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ABSTRACT
In this paper, the recursive state-of-charge (SOC) estimation problem is investigated
for the Li-ion batteries. The uncertain parameters, which are used to account for
the effects of the changing temperatures, the battery power and the drift current
of current sensors, are considered in the modeling process of the Li-ion batteries.
Moreover, the uncorrelated/correlated noises are also considered based on the engi-
neering practice. The aim of the paper is to design a SOC estimation scheme such
that an upper bound on the estimation error covariance is guaranteed, and such
an upper bound is then minimized by appropriately designing the estimator gain.
Finally, simulation experiments are carried out to demonstrate the effectiveness of
our proposed SOC estimation scheme.
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1. Introduction

Recently, electric vehicles have received persistent attention due to their environment-
friendly nature and zero-carbon emission (Burke, 2007; Khaligh, & Li, 2010; Xiong,
Cao, Yu, He, & Sun, 2018). In order to achieve an adequate tradeoff between the
endurance and the performance, Li-ion batteries have been widely used in mobile
equipment, electric vehicles and aircraft. Despite the advantages such as the high en-
ergy density, low maintenance cost and a long lifetime, Li-ion batteries are sensitive
to different working conditions and environment changes (Kim, Song, Son, Ono, & Qi,
2019). As a key index, the state-of-charge (SOC), which indicates the situations of the
Li-ion batteries, plays a vital role in ensuring the safe usage, maximizing the perfor-
mance and increasing the cycle life of the Li-ion batteries (Zhang, Hu, Wang, Sun, &
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Dorrell, 2018). Unfortunately, due to the limitations of the measuring techniques, the
SOC can’t be measured directly. As such, there exists an urgent need to develop a
state estimation scheme to estimate the SOC of Li-ion batteries.

As a key module of the battery management system, accurate yet efficient SOC
estimation plays a vital role in the operation and control of electric vehicles. Up to
now, there are mainly two kinds of models, named the electrochemical model and the
electrical equivalent circuit model, which are used to characterize the Li-ion batter-
ies (Xiong, Cao, Yu, He, & Sun, 2018). Although the electrochemical model is more
precise, the parameter identification process of such a model is quite difficult. Com-
pared with the electrochemical model, the electrical equivalent circuit one is more suit-
able for application since the tradeoff between the precision and complexity has been
better achieved (Pizarro-Carmona, Cortes-Carmona, Palma-Behnke, Calderon-Munoz,
Orchard, & Estevez, 2019). Specifically, the most common way of characterizing the
electrical equivalent circuit model is to resort to the multi-order resistance-capacitance
(RC) elements (Xiong, Cao, Yu, He, & Sun, 2018). However, as reported in Kollmeyer,
Hackl, & Emadi (2017), such kind of method has difficulty in accurately revealing the
dynamic behaviors of the Li-ion batteries. Fortunately, in order to overcome the draw-
backs mentioned above, some improved electrical equivalent circuit models have been
proposed. For example, in Andre, Meiler, Steiner, Walz, Soczka-Guth, & Sauer (2011),
the Zarc element has been introduced to capture the high and low frequency charac-
teristics of the Li-ion batteries. Moreover, the Warburg element has been considered
in Schweighofer, Wegleiter, Recheis, & Fulmek (2012) to reveal the dynamic behaviors
of the Li-ion batteries. In this paper, the Li-ion battery model under consideration is
similar to the one proposed in Kollmeyer, Hackl, & Emadi (2017).

