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ABSTRACT
This paper addresses a zonotopic fault detection (FD) observer for discrete-time descriptor sys-
tems subject to additive actuator faults. The considered descriptor systems are also perturbed by
unknown-but-bounded uncertainties including state disturbances and measurement noise. Under
a set-based framework, the effects of uncertainties and faults are separated into two state zonotopes.
Basedon this decomposition, the FDobserver gain is designed tobe robust against uncertainties and
meanwhile sensitive to faults based on a H− index in a finite-frequency domain. Then, two linear
matrix inequality (LMI) conditions are obtained to design an observer that achieves robustness and
fault sensitivity at the same time. The generalised KYP lemma is applied to address the fault sensitiv-
ity condition. The optimal FD observer gain can be obtained via an offline design procedure. Finally,
the proposed fault detection method is applied to a chemical mixing system and the effectiveness
is shown.
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1. Introduction

Fault detection (FD) has played a significant role in
the management of critical infrastructure due to the
increasing need of maintaining the safety and reli-
ability. Among a large amount of existing methods,
model-based FD has been widely investigated, which
has also been proved to be a powerful tool applied to a
variety of complex systems (see e.g. Blanke et al., 2016;
Chen & Patton, 1999; Ding, 2013; Puig, 2010; Puig
et al., 2008; Varga, 2017). The basic idea of implement-
ing a model-based FDmethod is to generate a residual
signal that is used to verify the inconsistency between
the system model and measurement information in
the presence of occurred faults. These residual genera-
tions rely on suitable state observations obtained by an
observer. One of the challenges of traditional model-
based FD methods is to define a suitable threshold for
FDdecision-making. If this threshold is not adequately
selected, wrong FD alarms might be triggered.

For the implementation of an FD in real-world
applications, robust performance is required in the
decision-making stage to allow distinguishing faults

from the effects of uncertainties including distur-
bances and measurement noise. Meanwhile, enhanc-
ing the sensitivity to faults is of importance in the
FD design. Alternatively, robustness and fault sensi-
tivity can be measured by some performance indices,
such as H∞, H2 and H− norms (Ding, 2013). In
the literature, an increasing number of research works
have been carried out for deriving sufficient condi-
tions taking into account the combination of these per-
formance indices by using linear matrix inequalities
(LMIs). Some interesting results ofH∞,H2 andmixed
H−/H∞ methods for designing a robust FD observer
can be found in Ding (2013), Chadli et al. (2013) and
Wang et al. (2017).

Set theory has been widely employed in state obser-
vations over the last decades, because of the ability to
deal with model uncertainties in a guaranteed manner
(i.e. producing bounding sets that encloses the worst-
case effect of uncertainties) (see Alamo et al., 2005;
Combastel, 2015). Considering that system uncertain-
ties are modelled in unknown-but-bounded context,
uncertain systems are propagated using a predefined
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geometric set. Different types of sets have been consid-
ered in the literature, such as ellipsoids and zonotopes.
Some works related to ellipsoidal set-membership
approaches can be found in (Chabane et al., 2014;
Merhy et al., 2019). Alternatively, zonotopes, known
as one of symmetric sets, have simple computational
load based on operations involving centre and matrix.
Moreover, linear transformation with zonotopes (via
the Minkowski sum) can be easily implemented. For a
set-based state estimation approach, robustness can be
achieved and effects of unknown-but-bounded uncer-
tainties can be explicitly characterised in propagated
zonotopes (Alamo et al., 2005). Some existing works
have also pointed out its possible application to fault
diagnosis framework (see Puig, 2010; Puig et al., 2008;
Xu et al., 2014).

From an application point of view, due to mass
or energy conservation laws, system behaviours are
characterised not only by differential/difference equa-
tions for describing system dynamics but also by alge-
braic equations for representing static relations among
some system variables. Such systems are known as
descriptor systems, also alternatively named as singular
or differential-algebraic systems. The descriptor sys-
tems have been used in a variety of applications with
critical characteristics, such as drinking water net-
works (Wang et al., 2017), chemical process (Biegler
et al., 2012), aircrafts (Stevens et al., 2016) and elec-
trical systems (Duan, 2010). For these critical com-
plex systems, safety and reliability are always required
to be considered in the design of their control sys-
tems. Due to this reason, a suitable FD method is
a key element for FTC mechanisms that guarantee
acceptable performance degradations after possible
malfunctions of components inside. Some FD strate-
gies have been studied for different classes of descrip-
tor systems, such as continuous-time linear descriptor
systems (Varga, 2017; Yeu et al., 2005), fractional-
order descriptor systems (Komachali & Shafiee, 2020;
Komachali et al., 2019; Nosrati & Shafiee, 2018).

Taking into account the aforementioned advantages
of using the set theory, a set-based FD method is
of interest to be developed for descriptor systems. In
addition to achieve robustness to uncertainties, the
way how to characterise fault sensitivity in a set-based
FD method is a relevant issue. In Wang et al. (2017),
a preliminary result of combining a set-based FD
observer with theH− fault sensitivity has been briefly
discussed for discrete-time dynamic systems subject

to sensor faults, where the effects of sensor faults
are propagated in the centre of the defined residual
zonotope. The frequency domain of the faults are not
considered in the design of observer gain.

The main contribution of this paper is to pro-
pose a zonotopic fault detection (FD) observer for
discrete-time descriptor systems subject to additive
actuator faults. The considered descriptor systems
are also perturbed by unknown-but-bounded uncer-
tainties including state disturbances and measure-
ment noise. Under a set-based framework, the effects
of uncertainties and faults are separated into two
state zonotopes. Based on this decomposition, the FD
observer gain is designed to be robust against uncer-
tainties and meanwhile sensitive to faults based on a
H− index. In particular, the frequency of faults (as
e.g. oscillatory faults (Goupil, 2010)) is considered in a
finite-frequency domain. Two linear matrix inequality
(LMI) conditions are obtained to design an observer
that achieves robustness and fault sensitivity at the
same time. The generalised KYP lemma is applied
to address the fault sensitivity condition considering
the faults are in a finite-frequency domain. The opti-
mal FD observer gain can be obtained via an offline
design procedure. Finally, the proposed fault detection
method is applied to a chemical mixing system and the
effectiveness is shown.

This paper was motivated by the problem of fault
detection (FD) for the class of descriptor systems
that can be applied to a large amount of applications,
such as drinking/waste water networks, chemical pro-
cesses, and robot manipulators or arms, etc. Existing
approaches for such systems rely on generating a resid-
ual signal compared with a predefined threshold to
make a decision for the FD alarm. Due to the effects
of uncertainties, those approaches could be conser-
vative in the sense that the wrong FD alarm because
of the conservativeness of the threshold settings. The
proposed approach is based on set theory to over-
come the conservativeness from uncertainties, espe-
cially by means of zonotopes to characterise the effects
of uncertainties. Besides, in this paper, we have also
characterised the effects of faults by using zonotopes
in order to give a fault sensitivity condition. The pro-
posed approach can be applied inmany cyber-physical
systems especially including some certain static rela-
tions formulated by using algebraic equations.

The remainder of this paper is organised as follows.
Some preliminary results are expressed in Section 2.



The problem statement is formulated in Section 3. The
main results including the zonotopic FD observer gain
design are presented in Section 4. The application of
the proposed method to a chemical mixing system is
shown in Section 5. Finally, concluding remarks are
drawn in Section 6.

