)},

�̃21 = V (GC̄⌘1Ai

+ Y (I � C̄C̄†)⌘1Ai

�W
i

C) + (↵1GC̄⌘1Fi

+ Y (I � C̄C̄†)⌘1Fi

)T ,

�̃22 = �2I +He{V GC̄⌘1Fi

+ Y (I � C̄C̄†)⌘1Fi

},

�̃31 = ej#cQ� ↵1GT +GC̄⌘1Ai

+ Y (I � C̄C̄†)⌘1Ai

�W
i

C,

�̃32 = �GTV T +GC̄⌘1Fi

+ Y (I � C̄C̄†)⌘1Fi

,

�̃11 = ��P
di

+He{↵2[GC̄⌘1Ai

+ Y (I � C̄C̄†)⌘1Ai

�W
i

C]},

�̃21 = [↵2GC̄⌘1Di

H
w

+ Y (I � C̄C̄†)⌘1Di

H
w

]T ,

�̃22 = �HT

w

DT

i

D
i

H
w

, �̃31 = (↵2Wi

EH
v

)T , �̃33 = �HT

v

ETEH
v

,

�̃41 = [↵2GC̄⌘2EH
v

+ Y (I
n

x

+n

y

� C̄C̄†)⌘2EH
v

]T , �̃44 = �HT

v

ETEH
v

,

�̃51 = �↵2GT +GC̄⌘1Ai

+ Y (I � C̄C̄†)⌘1Ai

�W
i

C,

�̃52 = GC̄⌘1Di

H
w

+ Y (I � C̄C̄†)⌘1Di

H
w

, �̃53 = W
i

EH
v

,

�̃54 = GC̄⌘2EH
v

+ Y (I
n

x

+n

y

� C̄C̄†)⌘2EH
v

.

with tunable parameters ↵1,↵2 and matrix V 2 Rn

f

⇥n

x .

To maximaze theH� index � and minimize the P -radius of zonotope, the following optimization

probelm should be solved:

max
s.t.

� + 
(31)�(33)

(34)

If (34) is solvable, then the design parameters of (8) can be obtained from

L
i

= G�1W
i

, i = 1, 2, · · · , s, (35)

T = C̄⌘1 +G�1Y (I
n

x

+n

y

� C̄C̄†)⌘1, (36)

N = C̄⌘2 +G�1Y (I
n

x

+n

y

� C̄C̄†)⌘2. (37)

Proof: For the sake of clarity, we divide the proof into two parts: su�cient H� fault sensitivity

condition and su�cient stability and disturbance attenuation condition.

A. Fault sensitivity condition

The interested frequency range is #1 ⇠ #2, according to Lemma 2.3, subsystem (16) satisfies

(19), i.e. error system (14) has a finite-frequency H� performance index �, if inequality (25) is

satisfied.

14



Substitute

⇧ =

2

4�I 0

0 �2I

3

5 ,⌅ =

2

4�P
f

(h+) ej#cQ

e�j#

cQ P
f

(h)� 2cos#
w

Q

3

5 (38)

into (25), then inequality (25) becomes

2

4�11 ?

�21 �22

3

5 < 0, (39)

where

�11 = �[TA(h)� L(h)C]TP
f

(h+)[TA(h)� L(h)C] + e�j#

cQ[TA(h)� L(h)C]

+[TA(h)� L(h)C]T ej#cQ+ P
f

(h)� 2cos#
w

Q� CTC,

�21 = �[TF (h)]TP
f

(h+)[TA(h)� L(h)C] + [TF (h)]T ej#cQ,

�22 = �[TF (h)]TP
f

(h+)[TF (h)] + �2I.

Note that it is not a trivial work to solve (39) due to the existence of equation constraint (10)

and couplings between L(h) and P
f

(h+). To facilitate the design, we transform inequalities (39)

into linear matrix inequalities. First, we rewrite (39) as

⇥
f

+ A T

f

ej#cQT

f

+ e�j#

cQ
f

A
f

� A T

f

P
f

(h+)A
f

< 0, (40)

where

⇥
f

=

2

4Pf

(h)� 2cos#
w

Q� CTC ?