So far, several estimation schemes have been developed for the SOC estimation
problem for Li-ion batteries, see e.g. Cheng, Lee, Liu, & Sun (2015); Jeong, Cho, Ahn,
Ryu, & Lee (2014); Xing, He, Pecht, & Kwok (2014); Yang, Zhang, & Li (2015). As one
of the conventional methods, the ampere-hour integral technique, which is achieved
by integrating the measured current, has been widely used in the SOC estimation
problems for Li-ion batteries (Jeong, Cho, Ahn, Ryu, & Lee, 2014; Yang, Zhang, &
Li, 2015). However, due to the accumulated measurement errors caused by the current
sensor, the estimation accuracy of such kind of method is relatively low (Chen, Fu, &
Mi, 2013). Moreover, the open circuit voltage (OCV)-SOC conversion method, which
is realized through look-up tables between SOC and OCV, has also been used in the
SOC estimation problem for Li-ion batteries (Cheng, Lee, Liu, & Sun, 2015; Xing, He,
Pecht, & Kwok, 2014). Unfortunately, the waiting time of the OCV-SOC conversion
method is pretty long since the Li-ion battery needs a long time to reach a reaction
equilibrium (Xing, He, Pecht, & Kwok, 2014). As such, there is a practical need to
develop new SOC estimation methods for Li-ion batteries in order to respond to the
ever-increasing demand for the dynamic monitoring of electric vehicles.

Owing to the iterative nature and the model-based estimation process, the Kalman-
filtering-based SOC estimation schemes have been widely deployed in the monitoring
of the Li-ion batteries, see e.g. Chen, Fu, & Mi (2013); Gao, Zhang, & He (2015); He,
Chen, Pan, Chen, & Wang (2016); Mastali, Vazquez-Arenas, Fraser, Fowler, Afshar,
& Stevens (2013); Meng, Luo, & Gao (2016); Plett (2006); Santhanagopalan, & White
(2006). Since the model of the Li-ion battery is strong nonlinear, the extended Kalman
filtering approach is one of the most common methods in the SOC estimation. For
example, in Mastali, Vazquez-Arenas, Fraser, Fowler, Afshar, & Stevens (2013), the
SOC estimation problem has been studied by using two types of Kalman filters named
the extended Kalman filter (EKF) and the dual extended Kalman filter. Moreover,
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in order to reduce the calculation burden of the Jacobian matrix and better handling
the nonlinear terms more precisely, the unscented Kalman filtering algorithm for SOC
estimation has been proposed in He, Chen, Pan, Chen, & Wang (2016); Meng, Luo, &
Gao (2016). Recently, some novel algorithms have been proposed in (Charkhgard, &
Farrokhi, 2010; Chemali, Kollmeyer, Preindl, & Emadi, 2018; Li, Han, Hou, Dong, &
Liu, 2020; Song, Ding, Liu, &Wang, 2020; Tan, Shen, Peng, & Liu, 2020). Nevertheless,
it should be pointed out that the battery parameter variations are not considered in
the above-mentioned literature. In view of the actual battery situation, some factors
will result in uncertainties such as the ambient temperature (Johnson, Pesaran, &
Sack, 2001), the battery power (Luo, Lv, Wang, & Liu, 2011) and the drift current of
current sensors (He, Liu, Zhang, & Chen, 2013). Hence, we take the uncertainty into
account in this paper.

A fundamental assumption of most existing SOC estimation algorithms for Li-ion
batteries is that the process and measurement noises are uncorrelated (Feng, Wang,
& Zeng, 2011). However, such an assumption is quite conservative, and in many prac-
tical situations, these two noises are often correlated due to various factors such as
the complex noisy environment (Song, Zhu, Zhou, & You, 2007) and the discretiza-
tion of a continuous-time system (Li, 2003). The correlated noises would largely affect
the estimation accuracy of the estimator and even diverge the estimated error if they
are not tackled properly. As such, the estimation problems with autocorrelated noises
and/or cross-correlated noises have been extensively studied, see e.g. Feng, Wang, &
Zeng (2011); Fu, & Song (2008); Hu, Wang, & Gao (2013); Qu, Li, Liu, & Alsaadi
(2020). Furthermore, some optimized methods have been obtained on state estima-
tion problems under the variance constraint recently, see e.g. Hu, Wang, Liu, Jia &
Williams (2020); Zhang, Hu, Liu, Yu & Liu (2019). With respect to Li-ion batter-
ies, correlated noises are also inevitable. For example, the measured physical signals,
which are transmitted by the analog-digital converters (ADCs) in electric vehicles,
would be contaminated by correlated noises. Moreover, the complex electromagnetic
environment of electric vehicles may also result in the phenomenon of correlated nois-
es. Therefore, it is of great necessity to design an effective recursive SOC estimator
for Li-ion batteries in the presence of correlated noises, and this constitutes another
motivation of our current research.