Notation. We use In to denote an identity matrix
of dimension n. Note that the dimension n may be
dropped when it can be inferred from the context. We
use 1m×n to denote an matrix with all elements of 1.
For a matrix A, A � 0 (A ≺ 0) is said to be positive
(negative) definite. We use tr(A), rank(A), A� and A†

to denote the trace, rank, (Hermitian) transpose and
pseudo-inverse ofA, respectively. We denoteHe(A) =
A + A�. We use σ(A) to denote the minimum singu-
lar value of A. We also define the following sets S

n :=
{A ∈ R

n×n | A = A�} and S
n
�0 := {A ∈ R

n×n | A =
A�,A � 0}. For a vector z, the weighted 2-norm
of z is denoted by ‖z‖W =

√
z�Wz with a weighting

matrix W ∈ S
n
�0. The infinity norm of z is denoted

by ‖z‖∞ := max(z). For a signal z(k), ∀k ∈ N, the L2

norm of z(k) is denoted by ‖z‖2 =
√∑∞

k=0 z(k)�z(k).
Besides, we use⊕ and� to denote theMinkowski sum
and the linear image. We also use � to denote a term
in a matrix induced by symmetry.

2. Preliminaries

In this section, we introduce some necessary defini-
tions, properties and mathematical background that
will be used in this paper.

2.1. Zonotopes

Definition2.1 (Zonotope): AzonotopeZ ⊂ R
n inn-

dimensional space is definedwith its centre c ∈ R
n and

the segment matrix H ∈ R
n×r as

Z = 〈c,H〉 = {c + Hz, ‖b‖∞ ≤ 1} , (1)

where b ∈ [−1,+1]r is a unit vector of dimension r.

Let us denoteBr = [−1,+1]r ⊂ R
r as a r-order hyper-

cube. With the Minkowski sum⊕, the zonotope in (1)
can also be defined by Z = c ⊕ HBr. Besides, the fol-
lowing linear properties hold

〈c1,H1〉 ⊕ 〈c2,H2〉 = 〈c1 + c2, [H1, H2]〉, (2a)

L � 〈c,H〉 = 〈Lc, LH〉, (2b)

where L is an arbitrary matrix of appropriate dimen-
sion.

Definition 2.2 (Interval hull): Given a zonotopeZ =
〈c,H〉 ⊂ R

n, the interval hull rs(H) ∈ R
n×n is defined

as an aligned minimum box such that the inclusion
property holds: 〈c,H〉 ⊂ 〈c, rs(H)〉, where rs(H) is a
diagonal matrix with diagonal elements of rs(H)i,i =∑r

j=1 |Hi,j|, i = 1, . . . , n.

Definition 2.3 (W-radius): Given a zonotope Z =
〈c,H〉 ⊂ R

n and a weighting matrix W ∈ S
n
�0, the

W-radius of Z is defined by �W = max
‖b‖∞≤1

‖Hb‖2W =
max

‖b‖∞≤1
b�H�WHb, where b is the unit vector associ-

ated to the zonotope Z .

To reduce the order of a zonotope Z = 〈c,H〉 ⊂
R
n, the weighted reduction operator ↓q,W (H) pro-

posed in Combastel (2015) is used, where q specifies
the maximum number of columns of H andW ∈ S

n
�0

is a weighting matrix. The inclusion property 〈c,H〉 ⊂
〈c,↓q,W (H)〉 also holds. The procedure for imple-
menting the operator ↓q,W (H) is summarised as fol-
lows:

• Sort the column of segment matrix H in decreas-
ing order: ↓W (H) = [h1, h2, . . . , hr], ‖hj‖2W ≥
‖hj+1‖2W , where ‖hj‖W is the weighted 2-norm of
hj.

• Take the first q-column of ↓W (H) and enclose a set
H< generated by remaining columns into a smallest
box (interval hull) as follows:

If r ≤ q, then ↓q,W (H) =↓W (H),

Else ↓q,W (H) = [H>, rs(H<)] ∈ R
n×(q+n),

H> = [
h1, . . . , hq

]
, H< = [

hq+1, . . . , hr
]
.

2.2. H− index and generalised KYP lemma

We now introduce the definition of theH− index and
generalised KYP lemma in the following.

Definition 2.4 (H− index of discrete-time sys-
tems (Ding, 2013)): Given a transfer function Gyu(z)
of discrete-time systems asGyu(z) = C(zI − A)−1B +
D between signals y(k) and u(k), ∀k ∈ N with z = ejθ ,



Table 1. The selections of matrices � in different frequency
domains.

LF MF HF

� |θ | ≤ θl θ1 ≤ θ ≤ θ2 |θ | ≥ θh

�
[ −P Q

Q P−2 cos(θl)Q

] [
−P ejθc Q

e−jθc Q P−2 cos(θw)Q

] [ −P −Q
−Q P+2 cos(θh)Q

]
LF: low-frequency domain, MF: middle-frequency domain,HF: high-frequency
domain. θl , θ1, θ2 and θh are low-, pass-band, and high- cut-off frequencies
selected according to the fault frequency contents.

theH− index of Gyu(z) is defined by

∥∥Gyu(z)
∥∥− := inf

u�=0

∥∥y∥∥2
‖u‖2

= inf
θ

σ
(
Gyu(ejθ )

)
. (3)

By this definition, the H− index between sig-
nals y(k) and u(k), k ∈ N can also be presented by
‖Gyu(z)‖− ≥ β with β > 0, that is

∞∑
k=0

y(k)�y(k) ≥ β2
∞∑
k=0

u(k)�u(k). (4)

Lemma 2.5 (Generalized KYP lemma for discrete–
time systems from Iwasaki and Hara (2005)): Given
a transfer function G(z) of discrete-time systems as
G(z) = C(zI − A)−1B + D with z = ejθ , a symmet-
ric matrix � of appropriate dimension. The following
statements are equivalent

(1) For a finite-frequency domain ∀θ ∈ �, the follow-
ing condition holds[

G(ejθ )
I

]�
�

[
G(ejθ )

I

]
≺ 0, ∀θ ∈ �. (5)

(2) There exist Hermitian matrices P and Q such that
Q � 0 and[A B

I 0

]�
�

[A B
I 0

]
+

[C D
0 I

]�

�

[C D
0 I

]
≺ 0, (6)

where the selections of � are presented in Table 1,
and θc = θ1+θ2

2 , θw = θ2−θ1
2 .

3. Problem statement

Consider the class of discrete-time descriptor system
subject to additive actuator faults as

Ex(k + 1) = Ax(k) + Bu(k) + Bww(k) + Ff (k),
(7a)

y(k) = Cx(k) + Dvv(k), (7b)

where x ∈ R
n, u ∈ R

m and y ∈ R
p denote the state,

the input and the output vectors, w ∈ R
mw , v ∈ R

mv

and f ∈ R
mf denote the state disturbance, the mea-

surement noise and the additive fault vectors. k ∈ N

denotes a time instant. Besides, A ∈ R
n×n, B ∈ R

n×m,
Bw ∈ R

n×mw , F ∈ R
n×mf , C ∈ R

p×n and Dv ∈ R
p×mv

are the system matrices. From the descriptor con-
text, the matrix E ∈ R

n×n may be singular, that is,
rank(E) ≤ n.

The following assumptions are made, which will be
used in this paper.

Assumption 3.1: The disturbance vector w(k) and the
noise vector v(k) are unknown but bounded by the
zonotopes

w(k) ∈ 〈0, Imw〉, v(k) ∈ 〈0, Imv〉, ∀k ∈ N. (8)

Assumption 3.2: The initial state x(0) is bounded by
the initial zonotope x0 ∈ 〈c0,H0〉 ⊂ R

n, which can be
obtained as e.g. from the physical limits of the states or
some other physical a priori knowledge about the system.

To design an observer for the descriptor system (7),
the following assumption is employed.

Assumption 3.3: Matrices E, C satisfy the following
rank condition:

rank
[
E
C

]
= n. (9)

Remark 3.1: The condition (9) has been widely used
for observer design for descriptor systems in some
existing works (see Wang et al., 2018, 2012).