0 �2I

3

5 ,A
f

=
h
TA(h)� L(h)C TF (h)

i
,Q

f

=

2

4Q

0

3

5 ,

then, it follows

h
I A T

f

i
2

4 ⇥
f

e�j#

cQ
f

ej#cQT

f

�P
f

(h+)

3

5

2

4 I

A
f

3

5 < 0. (41)

By defining

U
f

=

2

4A T

f

�I

3

5 ,U ?
f

=
h
I A T

f

i
, (42)

and according to Lemma 2.1, a su�cient and necessary condition of (41) is that there exists a

matrix Y
f

such that 2

4 ⇥
f

e�j#

cQ
f

ej#cQT

f

�P
f

3

5+ U
f

Y
f

+ Y T

f

U T

f

< 0. (43)

15



To remove the couplings among matrix Y
f

, we define

Y
f

=
h
↵1GT (V G)T GT

i
, (44)

By substituting (42) and (44) into (43), we have

2

664

⌦11 ? ?

⌦21 ⌦22 ?

⌦31 ⌦32 ⌦33

3

775 < 0, (45)

where

⌦11 = P
f

(h)� 2cos#
w

Q� CTC +He{↵1G[TA(h)� L(h)C]},

⌦21 = V G[TA(h)� L(h)C] + {↵1GTF (h)}T ,

⌦22 = �2I +He{V GTF (h)},

⌦31 = ej#cQ� ↵1GT +G[TA(h)� L(h)C],

⌦32 = �(V G)T +GTF (h),

⌦33 = �P
f

(h+)�G�GT .

By letting W (h) = GL(h) and combining (6) and (9), according to Tanaka & Wang (2004), the

condition (45) is equivalent to (32).

B. Disturbance attenuation condition

In order to achieve a good accuracy, the method presented in Le et al. (2013b) is adopted here.

The main idea is to compute a matrix P
d

(h) = P
d

(h)T > 0 such that the P -radius of zonotope

(22) is minimized.

The guaranteed state estimation at time instant k is the zonotope X
k

, and its P -radius is

denoted by R
P

k

. A criterion is established as follows:

R
P

k+1 < �R
P

k

+ ✏, with � 2 (0, 1), (46)

where ✏ is a positive constant, which permits one to bound the influence of disturbance w
k

and

measurement noises v
k

and v
k+1, as follows

✏ = max
b12Bn

w

||D(h)H
w

b1||2 + max
b22Bn

v

||EH
v

b2||2 + max
b32Bn

v

||EH
v

b3||2. (47)
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where b1 2 Rn

w , b2 2 Rn

v and b3 2 Rn

v are arbitrary vectors which belong to hypercube Bn

w ,Bn

v

and Bn

v , respectively.

Substituting (47) into (46), we have

max
b̂2Bn

x

+n

w

+2n
v

||H
k+1b̂||2

P

< � max
b2Bn

x

||H
k

b||2
P

+ max
b12Bn

w

||D(h)H
w

b1||2 + max
b22Bn

v

||EH
v

b2||2

+ max
b32Bn

v

||EH
v

b3||2. (48)

For all b̂, b, b1, b2 and b3, (48) is implied by

||H
k+1b̂||2

P

< �||H
k

b||2
P

+ ||D(h)H
w

b1||2 + ||EH
v

b2||2 + ||EH
v

b3||2. (49)

Considering ✓ = H
k

b and substituting (22) into (49), we have

2

666664

✓

b1

b2

b3

3

777775

T

A T

d

P
d

(h+)A
d

2

666664

✓

b1

b2

b3

3

777775
�

2

666664

✓

b1

b2

b3

3

777775

T

⌦

2

666664

✓

b1

b2

b3

3

777775
< 0, (50)

where

A
d

=
h
TA(h)� L(h)C TD(h)H

w

LEH
v

NEH
v

i
,

⌦ =

2

666664

�P (h) 0

? HT

w

DT (h)D(h)H
w

? ?

? ?

0 0

0 0

HT

v

ETEH
v

0

? HT

v

ETEH
v

3

777775
.

Then, we have

2

666664

 11 ? ? ?

 21  22 ? ?

 31  32  33 ?