In response to the above discussions, in this paper, we aim to investigate the SOC
estimation problem for Li-ion batteries with uncertain parameters and uncorrelat-
ed/correlated noises. The fundamental challenges can be listed as follows: 1) how can
we model the Li-ion battery in the presence of uncertain parameters and uncorrelat-
ed/correlated noises? 2) how can we develop the estimation scheme which is suitable
for online application? and 3) how can we ensure a minimal upper-bounded estima-
tion error covariance? As such, great efforts have been made in this paper to meet
these challenges. The main contributions of this paper can be underlined as follows:
1) the SOC estimation problem is, for the first time, addressed for Li-ion batteries
with uncertain parameters and uncorrelated/correlated noises; 2) an explicit model
for Li-ion batteries with uncertain parameters and uncorrelated/correlated noises is
proposed that caters for a more real engineering environment; and 3) the developed
recursive SOC estimation algorithm is suitable for online application. Finally, simula-
tion experiments are implemented to illustrate the effectiveness of the proposed SOC
estimation scheme for Li-ion batteries.

The rest of this paper is organized as follows. In Section 2, the Li-ion battery
model with uncertain parameters and uncorrelated/correlated noises is introduced,
and the recursive SOC estimator structure is presented. The main results are shown
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in Section 3 where the SOC estimators for Li-ion batteries with uncertain parameters
and uncorrelated/correlated noises are designed, respectively. Subsequently, the upper
bounds of the estimation error covariances under the uncorrelated/correlated noises
are obtained and the optimal gains are solved by minimizing such upper bounds. In
Section 4, simulation experiments are performed on a detailed Li-on battery to verify
the effectiveness of the developed SOC estimation scheme. The conclusion is given in
Section 5.

Notations: The notations used in this paper are standard. Rn denotes the n dimen-
sional Euclidean space. MT represents the transpose of the matrix M . M−1 represents
the inverse of the matrix M . In denotes the n× n-dimensional identity matrix. E{x}
stands for the expectation of the stochastic variable x. tr(M) represents the trace
of M . Matrices, if they are not explicitly specified, are assumed to have compatible
dimensions.

2. Problem Formulation

2.1. System Model

As one of the essential indexes of a battery, the SOC, which is defined as the ratio of
available and maximum capacity, has been widely used in battery health monitoring.
Generally, the SOC can be acquired through the ampere-hour integral method (i.e.
the time integral of the measured battery current) as follows:

SOC = SOC0 + η

∫ t

0
i(t)dt (1)

where SOC0 represents the initial value of SOC for a battery, η is equal to 1/3600C
with C is the maximum battery capacity and i represents the instantaneous current.

It should be pointed out that due to the massive measurement noise and accumu-
lated measurement errors, such kind of method cannot be directly utilized to obtain
the exact value of SOC (Chen, Fu, & Mi, 2013). As such, it is an effective way to use
the state estimation scheme to obtain the value of SOC in the presence of massive
measurement noise and accumulated measurement errors. Before proceeding further,
we are going to construct a model of the battery first. Based on the modeling approach
mentioned in Kollmeyer, Hackl, & Emadi (2017), the equivalent circuit model (ECM)
of a battery is shown in Fig. 1, which consists of a two-order RC network, a conductor
L, an internal resistance R0 and a Warburg element Zwb. R1, R2 and C1, C2 are the
resistances and the capacitors of RC networks, respectively. V1 is the voltage drop on
capacitor C1 and V2 is the voltage drop on capacitor C2. V0 is the terminal voltage. i
is the current which is positive for charging the battery and negative for discharging.
E0 is the open circuit voltage of the battery.