Since the rank condition (9) holds from Assump-
tion 3.3, there exist two non-emptymatricesT ∈ R

n×n

and N ∈ R
n×p such that

TE + NC = In. (10)

The general solution ofT andN satisfying (10) is given
by

T = Ψ †α1 + S̄
(
In+p − Ψ Ψ †

)
α1, (11a)

N = Ψ †α2 + S̄
(
In+p − Ψ Ψ †

)
α2, (11b)



where

Ψ =
[
E
C

]
, α1 =

[
In
0

]
, α2 =

[
0
Ip

]
,

and S̄ is an arbitrary matrix of appropriate dimension.
We first recall the state bounding zonotope for

the descriptor system (7) with f ≡ 0 from (Wang
et al., 2018, Theorem 5) as the following proposition.

Proposition 3.4: Consider the descriptor system (7)
with f ≡ 0, w(k) ∈ 〈0, Imw〉 and v(k) ∈ 〈0, Imv〉, ∀k ∈
N. Suppose that x(k) ∈ 〈ĉ(k), Ĥ(k)〉 ⊆ 〈ĉ(k), H̄(k)〉
with H̄ =↓q,W (Ĥ) at time step k ∈ N. Then, the state
bounding zonotope can be recursively defined by x(k +
1) ∈ 〈ĉ(k + 1), Ĥ(k + 1)〉, where

ĉ(k + 1) = (TA − GC) ĉ(k) + TBu(k)

+ Gy(k) + Ny(k + 1), (12a)

Ĥ(k + 1) =[
(TA−GC) H̄(k), TBw, −GDv, −NDv

]
,

(12b)

where G ∈ R
n×p is a time-varying observer gain.

Proof: The proof can be found in (Wang et al., 2018,
Theorem 5) and hence omitted here. �

From the state zonotope x̂(k) ∈ 〈ĉ(k), Ĥ(k)〉, ∀k ∈
N, we define the zonotopic FD observer for descriptor
system (7) as the residual zonotope 〈cr(k),Hr(k)〉 ⊂
R
p with

cr(k) = y(k) − Cĉ(k), (13a)

Hr(k) =
[
CĤ(k), Dv

]
. (13b)

In this paper, the goal of designing an FD observer
gain G is to make the zonotopic FD observer (13)
robust against uncertainties and meanwhile sensitive
to faults. Since the zonotopic FD observer is imple-
mented by the residual zonotope as in (13), it is indeed
a linear transformation of the state bounding zono-
tope x̂(k) ∈ 〈ĉ(k), Ĥ(k)〉, ∀k ∈ N. Hence, in the fol-
lowing section, we will discuss about the decomposi-
tion of state bounding zonotope to separate the effects
of unknown-but-bounded uncertainties and occurred
faults. Based on this decomposition, the design condi-
tions of the FD observer gain G will be addressed.

4. Main results

We now present the main results of zonotopic FD
observer for the descriptor system (7) and the design
of the FD observer gain.

4.1. Zonotopic observer decomposition

With matrices T and N satisfying (10), from (7b), we
have

NCx(k + 1) = Ny(k + 1) − NDvv(k + 1). (14)

Pre-multiplying (7a) by T and adding (14), we obtain
the reformulated descriptor dynamics

x(k + 1) = TAx(k) + TBu(k) + TBww(k)

+ TFf (k) + Ny(k + 1) − NDvv(k + 1).
(15)

For x̂(k) ∈ 〈ĉ(k), Ĥ(k)〉 with ∀k ∈ N, let us define the
state estimation error as e(k) = x(k) − ĉ(k). Then,
with (15), the state estimation error dynamics can be
formulated as

e(k + 1) = (TA − GC)e(k) + TBww(k) + TFf (k)

− GDvv(k) − NDvv(k + 1). (16)

From (16), it can be seen that the effect of occurred
fault f (k) exists. Suppose that x(k) ∈ 〈c(k),H(k)〉 =
{〈ĉ(k), Ĥ(k)〉 ⊕ 〈cf (k), 0〉} at time step k, where cf (k) ∈
R
n is the centre of the zonotope only affected by faults

and we assume that cf (0) = 0 at time step k = 0. We
now define the decomposition of the state bounding
zonotope in two zonotopes that consider the sepa-
rate effects of uncertainties and faults in the following
theorem.

Theorem 4.1 (State bounding zonotope decomposi-
tion): Consider the descriptor system (7) with f �≡ 0,
w(k) ∈ 〈0, Imw〉 and v(k) ∈ 〈0, Imv〉, ∀k ∈ N. Suppose
that x(k) ∈ 〈c(k),H(k)〉 = {〈ĉ(k), Ĥ(k)〉 ⊕ 〈cf (k), 0〉}
at time step k ∈ N. Then, the uncertain state x(k + 1)
at time step k + 1 is bounded by the zonotope in the
decomposition form

x(k + 1) ∈ 〈c(k + 1),H(k + 1)〉
= {〈ĉ(k + 1), Ĥ(k + 1)〉 ⊕ 〈cf (k + 1), 0〉},

(17)



where ĉ(k + 1) and Ĥ(k + 1) as in (12) and

cf (k + 1) = (TA − GC)cf (k) + TFf (k). (18)

Proof: From x(k) ∈ 〈c(k),H(k)〉 = {〈ĉ(k), Ĥ(k)〉
⊕ 〈cf (k), 0〉} at time step k, we know c(k) = ĉ(k) +
cf (k) and e(k) = x(k) − ĉ(k) ∈ 〈cf (k), Ĥ(k)〉. Then,
we have that x(k + 1) = ĉ(k + 1) + e(k + 1) at time
step k + 1.Consideringw(k) ∈ 〈0, Imw〉, v(k) ∈ 〈0, Imv〉,
∀k ∈ N with e(k + 1) in (16), we can derive that

x(k + 1)

∈ 〈c(k + 1),H(k + 1)〉
= {〈ĉ(k + 1), Ĥ(k + 1)〉 ⊕ 〈cf (k + 1), 0〉}
= 〈ĉ(k + 1), 0〉 ⊕ ((TA − GC) � 〈cf (k), Ĥ(k)〉)

⊕ (
TBw � 〈0, Imw〉) ⊕ 〈TFf (k), 0〉

⊕ (−GDv � 〈0, Imv〉
) ⊕ (−NDv � 〈0, Imv〉

)
.

By applying the properties in (2), we obtain ĉ(k + 1)
and Ĥ(k + 1) as in (12) and cf (k + 1) as in (18). �

Based on the decomposition in Theorem 4.1, it
can be seen that the effects of uncertainties and faults
are separated. Specifically, the zonotopes 〈ĉ(k), Ĥ(k)〉,
∀k ∈ N are only affected by state disturbancew(k) and
measurement noise v(k)while the zonotopes 〈cf (k), 0〉,
∀k ∈ N are only affected by additive actuator faults
f (k).

From Theorem 4.1, we can also obtain the decom-
position of zonotopic FD observer (13). Taking into
account x(k) ∈ 〈c(k),H(k)〉 = {〈ĉ(k), Ĥ(k)〉 ⊕ 〈cf
(k), 0〉}, v(k) ∈ 〈0, Imv〉 and (7b), by setting r(k) =
y(k) − Cĉ(k), we can derive

r(k) ∈ 〈cr(k),Hr(k)〉
= (C � 〈ĉ(k), Ĥ(k)〉) ⊕ (C � 〈cf (k), 0〉)

⊕ (Dv � 〈0, Imv〉) ⊕ (−C � 〈ĉ(k), 0〉).
Then, by applying the properties in (2), we obtain
the decomposition form of the zonotopic FD observer
r(k) ∈ 〈cr(k),Hr(k)〉, where

cr(k) = Ccf (k), (19a)

Hr(k) =
[
CĤ(k), Dv

]
. (19b)

Based on the decomposition in (19), the effect of
faults is characterised by the centre cr(k) while uncer-
tainties are propagated into the zonotope segment

matrix Hr(k), ∀k ∈ N. Besides, as defined in (19b),
Hr(k) can also be regarded as a linear transformation
of Ĥ(k).