 41  42  43  44

3

777775
< 0, (51)
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where

 11 = [TA(h)� L(h)C]TP
d

(h+)[TA(h)� L(h)C]� �P
d

(h),

 21 = [TD(h)H
w

]TP
d

(h+)[TA(h)� L(h)C],

 22 = [TD(h)H
w

]TP
d

(h+)[TD(h)H
w

]�HT

w

DT (h)D(h)H
w

,

 31 = (LEH
v

)TP
d

(h+)[TA(h)� L(h)C],

 32 = (LEH
v

)TP
d

(h+)[TD(h)H
w

], 33 = (LEH
v

)TP
d

(h+)LEH
v

�HT

v

ETEH
v

,

 41 = (NEH
v

)TP
d

(h+)[TA(h)� L(h)C], 42 = (NEH
v

)TP
d

(h+)[TDH
w

],

 43 = (NEH
v

)TP
d

(h+)(LEH
v

), 44 = (NEH
v

)TP
d

(h+)(NEH
v

)�HT

v

ETEH
v

.

Similarly, rewrite (51) as

⇥
d

+ A T

d

P
d

(h+)A
d

< 0, (52)

where

⇥
d

=

2

666664

��P
d

(h) ? ? ?

0 �HT

w

DT (h)D(h)H
w

? ?

0 0 �HT

v

ETEH
v

?

0 0 0 �HT

v

ETEH
v

3

777775
,

A
d

=
h
TA(h)� L(h)C TD(h)H

w

LEH
v

NEH
v

i
,

and further rewrite as

h
I A T

d

i
2

4⇥d

0

0 P
d

(h+)

3

5

2

4 I

A
d

3

5 < 0. (53)

Define

U
d

=

2

4A T

d

�I

3

5 ,U ?
d

=
h
I A T

d

i
, (54)

according to Lemma 2.1, (53) equals to

2

4⇥d

0

0 P
d

(h+)

3

5+ U
d

Y
d

+ Y T

d

U T

d

< 0. (55)

By choosing

Y
d

=
h
↵2GT 0 0 0 GT

i
(56)
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and substituting (54) and (56) into (55), we have

2

666666664

�11 ? ? ? ?

�21 �22 ? ? ?

�31 0 �33 ? ?

�41 0 0 �44 ?

�51 �52 �53 �54 �55

3

777777775

< 0, (57)

where

�11 = ��P
d

(h) +He{↵2G[TA(h)� L(h)C]},�21 = (↵2GTD(h)H
w

)T ,

�22 = �HT

w

DT (h)D(h)H
w

,�31 = (↵2GL(h)EH
v

)T ,�33 = �HT

v

ETEH
v

,

�41 = (↵2GNEH
v

)T ,�44 = �HT

v

ETEH
v

,�51 = �↵2GT +G[TA(h)� L(h)C],

�52 = GTD(h)H
w

,�53 = GL(h)EH
v

,�54 = GNEH
v

,�55 = P
d

(h+)�G�GT .

By letting W (h) = GL(h) and combining the definitions in (6) and (9), according to Tanaka &

Wang (2004), the condition (57) is equivalent to (33).

At infinity, condition (46) becomes R
P1 = �R

P1 + ✏, then, we have R
P1 = ✏/(1 � �). Con-

sidering an ellipsoid E = {x : xTP
d

(h)x  ✏/(1 � �)} which can be normalized to E = {x :

xTP
d

(h) (1��)
✏

x  1}. This ellipsoid is related to the P -radius of the zonotopic guaranted state esi-

mation at infinity. To minimize the P -radius of the zonotope, we can find the ellipsoid of the small-

est diameter (Boyd et al., 1994). More specifically, to find a matrix P
d

(h) = P
d

(h)T > 0 2 Rn

x

⇥n

x

and a constant  such that

max
 ,P

d

(h),�
 subject to

P
d

(h)(1� �)

✏
�  I

n

x

, > 0. (58)

Herein, we define  =  ✏

1�� , then (58) can be derived from (31). ⌅

Remark 3.1: We would like to emphasize that, in practice, observer (8) should be implemented

as follows: 8
>><

>>:

�
k

= TA(h�)x̂
k�1 + TB(h�)u

k�1 + L(h�)(y
k�1 � Cx̂

k�1),

x̂
k

= �
k

+Ny
k

,

r
k

= y
k

� Cx̂
k

,

Herein, h
k�1 denotes the weighting function at time instant k � 1. As y

k

, y
k�1 and h

k�1 are all

available, observer (8) is feasible. In other words, the time instant k+1 used in theoretical analysis