The differences between the general multi-order RC model are that L and Zwb are
added, where L aims to capture the high-frequency characteristics and Zwb captures
the low-frequency characteristics of a battery. Zwb is a constant phase element and
defined as Schweighofer, Wegleiter, Recheis, & Fulmek (2012):

Zwb =
c√
jωD

tanh(
l√
D

√
jω) (2)

4



E0

L R0

R1

C1 C2

R2

ZWb
+

-

V0V1 V2

i charging

discharging

+

-

Figure 1. Equivalent circuit model of the battery.
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Figure 2. Equivalent model of the Warburg element as a number of RC pairs.

where ω is the angular frequency, c is a constant, D and l are the coefficient and
length of diffusion, respectively. For more details about these coefficients, we refer
the reader to Mauracher, & Karden (1997). For sake of the subsequent simulation
program, we have to transform the Warburg element from the frequency domain to
the time domain. However, such a transformation can’t be executed directly due to the
lack of Laplace transformation (Andre, Meiler, Steiner, Walz, Soczka-Guth, & Sauer,
2011). Fortunately, in Mauracher, & Karden (1997), an alternative method has been
proposed under which the Warburg element can be equivalent to a number of RC pairs
shown in Fig. 2. Therefore, the final parameters are defined as below (Mauracher, &
Karden, 1997):

Rwb =
cl

D
, Cwb =

l

2c
,

Rwn = ωnRwb, Cwn = Cwb,

ωn =
8

(2n− 1)2π2

where n is the number of RC elements, Rwn, Cwn and ωn are the resistance, capacitance
and scaling factor of the n-th RC network, respectively. The voltage drop of the n-th
RC element is defined as Vwn. For the tradeoff between the computational burden and
accuracy of battery modeling, in this paper, we choose n = 5 to model the Warburg
element (Kollmeyer, Hackl, & Emadi, 2017).

Next, the state space model is constructed to estimate the SOC of the battery. In
this paper, we choose the voltage drop V1, V2 ,Vw1, Vw2, Vw3, Vw4, Vw5 and SOC as
state variables, To be specific, we can define the state vector as

x = [V1, V2, Vw1, Vw2, Vw3, Vw4, Vw5, SOC]T
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, [x1, x2, x3, x4, x5, x6, x7, x8]
T ∈ RN (N = 8).

In the light of Kirchhoff’s current laws and (1)-(2), we can obtain the following for-
mulas:

ẋ1 = − 1

R1C1
x1 +

1

C1
i,

ẋ2 = − 1

R2C2
x2 +

1

C2
i,

ẋ3 = − 1

Rw3Cw3
x3 +

1

Cw3
i = − π2

8RwbCwb
x3 +

1

Cwb
i,

ẋ4 = − 1

Rw4Cw4
x4 +

1

Cw4
i = − (3π)2

8RwbCwb
x4 +

1

Cwb
i,

ẋ5 = − 1

Rw5Cw5
x5 +

1

Cw5
i = − (5π)2

8RwbCwb
x5 +

1

Cwb
i,

ẋ6 = − 1

Rw6Cw6
x6 +

1

Cw6
i = − (7π)2

8RwbCwb
x6 +

1

Cwb
i,

ẋ7 = − 1

Rw7Cw7
x7 +

1

Cw7
i = − (9π)2

8RwbCwb
x7 +

1

Cwb
i,

ẋ8 = ηi. (3)

Based on the above equations, the state space equation can be written into a standard
form:

ẋ = Ax+Bi (4)

where

A =



− 1
R1C1

0 0 0 0 0 0 0

0 − 1
R2C2

0 0 0 0 0 0

0 0 − π2

8RwbCwb
0 0 0 0 0

0 0 0 − (3π)2

8RwbCwb
0 0 0 0

0 0 0 0 − (5π)2

8RwbCwb
0 0 0

0 0 0 0 0 − (7π)2

8RwbCwb
0 0

0 0 0 0 0 0 − (9π)2

8RwbCwb
0

0 0 0 0 0 0 0 0


,

B =

[
1

C1

1

C2

1

Cwb

1

Cwb

1

Cwb

1

Cwb

1

Cwb
η

]T
.