Remark 4.1: The structure of the zonotopic FD
observer for the descriptor system (7) is defined in (13)
that will be used for the FD implementation. The
decomposition form (19) is used for the analysis and
the design for the FD observer gain G.

4.2. Zonotopic fault detection observer gain design

We now present the LMI conditions that allow achiev-
ing robustness against uncertainties and sensitivity
to faults for descriptor system (7). Based on the
state bounding zonotope decomposition, the effects of
uncertainties and faults are separated in two zonotopes
that will be used for addressing robustness and fault
sensitivity.

From the analysis in (19), we formulate the robust-
ness condition by minimising the size of the zonotope
〈ĉ(k), Ĥ(k)〉. We use theW-radius to measure the size
of this zonotope. On the other hand, we derive the fault
sensitivity condition in terms of the centre cf (k) using
theH− index.

4.2.1. Robustness condition
FromDefinition 2.3, with a weighingmatrixW ∈ S

n
�0,

theW-radius of the zonotope 〈ĉ(k), Ĥ(k)〉 can be for-
mulated as

�W(k) = max
‖z̄‖∞≤1

‖Ĥ(k)z̄‖2W . (20)

Considering uncertainties (disturbances and noise)
are propagated and bounded in the zonotope 〈ĉ(k),
Ĥ(k)〉, ∀k ∈ N, minimising the size of this zonotope
reduces the effect of uncertainties. Following the set-
based framework fromWang et al. (2018), a zonotope
minimisation criterion is introduced in the following.

Proposition 4.2 (W-radius minimization criterion):
Consider the descriptor system (7), the zonotope
〈ĉ(k), Ĥ(k)〉,v ∀k ∈ N and its W-radius defined in (20),
two scalars γ ∈ (0, 1) and ε > 0. If there exists amatrix
W ∈ S

n
�0 such that a minimisation criterion is defined

as

�W(k + 1) ≤ γ �W(k) + ε, ∀k ∈ N, (21)

then the W-radius is ultimately bounded by �W(∞) ≤
ε

1−γ
when k → ∞.



Proof: With �W in (20), the minimisation crite-
rion in (21) holds ∀k ∈ N. When k → ∞, we have
�W(∞) ≤ γ �W(∞) + ε, which implies the ultimate
boundedness �W(∞) ≤ ε

1−γ
. �

Remark 4.2: Note that here a particular criterion
(W-radius, also called P-radius, as introduced in Le
et al., 2013,Wang et al., 2018), widely used in the zono-
tope literature has been used for bounding the effect
of the uncertainty. There exist other possible criterion
that could be considered. The analysis of the effect
selection of in the fault detection performance will be
explored in future research.

Based on (21), we now formulate the LMI condition
to address robustness of the zonotopic FD observer in
the following theorem.

Theorem 4.3 (Robustness condition): Given the
descriptor system (7), matrices T ∈ R

n×n and N ∈
R
n×p satisfying (10). If there exist matrices W ∈

S
n
�0, Y ∈ R

n×p, diagonal matrices Γ ∈ S
mw
�0 , Υ ∈ S

mv
�0

and Ω ∈ S
mv
�0, and two scalars γ ∈ (0, 1) and ε > 0

such that

tr(Γ ) + tr(Υ ) + tr(Ω) < ε, (22a)⎡
⎢⎢⎢⎢⎣

γW � � � �

WTA − YC W � � �

0 D�
wT�W� Γ � �

0 D�
v Y� 0 Υ �

0 D�
v N�W� 0 0 Ω

⎤
⎥⎥⎥⎥⎦ � 0,

(22b)

then (12) is robustly stable and the W-radius
minimisation criterion in (21) holds.

Proof: From �W(k) in (20), (21) can be reformulated
as

max
‖z‖∞≤1

‖Ĥ(k + 1)z‖2W ≤ max
‖z̄‖∞≤1

γ ‖Ĥ(k)z̄‖2W + ε.

Let us set z = [z̄�, b�
1 , b

�
2 , b

�
3 ]

� with b1 ∈ Bmw , b2 ∈
Bmv and b3 ∈ Bmv . For any z such that ‖z‖∞ ≤ 1, we
obtain a sufficient condition from the above inequality

‖Ĥ(k + 1)z‖2W − γ ‖Ĥ(k)z̄‖2W − ε < 0. (23)

Recalling Ĥ(k + 1) in (12b) and setting Y = WG, we
denote

R = [WTA − YC, WTDw, YDv, WNDv] . (24)

Then, (23) can be rewritten as
⎡
⎢⎢⎣
Ĥ(k)z̄
b1
b2
b3

⎤
⎥⎥⎦

�

R�W−1R

⎡
⎢⎢⎣
Ĥ(k)z̄
b1
b2
b3

⎤
⎥⎥⎦

− z̄�Ĥ(k)�γWĤ(k)z̄ − ε < 0. (25)

If Γ ∈ S
mw
�0 , Υ ∈ S

mv
�0 and Ω ∈ S

mv
�0 are diagonal and

positive-definite matrices, then the following condi-
tions hold

tr(Γ ) ≥ b�
1 Γ b1, ∀b1 ∈ Bmw , (26a)

tr(Υ ) ≥ b�
2 Υ b2, ∀b2 ∈ Bmv , (26b)

tr(Ω) ≥ b�
3 Ωb3, ∀b3 ∈ Bmv . (26c)

Together with (25) and (26), we can obtain a suffi-
cient condition⎡
⎢⎢⎣
Ĥ(k)z̄
b1
b2
b3

⎤
⎥⎥⎦

�

R�W−1R

⎡
⎢⎢⎣
Ĥ(k)z̄
b1
b2
b3

⎤
⎥⎥⎦−z̄�Ĥ(k)�γWĤ(k)z̄

+ tr(Γ ) − b�
1 Γ b1 + tr(Υ ) − b�

2 Υ b2

+ tr(Ω) − b�
3 Ωb3 − ε < 0,

for any z̄, b1, b2 and b3 such that ‖z̄‖∞ ≤ 1, ‖b1‖∞ ≤
1, ‖b2‖∞ ≤ 1 and ‖b3‖∞ ≤ 1.

If (22a) holds, then we have
⎡
⎢⎢⎣
Ĥ(k)z̄
b1
b2
b3

⎤
⎥⎥⎦

� ⎛
⎜⎜⎝

⎡
⎢⎢⎣

γW 0 0 0
0 Γ 0 0
0 0 Υ 0
0 0 0 Ω

⎤
⎥⎥⎦ − R�W−1R

⎞
⎟⎟⎠

⎡
⎢⎢⎣
Ĥ(k)z̄
b1
b2
b3

⎤
⎥⎥⎦ > 0,

for any z̄, b1, b2 and b3 such that ‖z̄‖∞ ≤ 1, ‖b1‖∞ ≤
1, ‖b2‖∞ ≤ 1 and ‖b3‖∞ ≤ 1. Then, by applying the
Schur complement, we obtain⎡
⎢⎢⎢⎢⎣

γW � � � �

0 Γ � � �

0 0 Υ � �

0 0 0 Ω �

WTA − YC WTDw YDv WNDv W

⎤
⎥⎥⎥⎥⎦ � 0.

(27)



Define a linear transformation matrix

M =

⎡
⎢⎢⎢⎢⎣
I 0 0 0 0
0 0 I 0 0
0 0 0 I 0
0 0 0 0 I
0 I 0 0 0

⎤
⎥⎥⎥⎥⎦ .