19



is actually k in the implementation. Moreover, we would like to emphasize that the computational

load of parameters T, L
i

, i = 1, 2, · · · , s and N are zero, since they are computed o↵-line. Thus, the

computational load of observer consists of two parts. First, since A(h�) =
sP

i=1
h
i

(⇠
k�1)Ai

, B(h�) =

sP
i=1

h
i

(⇠
k�1)Bi

and L(h�) =
sP

i=1
h
i

(⇠
k�1)Li

, the computational complexity of A(h�), B(h�) and

L(h�) is (2s� 1)(n2
x

+ n
x

n
u

+ n
x

n
y

). Second, as A(h�), B(h�), L(h�), y
k�1, x̂k�1, uk�1 y

k

and x̂
k

are available, the computational complexity of r
k

is n
x

(6n
x

+2n
u

+2n
y

�2)+n
y

(2n
x

�1)+5n
y

n
x

.

Therefore, the computational load of the proposed observer is O
�
n2
x

�
, which is not very high.

3.2. Zonotopic fault detection decision scheme

Combining (14) and (24), we have that when fault free case 0 2 R
k

, 8k 2 N
k

holds. When

fault occurs, the center pr
k

of zonotope R
k

will deviate, and condition 0 2 R
k

, 8k 2 N
k

will not be

guaranteed. Thus, we develop the following fault detection logic
8
<

:
0 2 R

k

fault� free,

0 /2 R
k

fault� alarm.
(59)

As mentioned in Wang et al. (2017a), to implement this logic, the residual zonotope can be

characterized in a halfspace representation. Therefore, the zonotopic set contains a sequence of

linear constraints, which can be formulated as R
k

= {r
k

2 Rn

y |⌃r
k

 %}, where ⌃ and % denote

a matrix and a vector from the halfspace representation of the residual zonotope. Therefore, this

logic involves solving a constraint satisfaction problem. If the problem is feasible, then the origin

of the coordinate is included in the residual zonotope. Otherwise, it is not included.

Remark 3.2: The overall block diagram for the proposed zonotopic fault detection approach is

depicted in Figure 3.2. Note that the generated envelop of residual zonotopes can be directly

applied to residual evaluation. Thus, compared with the conventional fault detection methods Li

et al. (2015); Chen et al. (2015); Zhou et al. (2017); Chadli et al. (2013), the main advantage of

the proposed method lies in that it gets rid of the di�culty of designing extra residual evaluation

function or threshold generator.
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Figure 1: The block diagram of the proposed fault detection approach

4. Simulation results

In this section, two examples are simulated to illustrate the performance of the proposed

method.

4.1. Example 1

To demonstrate the superiority of the proposed method, a benchmark from Zhang & Yang

(2017) is considered.

8
>>><

>>>:

ẋ(t) =

2

4 0 1

�k �1

3

5x(t) +

2

40

1

3

5w(t) +

2

41

1

3

5 f(t)

y(t) =
h
1 0

i
x(t)

, (60)

Consider k = k0(1 + ⇠) with k0 = 1 and |⇠|  1. By applying the Euler’s discretization method

with fixed step T = 0.1s, the system (60) can be modeled as follows

Rule 1: IF ⇠
k

is about 1, THEN

8
<

:
x
k+1 = A1x

k

+D1w
k

+ F1f
k

y
k

= Cx
k

,
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Rule 2: IF ⇠
k

is about -1, THEN
8
<

:
x
k+1 = A2x

k

+D2w
k

+ F2f
k

y
k

= Cx
k

,

where

A1 =

2

4 1 0.1

�0.2 0.9

3

5 , A2 =

2

41 0.1

0 0.9

3

5 , D1 = D2 =

2

4 0

0.1

3

5 , F1 = F2 =

2

40.1

0.1

3

5 , C =
h
1 0

i
,

and the membership functions h1(⇠
k

) and h2(⇠
k

) are

h1(⇠
k

) =
1 + ⇠

k

2
, h2(⇠

k

) =
1� ⇠

k

2
.

The term of disturbance used in Zhang & Yang (2017) is 0.2 + 0.1|cos(0.05k)|. For comparison,

the initial state and the uncertainty are assumed to be bounded by zonotope X = hP0, H0i and

zonotope W = hP
w

, H
w

i, respectively, with

P0 =

2

40

0

3

5 , H0 =

2

40.01 0

0 0.01

3

5 , P
w

= 0.25, H
w

= 0.05.