Finally, pre-multiplying (27) by M� and post-
multiplying it byM, we thus obtain (22b). �

Remark 4.3: The condition (22b) implies
[

γW �

WTA − YC W

]
� 0,

which is related to the standard design result of
a stabilizing observer gain for descriptor systems
(seeWang et al., 2018, Proposition 2; Wang et al., 2012,
Theorem 1).

4.2.2. H− fault sensitivity condition
Based on cr(k) in (19a), the propagation of cf (k) is
defined in (18). From Definition 2.4, the H− perfor-
mance index β between the signals cr(k) and f (k)
satisfies

∞∑
k=0

cr(k)�cr(k) ≥ β2
∞∑
k=0

f (k)�f (k). (28)

Consider that fault occurs in a frequency range θ ∈
[θ1, θ2] and the following condition holds

ejθw
∞∑
k=0

(
cf (k + 1) − ejθ1cf (k

)
(9)

× (
cf (k + 1) − ejθ2cf (k)

)� ≤ 0, (29)

with θw = θ2−θ1
2 . Based on the generalisedKYP lemma

(see Lemma 2.5), a relaxation of (28) is given in the
following lemma.

Lemma 4.4: Consider the fault frequency contents θ ∈
� with � defined in Table 1, the dynamics of cf (k)
in (18) and suppose (TA − GC) to be Schur stable by
satisfying (22b). If there exist matrices P ∈ S

n and Q ∈
S
n
�0, and a scalar β > 0 such that

[
TA − GC TF

In 0

]�
�

[
TA − GC TF

In 0

]

+
[
C 0
0 Imf

]� [−Ip 0
0 β2Imf

] [
C 0
0 Imf

]
≺ 0,

(30)

where � is chosen as in Table 1 with respect to θ ∈
�, then the H− performance index β between the sig-
nals cr(k) and f (k) satisfying (28) holds.

Proof: Without loss of generality, let us first consider
∀θ ∈ � in the middle-frequency domain. Recall θc =
θ1+θ2

2 and from Table 1, � is chosen as

� =
[ −P �

e−jθcQ P − 2 cos(θw)Q

]
.

With (18), pre-multiplying both sides of (30) by
[cf (k)�, f (k)�] and post-multiplying it by [cf (k), f (k)],
we obtain a sufficient condition

cf (k)�Pcf (k) − cf (k + 1)�Pcf (k + 1)

− cr(k)�cr(k) + β2f (k)�f (k)

+ He
(
cf (k + 1)�ejθcQcf (k)

)
− cf (k)�2 cos(θw)Qcf (k) ≤ 0. (31)

Since the term He(cf (k + 1)�ejθcQcf (k)) − cf (k)�
2 cos(θw)Qcf (k) is a scalar, we have

He
(
cf (k + 1)�ejθcQcf (k)

)
− cf (k)�2 cos(θw)Qcf (k)

= tr
(
Q

(
He

(
ejθccf (k)cf (k + 1)�

)
−2 cos(θw)cf (k)cf (k)�

))
.

Set

S =
∞∑
k=0

(
He

(
ejθccf (k)cf (k + 1)�

)

−2 cos(θw)cf (k)cf (k)�
)
.

Assuming that the fault appears for a finite period of
time in [0,∞) (i.e. cf (0) = 0 and cf (∞) = 0) and by
summing (31) from k = 0 to ∞, we obtain

−
∞∑
k=0

cr(k)�cr(k) + β2
∞∑
k=0

f (k)�f (k) + tr(QS) ≤ 0.

Based on the result of (Iwasaki et al., 2005, Theorem4),
if (29) holds, then we have tr(QS) ≥ 0 and − ∑∞

k=0
cr(k)�cr(k)+β2 ∑∞

k=0 f (k)
�f (k)≤0 that implies (28).



Moreover, following the similar procedure of the
above proof, by choosing θ1 = −θl and θ2 = θl for the
low-frequency case or θ1 = −θh and θ2 = 2π − θh for
the high-frequency case, (28) also holds. �

Based on Lemma 4.4, we now build the H− fault
sensitivity condition in the following theorem.

Theorem 4.5 (H− fault sensitivity condition): Given
〈cr(k),Hr(k)〉 in (13) with f (k) in a finite-frequency
domain θ1 ≤ θ ≤ θ2, ∀k ∈ N, and matrices T ∈ R

n×n

and N ∈ R
n×p satisfying (10). If there exist matri-

ces W ∈ S
n
�0, Y ∈ R

n×p, P ∈ S
n and Q ∈ S

n
�0, two

scalars α and β > 0, L ∈ R
mf ×n such that⎡

⎣ Φf
αF�T�W� + LWTA − LYC
αW� + ejθcQ + WTA − YC

� �

He (LWTF) − β2Imf �

W�L� + WTF P + W + W�

⎤
⎦ � 0,

(32)

with Φf = C�C − P + 2 cos(θw)Q + He(αWTA
− αYC), then theH− performance in (28) for the zono-
topic FD observer (13) holds.

Proof: For θ1 ≤ θ ≤ θ2 in any finite-frequency
domain, from (30), we derive[

Φ1 Φ2
Φ3 Φ4

]
≺ 0, (33)

where

Φ1 = P − 2 cos(θw)Q − C�C − (TA − GC)�

× P(TA − GC)

+ He
(
(TA − GC)�ejθQ

)
,

Φ2 = e−jθQTF − (TA − GC)�PTF,

Φ3 = (TF)�ejθQ − (TF)�P(TA − GC),

Φ4 = β2Imf − (TF)�PTF.

Set Φ̄ =
[
C�C−P+2 cos(θw)Q 0

0 −β2Imf

]
, Qf = [ Q

0
]

and

Af = [TA − GC,TF]. Then, (33) is equivalent to

[
In
Af

]� [
Φ̄ e−jθcQf

ejθcQ�
f P

][
In
Af

]
� 0.

By using the Finsler’s lemma to above inequality, we
obtain [

Φ̄ e−jθcQf
ejθcQ�

f P

]
+ He

(
R̄U

) � 0, (34)

where R̄ ∈ R
(2n+mf )×n is an arbitrary matrix (called

multiplier), and U = [Af , In]. Then, with α and L ∈
R
mf ×n, we define a structure of the multiplier as

R̄ =
⎡
⎣αW
LW
W

⎤
⎦ .

By substituting R̄ in (34), we thus obtain (32). �

Remark 4.4: From (34), the multiplier R̄ can be cho-
sen arbitrarily. Based on the proof of Theorem 4.5, the
structure of R̄ is defined with the parameters α and L
so that the condition (32) is obtained. From the con-
dition (32), the selection of L should satisfy that the
term He(LWTF) − β2Imf in the diagonal be strictly
positive-definite.

4.2.3. The optimisation problem setup
The objective of designing the FD observer gain G is
to minimise the effect of uncertainties and maximise
the sensitivity to occurred faults. On the one hand,
for given γ ∈ (0, 1) and ε > 0, we have the ultimate
bound of theW-radius �W∞ ≤ ε

1−γ
that corresponds

to an ellipsoidal set. To minimise the size of this ellip-
soid, we can maximise a measure of the matrixW, for
instancemaximising tr(W). On the other hand, we can
maximise the H− fault sensitivity index β .

In general, given γ ∈ (0, 1), ε > 0, α, L ∈ R
mf ×n,

and T ∈ R
n×n and N ∈ R

n×p satisfying (10), and
two prioritisation weights λr and λf , the optimisation
problem for designing the FD observer gain G can be
expressed as follows:

maximize
W,Y ,Γ ,Υ ,Ω ,

P,Q,β2

λrtr(W) + λfβ
2, (35)

subject to (22a), (22b) and (32).
Then, the optimal solution of (35) provides the

optimal FD observer gain by

G = W−1Y . (36)

Remark 4.5: The weights λr and λf are set for obtain-
ing a trade-off between robustness and fault sensitivity
conditions. For instance, the fault sensitivity objective
can be enhanced by choosing λf ≥ λr.