The interested frequency range in fault sensitivity analysis is chosen as ✓
f

2 [0, 0.1], by setting

� = 0.7,↵1 = �0.9,↵2 = 0.3, V = �8F T

1 ,

and solving the optimization problem (34). Then, we have  = 0.1339,� = 0.6857 with the

following parameters

L1 =

2

4 6.5619

�7.0417

3

5 , L2 =

2

4 6.5619

�6.8417

3

5 , T =

2

4 6.6947 0

�6.5579 1.0000

3

5 , N =

2

4�5.6947

6.5579

3

5 .

In the simulation, we consider a small additive actuator fault as follows:

f
k

=

8
<

:
0, k  100,

0.05, k � 100,

and the premise variable is borrowed from Zhang & Yang (2017) that ⇠ = 0.5.

The residual obtained under the proposed method and the method of Zhang & Yang (2017)

are depicted in Figure 2. When small fault occurs, it is obvious that the response to fault by the
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Figure 2: The generated envelop of residual r
k

by the proposed method and that by Zhang & Yang (2017)

proposed method is faster than that by Zhang & Yang (2017), and the relation that 0 /2 R
k

can not

be held always by the method in Zhang & Yang (2017). From Figure 2, we can also find that the

proposed method is more sensitive to fault than that in Zhang & Yang (2017). The reason is that

the frequency characteristics of fault are considered in this paper, while they are not considered in

Zhang & Yang (2017).

4.2. Example 2

The proposed method in this paper will be futher validated by the example adopted from

Rotondo et al. (2016)

8
<

:
x
k+1 = A(⇠

k

)x
k

+B(⇠
k

)u
k

+ F (⇠
k

)f
k

+D(⇠
k

)w
k

,

y
k

= Cx
k

+ Ev
k

.
(61)
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where

A(⇠
k

) =

2

664

0.3 0.2 ⇠2
k

0.6 ⇠1k 0.1

2⇠2k 0.3 0.5

3

775 , B(⇠
k

) =

2

664

0.8 + ⇠1k 0

0 1

0 0

3

775 , F (⇠
k

) = B(⇠
k

),

C =

2

41 0 0

0 1 0

3

5 , D =

2

664

1 0 0

0 1 0

0 0 1

3

775 , E =

2

41 0

0 1

3

5 .

Since ⇠1, ⇠2 2 [0.1, 0.3] for all k instants, the following fuzzy models can be used to model this

nonlinear system:

Rule 1: IF ⇠1k = 0.1 and ⇠2k = 0.1, THEN

x
k+1 = A1x

k

+B1u
k

+ F1f
k

+D1d
k

,

Rule 2: IF ⇠1k = 0.1 and ⇠2k = 0.3, THEN

x
k+1 = A2x

k

+B2u
k

+ F2f
k

+D2d
k

,

Rule 3: IF ⇠1k = 0.3 and ⇠2k = 0.1, THEN

x
k+1 = A3x

k

+B3u
k

+ F3f
k

+D3d
k

,

Rule 4: IF ⇠1k = 0.3 and ⇠2k = 0.3, THEN

x
k+1 = A4x

k

+B4u
k

+ F4f
k

+D4d
k

.

In the simulation, the premise variables ⇠1k and ⇠2k are shown in Figure 3 and the membership

functions for rules 1,2,3 and 4 are

⇢1(⇠
k

) =
(0.3� ⇠1k)(0.3� ⇠2k)

0.04
, ⇢2(⇠

k

) =
(0.3� ⇠1k)(⇠2k � 0.1)

0.04
,

⇢3(⇠
k

) =
(⇠1k � 0.1)(0.3� ⇠2k)

0.04
, ⇢1(⇠

k

) =
(⇠1k � 0.1)(⇠2k � 0.1)

0.04
.
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Figure 3: Premise variables

The initial state and the uncertainties are assumed to be bounded by zonotope X = hP0, H0i,

zonotope W = h0, H
w

i and zonotope V = h0, H
v

i respectively, with

P0 =

2

664

0

0

0

3

775 , H0 =

2

664

0.1 0 0

0 0.1 0

0 0 0.1

3

775 , H
w

=

2

664

0.02 0 0

0 0.02 0

0 0 0.02

3

775 , H
v

=

2

40.01 0

0 0.01

3

5 .