Algorithm 1 Zonotopic FD algorithm for descriptor
systems
Data: Given the descriptor system (7), γ ∈ (0, 1), ε >

0, α, L, x(0) ∈ 〈c(0),H(0)〉 and suppose the
faults in a finite-frequency domain θ ∈ �;

Obtain a pair ofmatricesT andN satisfying (10); Solve
the optimisation problem (35) to obtain the optimal
zonotopic FD observer gain G = W−1Y ; Set ĉ(0) =
c(0), Ĥ(0) = H(0); while k > 0 do

Compute the state zonotope x̂(k) ∈ 〈ĉ(k), Ĥ(k)〉
based on the structure defined in (12); Com-
pute the zonotopic FD observer 〈cr(k),Hr(k)〉
using (13); Evaluate the FD test χ(k) by using the
logic in (37).

end

4.3. Zonotopic fault detection algorithm

From the output equation (7b), we know 0 = y(k) −
Cx(k) − Dvv(k). Hence, if f (k) = 0, we know 0 ∈
〈cr(k),Hr(k)〉, which can be used to determine the
FD alarm χ . The logic of the FD test χ(k), ∀k ∈ N is
formulated as follows:

χ(k) =
{
0 if 0 ∈ 〈cr(k),Hr(k)〉
1 if 0 /∈ 〈cr(k),Hr(k)〉

(37)

where χ(k) = 0 means that no fault is detected
while χ(k) = 1 corresponds to the case that a fault
is detected at time step k. In general, the robust FD
strategy is summarised in Algorithm 1.

5. Case study: a chemical mixing system

In this section, we apply the proposed zonotopic FD
method to a case study of the chemical mixing sys-
tem based on the one proposed in Yeu et al. (2005).
Comparison with another method for designing the
observer gain is also provided to assess the perfor-
mance of the proposed design method.

5.1. Description

By applying the Euler discretization method with the
sampling time Ts = 0.1s, we obtain the discrete-time
descriptor model of the chemical mixing system as in

the form of (7) with system matrices as follows:

E =

⎡
⎢⎢⎣
1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

⎤
⎥⎥⎦ ,

A =

⎡
⎢⎢⎣
0.9625 0.0067 0 0

0 −0.1 0 0
0.03 0.0533 0.95 −0.004
0 0.1 0 −0.1

⎤
⎥⎥⎦ ,

B =

⎡
⎢⎢⎣
0.01 0
0.1 0
0 0.002
0 0.1

⎤
⎥⎥⎦ ,

Bw =

⎡
⎢⎢⎣
0.01 0 0 0
0 0.01 0 0
0 0 0.01 0
0 0 0 0.01

⎤
⎥⎥⎦ ,

C =
⎡
⎣0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎦ ,

Dv =
⎡
⎣0.01 0 0

0 0.01 0
0 0 0.01

⎤
⎦ ,

and F = 3B. The initial state x0 = [0.5, 0, 0.5, 0]� is
assumed to be bounded by the zonotope x0 ∈ 〈c0,H0〉,
where c0 = x0 and H0 = 0.01I4. The input signal u(k)
is set as u(k) = [2, 2]�, ∀k ∈ N. For the reduction
operator ↓q,W (·), we set q = 20 andW from the opti-
mal solution of (35). The finite-frequency domain for
two faults is considered as |θ | ≤ 0.1. From the general
solution (11) with S̄ = 14×7, we obtain one solution
satisfying (10) as follows:

T =

⎡
⎢⎢⎣
1 1 0 1
0 1 0 1
0 1 0.5 1
0 1 0 1

⎤
⎥⎥⎦ , N =

⎡
⎢⎢⎣
0 0 0
1 0 0
0 0.5 0
0 0 1

⎤
⎥⎥⎦ .

5.2. Simulation results

First, we discuss the trade-off achieved with differ-
ent selections of weights λr and λf . The objective of
the optimisation problem (35) can be normalised con-
sidering only a goal a time by selecting λr = 0 and
λf = 0, respectively. The optimal solutions for these
two cases are reported at the beginning and the end of



Table 2. Comparison of robustness and fault sensitivity perfor-
mances with different weights.

Weights
Robustness

tr(W)

Fault sensitivity
β MDF a1 MDF a2

λr = 0.25, λf = 0.75 771.85 0.1249 0.34 0.35
λr = 0.5, λf = 0.5 775.79 0.1179 0.28 0.27
λr = 0.75, λf = 0.25 778.99 0.0927 0.2 0.23
λr = 1, λf = 0 779.83 – 0.22 0.2

Figure 1. Comparison of robustness and fault sensitivity with
different weights.

Table 2. After the normalisation, both weights (λr, λf )
can be chosen ∈ [0, 1]. We have carried out the sim-
ulations with different values of these weights in this
range and the comparisons are shown in Table 2 to
show the trade-off between robustness against uncer-
tainties and sensitivity to faults. From the results of
robustness and fault sensitivity in Table 2, the robust-
ness index is increasing as theweightλr increaseswhile
the fault sensitivity index is decreasing as the weight
λf decreases. As shown in Figure 1, it is obvious that
a good trade-off between two performance indexes is
required.

To assess the performance of the proposed approach,
let consider faults in the two actuators f1(k) =

[a1 sin(θk), 0)]� and f2(k) = [0, a2 sin(θ2k)]� appear-
ing in a sequential manner and lasting each fault for
30 time steps, where θ = 0.05 ≤ 0.1. By means of sim-
ulations, we can evaluate the minimal detectable fault
(MDF) magnitude, i.e. the minimum value of a1 or
a2 that allow detecting the faults for at least one-step.
The results of minimal detectable faults are also pre-
sented in Table 2. As shown in Figure 2, the minimal
detectable faults a1 and a2 are plotted with different
selections of weights λr and λf . From this comparison,
it is clear that a trade-off between two objectives is very
important and has impact on the MDF. As labeled in
the yellow stars in both plots of Figure 2, we can realize
that the selection of weightsλr = 0.75 andλf = 0.25 is
a good trade-off sinceMDF a1 is the smallest andMDF
a2 is relatively small compared to the other selections.

We next present the simulation results with differ-
ent faulty cases. Several time-varying faults with dif-
ferent frequencies (not occurred simultaneously) are
considered as follows:

f1(k) = [a1 sin(θ1k), 0]� k1 ≤ k ≤ k2,

f2(k) = [0, a2 sin(θ2k)]� k3 ≤ k ≤ k4,

where θ1 and θ2 are the frequencies for two faults,
respectively.

Based on the development of Theorem 4.3, we
choose γ = 0.5, ε = 1 to guarantee the convergence
of the size of zonotopes. According to Remark 4.5 and
the results presented in Table 2, we choose λr = 0.75
and λf = 0.25 to make the zonotopic FD observer
more sensitive. With these parameters, α = 0.3 and
L = 30F� are adjusted from the feasibility of the opti-
mization problem (35). In the simulation results pre-
sented in the following, we consider two faulty cases
as follows:

Figure 2. Comparison of minimal detectable faults with different weights. (a) MDF a1. (b) MDF a2.



Figure 3. Case 1: fault detection result with θ1 = θ2 = 0.05 and a1 = a2 = 0.25. (a) r1. (b) r2. (c) r3. (d) χ .

Figure 4. Case 2: fault detection result with θ1 = 0.05, θ2 = 0.3 and a1 = a2 = 0.25. (a) r1. (b) r2. (c) r3. (d) χ .



• Case 1: |θ1| = |θ2| ≤ 0.1;
• Case 2: |θ1| ≤ 0.1, |θ2| ≥ 0.1 and a1 = a2.

For each case, the residual bound ri ∈ [ri, ri] for i =
1, . . . , p and ∀k ∈ N is computed by using the interval
hull of the zonotope (as in Definition 2.2) determined
by

ri = cr,i − rs(Hr)i,i,

ri = cr,i + rs(Hr)i,i.

Fault detection results are shown in Figure 3-4. In Case
1, the frequencies θ1 and θ2 for both faults are within
the range |θ | ≤ 0.1 where the observer achieves the
best trade-off between fault sensitivity and robustness.
As shown in Figure 3, the faults occurred during two
periods 30 ≤ k ≤ 50 and 80 ≤ k ≤ 100 are detected
with a1 = a2 = 0.25. In Case 2, θ1 = 0.05 still remains
in the given frequency domain and θ2 is considered to
be out of this given domain. In Figure 4, with θ2 = 0.3,
the residual signals are moving around the coordinate
origin so that some faults occurred between 83 ≤ k ≤
86 and 93 ≤ k ≤ 96 cannot be detected.

5.3. Comparisonwith othermethod

The performance of the proposed FD observer gain is
compared with a time-varying observer gain denoted
by Ḡ(k) obtained only to optimise state estimation per-
formance. Following the method in Wang et al. (2018,
Theorem 6), this time-varying observer gain can be
obtained by

Ḡ(k) = TAP̄(k)C�(CP̄(k)C� + DvD�
v )−1,

with P̄(k) = Ĥ(k)Ĥ(k)�.

Figure 5. Comparison of the residual zonotopes.

In this case, the objective is only to minimise
the effect of uncertainties corresponding to the state
bounding zonotope 〈ĉ(k), Ĥ(k)〉, ∀k ∈ N. The residual
zonotopes (13) from time step k = 48 to k = 53 are
shown in Figure 5. From these zonotopes, it can be
seen that the size of these zonotopes does not diverge.
Besides, the residual zonotopes obtainedwith the opti-
mal FD observer gain are more sensitive to faults since
these zonotopes are located away from the coordinate
origin.

6. Conclusion

In this paper, we have designed a zonotopic FD
observer for discrete-time descriptor systems affected
by actuator faults. Under a set-based framework of
descriptor systems, we have decomposed the state
bounding zonotope in two zonotopes to separate
the effects of uncertainties and faults. Taking into
account the FD objective, fault sensitivity has been
assessed based on the decomposed zonotopes and a
H− index. To design the optimal FD observer gain,
we have obtained two LMI conditions that allow
establishing the trade-off robustness against uncer-
tainties and sensitivity to faults, respectively. Then,
based on these conditions, the optimal FD observer
gain can be obtained by solving an offline optimisa-
tion problem. Finally, we have applied the proposed
method to a case study to show its effectiveness. The
comparison results with an approach that does not
consider the trade-off between robustness and fault
sensitivity have been provided. Besides, it is worth
mentioning that with rank(E) = n, the proposed set-
based FD method can also be used for discrete-time
dynamic systems. As future work, we will explore
relaxing the observability conditions of the proposed
method.

Acknowledgements

This work was partially funded by the Fundamental Research
Funds for the Central University under the project (No.
3072020CFJ0401), and by the Natural Science Foundation of
Heilongjiang Province under the grant (YQ2020F008).

Disclosure statement

No potential conflict of interest was reported by the authors.



Funding

This work was partially funded by the Fundamental Research
Funds for the Central University under the project [grant num-
ber 3072020CFJ0401], and by the Natural Science Founda-
tion of Heilongjiang Province under the grant [grant number
YQ2020F008].

Notes on contributors

Ye Wang received the M.Sc. degree in Automatic Control and
Robotics and the Ph.D. degree (CumLaude) inAutomatic Con-
trol, Robotics, and Vision both from the Universitat PoliteÌĂc-
nica de Catalunya-BarcelonaTech (UPC), Spain, in 2014 and
2018, respectively. From 2015 to 2018, he was a Research Fellow
of the Spanish National Research Council (CSIC) at the Institut
de RoboÌĂtica i InformaÌĂtica Industrial (IRI), CSIC-UPC. In
March 2016, November 2016 and January 2018, he was a visit-
ing researcher at University of Seville, Spain. From February
to May 2017, and from March to April 2018, he was a visit-
ing researcher at CentraleSupélec, University of Paris-Saclay,
France. He is an Associate Professor at the College of Intel-
ligent Systems Science and Engineering, Harbin Engineering
University (HEU), China. His research interest includes model
predictive control, fault diagnosis and fault-tolerant control.

VicencÌğ Puig received the B.Sc. andM.Sc. degrees in Telecom-
munications Engineering and the Ph.D. degree in Automatic
Control, Vision, and Robotics from the Universitat PoliteÌĂc-
nica de Catalunya-BarcelonaTech (UPC), Barcelona, Spain, in
1993 and 1999, respectively. He is a Full Professor at the Auto-
matic Control Department, UPC, and a researcher at the Insti-
tut de RoboÌĂtica i InformaÌĂtica Industrial (IRI), CSIC-UPC.
He is also the director of the Automatic Control Department
and the head of the Advanced Control Systems (SAC) research
group, UPC. He has developed important scientific contribu-
tions in the areas of fault diagnosis and fault-tolerant control,
using interval, and linear-parameter-varying models using set-
based approaches. He has participated in more than 20 Euro-
pean and national research projects in the last decade. He has
also led many private contracts with several companies and has
published more than 220 journal articles as well as over 500
contributions in international conference/workshop proceed-
ings. He has supervised over 25 Ph.D. dissertations and over 50
master theses/final projects. He was the general chair of the 3rd
IEEE Conference on Control and Fault-Tolerant Systems (Sys-
Tol 2016) and the IPC chair of IFAC Safeprocess 2018. He is
also the chair of the IFAC Safeprocess TC Committee 6.4.

Gabriela Cembrano received the M.Sc. degree in Industrial
Engineering and the Ph.D. degree in Automatic Control
from the Universitat Politècnica de Catalunya-BarcelonaTech
(UPC). She is a tenured researcher of the Spanish National
Research Council (CSIC) at the Institut de Robòtica i Infor-
màtica Industrial (IRI), CSIC-UPC. Since 2007, she has been
a scientific advisor of the CETaqua, a water technology centre.
Her main research interest includes control engineering and
its applications to water systems management. She has taken

part in numerous fundamental and industrial research projects
in this field since 1990. Most recently, she has been the scien-
tific director of the EC Project EFFINET and the CSIC leader
in projects LIFE-EFFIDRAIN and DEOCS. She has published
over 150 journal and conference papers in this field.

Yuxin Zhao received the Ph.D. degree in Navigation, Guidance
and Control from the Harbin Engineering University (HEU) in
2005, and completed a postdoctoral research inControl Science
and Engineering at the Harbin Institute of Technology (HIT)
in 2008. In 2004, he was awarded a scholarship for visiting the
Levin Institute of State University of New York (SUNY) from
the State Administration of Foreign Experts Affairs. From 2012
to 2013, he was a visiting scholar at the Centre for Transport
Studies (CTS), Imperial College London. He is a Full Profes-
sor and Dean of the College of Intelligent Systems Science and
Engineering, HEU, China. His research interest includes arti-
ficial intelligence, filtering theory, marine navigation system
and intelligent transportation system. He has published more
than 100 papers, including more than 40 international journal
papers in these areas.