The interested frequency range in fault sensitivity analysis is chosen as ✓
f

2 [0, 0.1], by setting

� = 0.9,↵1 = �0.55,↵2 = �0.9, V = �19F T

1 ,

and solving the optimization problem (34). Then, we have  = 0.0339,� = 0.5095 with the

following parameters

L1 =

2

664

�0.4399 0.1864

0.5330 �0.6834

�0.0241 0.1893

3

775 , L2 =

2

664

�0.4268 0.1921

0.5324 �0.6852

0.3614 0.2021

3

775 , L3 =

2

664

�0.4310 0.2078

0.5349 �0.5040

�0.0269 0.1605

3

775 ,

L4 =

2

664

�0.4165 0.2142

0.5340 �0.5056

0.3600 0.1719

3

775 , T =

2

664

0.9440 0.1049 0

�0.0634 0.9528 0

�0.1928 �0.1649 1.0000

3

775 , N =

2

664

0.0560 �0.1049

0.0634 0.0472

0.1928 0.1649

3

775 .
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To demostrate the applicability of the proposed method, two fault scenarios are considered:

Scenario 1: abrupt fault

f
k

=

8
><

>:

h
0 0

i
T

, k < 16,
h
0.1 0.2

i
T

, k � 16,
(62)

Scenario 2: time-varying fault

f
k

=

8
><

>:

h
0 0

i
T

, k < 16,
h
0.2 + 0.1sin(k � 5) 0

i
T

, k � 16,
(63)

(a) With H� (b) Without H�

Figure 4: Comparision of residual zonotopes for abrupt fault
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(b) Without H�

Figure 5: Comparision of fault detection result for abrupt fault
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(a) With H� (b) Without H�

Figure 6: Comparision of residual zonotopes for time-varying fault

0 5 10 15 20 25 30

Time instant k

0

0.2

0.4

0.6

0.8

1

R
e
s
u
lt

 o
f 

fa
u
lt

 d
e
te

c
ti

o
n

(a) With H�

0 5 10 15 20 25 30

Time instant k

0

0.2

0.4

0.6

0.8

1

R
e
s
u
lt

 o
f 

fa
u
lt

 d
e
te

c
ti

o
n

(b) Without H�

Figure 7: Comparision of fault detection result for time-varying fault

Table 1: Performance comparison

Theorem 3.1 Full frequency Luenberger form

� 0.5095 0.3453 0.4329

 0.0339 0.0321 0.0069
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To demonstrate the performance of the proposed method with finite-frequency H� index, the

standard zonotopic method in Le et al. (2013b) that only consider P -radius minimization for

state estimation is considered here for comparison. The comparison results are depicted in Figure

4- Figure 7. Herein, the black line represents the zonotopes bounds of residual, the red zone

represents the admissible set of residual, the blue plus sign represents the center of corresponding

zonotopes, the green asterisk represents the origin of the coordinate. These zonotopes are changed

because of the occurrence of faults. Following the decision scheme in Section 3.2, we can detect

the fault by checking whether these zonotopes include 0 or not. Herein, we use 0 to denote the

case that 0 2 R
k

and 1 for that 0 /2 R
k

.

From Figure 4 and Figure 6, we can see that the residual zonotopes by using the proposed

method are more sensitive to fault than that by using the standard zonotopic method. The fault

detection results in Figure. 5 and Figure 7 also show that the proposed method has better fault

detection performance.

To further demonstrate the e↵ectiveness of the proposed method, we have added a performance

comparison. The results are shown in Table 1. Herein, Theorem 3.1 considers the proposed zono-

topic observer design method in finite-frequency domain. Full frequency considers the proposed

method applied in full frequency domain. The Luenberger form considers the comonly used Lu-

enberger form observer applied in finite frequency domain. This result can be easily obtained by

setting the introduced matrices T = I and N = 0 in Theorem 3.1. From Table 1, we can conclude

that the fault detection performance is improved by considering the frequency characteristics of

fault. Furthermore, this performance can be further enhanced by the proposed fault detection

method.
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5. Conclusion

A zonotopic fault detection observer design method is proposed for discrete-time T-S fuzzy

systems. We propose a novel observer structure and develop an design method based on GKYP

lemma and P -radius minimization approach. The design conditions are expressed in terms of LMIs,

which can be e�ciently solved. The e↵ectiveness of the proposed method have been illustrated

via numerical simulations. In the furture, we can combine the proposed method with unknown

input observer to further improve the performance of fault detection. Other potential future work

involves applying the proposed method to the detection of actuator fault of vehicle lateral dynamic

systems.
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