References

Alamo, T., Bravo, J., & Camacho, E. (2005). Guaranteed state
estimation by zonotopes. Automatica, 41(6), 1035–1043.
https://doi.org/10.1016/j.automatica.2004.12.008

Biegler, L., Campbell, S., & Mehrmann, V. (2012). Control and
optimisation with differential-algebraic constraints. Society
for Industrial and Applied Mathematics.

Blanke, M., Kinnaert, M., Lunze, J., & Staroswiecki, M. (2016).
Diagnosis and fault-tolerant control. Springer.

Chabane, S., Stoica, C., Alamo, T., Camacho, E. F., & Dumur, D.
(2014). Improved set-membership estimation approach based
on zonotopes and ellipsoids. In 2014 European control con-
ference (ECC), Strasbourg, France (pp. 993–998). IEEE.

Chadli, M., Abdo, A., & Ding, S. (2013). Fault detection
filter design for discrete-time Takagi-Sugeno fuzzy sys-
tem.Automatica, 49(7), 1996–2005. https://doi.org/10.1016/
j.automatica.2013.03.014

Chen, J., & Patton, R. (1999).Robustmodel-based fault diagnosis
for dynamic systems. Springer.

Combastel, C. (2015). Zonotopes and Kalman observers: Gain
optimality under distinct uncertainty paradigms and robust
convergence. Automatica, 55, 265–273. https://doi.org/
10.1016/j.automatica.2015.03.008

Ding, S. (2013).Model-based fault diagnosis techniques. Springer.
Duan,G. (2010).Analysis and design of descriptor linear systems.

Springer.
Goupil, P. (2010). Oscillatory failure case detection in the

A380 electrical flight control system by analytical redun-
dancy. Control Engineering Practice, 18(9), 1110–1119.
https://doi.org/10.1016/j.conengprac.2009.04.003

Iwasaki, T., & Hara, S. (2005). Generalized KYP lemma: Uni-
fied frequency domain inequalities with design applica-
tions. IEEE Transactions on Automatic Control, 50(1), 41–59.
https://doi.org/10.1109/TAC.2004.840475

https://doi.org/10.1016/j.automatica.2004.12.008
https://doi.org/10.1016/j.automatica.2013.03.014
https://doi.org/10.1016/j.automatica.2015.03.008
https://doi.org/10.1016/j.conengprac.2009.04.003
https://doi.org/10.1109/TAC.2004.840475


Iwasaki, T., Hara, S., & Fradkov, A. (2005). Time domain inter-
pretations of frequency domain inequalities on (semi)finite
ranges. Systems & Control Letters, 54(7), 681–691. https://
doi.org/10.1016/j.sysconle.2004.11.007

Komachali, F., & Shafiee, M. (2020). Sensor fault diagnosis
in fractional-order singular systems using unknown input
observer. International Journal of Systems Science, 51(1),
116–132. https://doi.org/10.1080/00207721.2019.1701135

Komachali, F., Shafiee, M., & Darouach, M. (2019). Design
of unknown input fractional order proportional-integral
observer for fractional order singular systems with
application to actuator fault diagnosis. IET Control Theory &
Applications, 13(14), 2163–2172. https://doi.org/10.1049/iet-
cta.2018.5712

Le, V., Stoica, C., Alamo, T., Camacho, E., Dumur, D. (Eds.).
(2013). Zonotopes from guaranteed state-estimation to con-
trol. John Wiley & Sons.

Merhy, D., Stoica, C., Alamo, T., & Camacho, E. F. (2019).
Ellipsoidal set-membership state estimation for descriptor sys-
tems. In 2019 23rd International conference on system the-
ory, control and computing (ICSTCC), Sinaia, Romania (pp.
1–6). IEEE.

Nosrati, K., & Shafiee, M. (2018). Kalman filtering for discrete-
time linear fractional-order singular systems. IET Control
Theory & Applications, 12(9), 1254–1266. https://doi.org/
10.1049/iet-cta.2017.0898

Puig, V. (2010). Fault diagnosis and fault tolerant control using
set-membership approaches: application to real case studies.
International Journal of Applied Mathematics and Computer
Science, 20(4), 619–635. https://doi.org/10.2478/v10006-010
-0046-y

Puig, V., Quevedo, J., Escobet, T., & Nejjari, F. (2008). Pas-
sive robust fault detection of dynamic processes using inter-
val models. IEEE Transactions on Control Systems Technol-

ogy, 16(5), 1083–1089. https://doi.org/10.1109/TCST.2007.
906339

Stevens, B., Lewis, F., & Johnson, E. (2016). Aircraft control
and simulation: Dynamics, controls design, and autonomous
systems. Wiley-Blackwell.

Varga, A. (2017). Solving fault diagnosis problems. Springer.
Wang, Y., Puig, V., & Cembrano, G. (2017). Non-linear

economic model predictive control of water distribution
networks. Journal of Process Control, 56, 23–34. https://
doi.org/10.1016/j.jprocont.2017.05.004

Wang, Y., Puig, V., & Cembrano, G. (2018). Set-membership
approach and Kalman observer based on zonotopes for
discrete-time descriptor systems. Automatica, 93, 435–443.
https://doi.org/10.1016/j.automatica.2018.03.082

Wang, Z., Shen, Y., Zhang, X., & Wang, Q. (2012). Observer
design for discrete-timedescriptor systems:AnLMI approach.
Systems & Control Letters, 61(6), 683–687. https://doi.org/
10.1016/j.sysconle.2012.03.006

Wang, Z., Shi, P., & Lim, C. (2017). H_/H∞âĂŇ fault
detection observer in finite frequency domain for lin-
ear parameter-varying descriptor systems. Automatica, 86,
38–45. https://doi.org/10.1016/j.automatica.2017.08.021.

Wang, Y., Zhou,M., Puig, V., Cembrano, G., &Wang, Z. (2017).
Zonotopic fault detection observer with H_ performance.
In Chinese control conference (CCC), Dalian, China (pp.
7230–7235). IEEE.

Xu, F., Puig, V., Ocampo-Martinez, C., Stoican, F., & Olaru,
S. (2014). Actuator-fault detection and isolation based on
set-theoretic approaches. Journal of Process Control, 24(6),
947–956. https://doi.org/10.1016/j.jprocont.2014.04.016

Yeu, T., Kim, H., & Kawaji, S. (2005). Fault detection, isolation
and reconstruction for descriptor systems. Asian Journal of
Control, 7(4), 356–367. https://doi.org/10.1111/asjc.2005.7.
issue-4

https://doi.org/10.1016/j.sysconle.2004.11.007
https://doi.org/10.1080/00207721.2019.1701135
https://doi.org/10.1049/iet-cta.2018.5712
https://doi.org/10.1049/iet-cta.2017.0898
https://doi.org/10.2478/v10006-010-0046-y
https://doi.org/10.1109/TCST.2007.906339
https://doi.org/10.1016/j.jprocont.2017.05.004
https://doi.org/10.1016/j.automatica.2018.03.082
https://doi.org/10.1016/j.sysconle.2012.03.006
https://doi.org/10.1016/j.automatica.2017.08.021
https://doi.org/10.1016/j.jprocont.2014.04.016
https://doi.org/10.1111/asjc.2005.7.issue-4

	1. Introduction
	2. Preliminaries
	2.1. Zonotopes
	2.2. H- index and generalised KYP lemma

	3. Problem statement
	4. Main results
	4.1. Zonotopic observer decomposition
	4.2. Zonotopic fault detection observer gain design
	4.2.1. Robustness condition
	4.2.2. H- fault sensitivity condition
	4.2.3. The optimisation problem setup

	4.3. Zonotopic fault detection algorithm

	5. Case study: a chemical mixing system
	5.1. Description
	5.2. Simulation results
	5.3. Comparison with other method

	6. Conclusion
	Acknowledgements
	Disclosure statement
	Funding
	References