Discretizing the system (4) with a period T , we obtain the discretized model as
follows:

xk+1 = Adxk +Bdik (5)

where Ad = eAT , Bd = (
∫ T
0 eAtdt)B.
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Considering the changes of susceptible battery parameters with the factors such as
the ambient temperatures, the battery power and the drift current of current sensors,
the real-valued uncertain matrix ∆Ak is added to model the uncertainties. Moreover,
taking the process noise into consideration, we can obtain the following equation:

xk+1 = (Ad +∆Ak)xk +Bdik + wk (6)

where wk is the process noise.
The original value of state x0 is assumed to be a stochastic variable with:

E{x0} = x̄0,

E{(x0 − x̄0)(x0 − x̄0)
T } = P0|0.

The uncertainty ∆Ak is assumed to satisfy

∆Ak = MkFkNk,

FkF
T
k ≤ I8

(7)

where Fk denotes the time-varying uncertainty, Mk and Nk are known matrices of
suitable dimensions. I8 is the identity matrix.

Remark 1. The Li-ion battery can be modeled as (3) based on the Kirchhoff’s current
laws and internal features of batteries. Then, the model can be written into a general
continuous-time linear form (4). For the sake of estimator design and application,
the continuous-time linear system (4) can be discretized as a discrete-time one as
shown in (5). Since the battery parameters are easily impacted by internal or external
factors, the uncertainty of battery parameters is considered in this paper. Therefore,
the discretized model (5) can be further modeled as (6) by taking the parameter
uncertainties and the process noise into consideration.

Remark 2. Note that the parameters of Li-ion batteries are often influenced due
to the external environment changes and the internal characteristics. For example,
Johnson, Pesaran, & Sack (2001) has pointed out that the internal resistance will
increase when the ambient temperature is low. Moreover, the connections between the
impedance parameters and the low power during the discharge cycle have also been
revealed in Luo, Lv, Wang, & Liu (2011). Furthermore, He, Liu, Zhang, & Chen (2013)
has also pointed out that the drift currents of the current sensor are unavoidable during
the acquisition process, which may also result in the uncertain parameters. As such,
the parameter uncertainty is considered in this paper.

2.2. Measurement Model

In this paper, the battery terminal voltage is chosen as the measured output since it
can be obtained directly by using the voltage sensors. Note that the voltage drop of
the inductor L can be neglected in a short time. As such, according to the Kirchhoff’s
voltage laws, the terminal voltage V0 can be written as

V0 = V1 + V2 + Vw1 + Vw2 + Vw3 + Vw4 + Vw5 + E0 + iR0. (8)
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With the aid of curve fitting method, the open circuit voltage E0 can be modeled
as:

E0 = f(SOC)

= a1SOC6 + a2SOC5 + a3SOC4 + a4SOC3

+ a5SOC2 + a6SOC + a7

where a1 to a7 are the coefficients obtained by the least square method. For more
details, please refer to Section 4.1.

By letting z = V0 and taking the measurement noise into consideration, the dis-
cretized version of (8) with the discrete period T can be described as

zk = h(xk) + ikR0 + vk (9)

where

h(xk) = x1,k + x2,k + x3,k + x4,k + x5,k + x6,k + x7,k + f(x8,k),

and vk is the measurement noise.

2.3. Cases with Correlated and Uncorrelated Noises

In order to cater for the engineering practice, the cases with correlated and uncorre-
lated noises are both considered in this paper.

Caes 1. Uncorrelated noises

In this case, the process noise wk is assumed to be a Gaussian white noise with zero-
mean and covariance Qk > 0. Similarly, the measurement noise vk is also assumed to
be a Gaussian white noise with zero-mean and covariance Rk > 0. Moreover, wk, vk
and the initial variables x0 are mutually independent.

Caes 2. Correlated noises

In this case, the noise signals wk and vk have the following statistical properties:

E{wk} = 0,

E{wkw
T
l } = Qkδk,l +Qk,lδk,l−1 +Qk,lδk,l+1,

E{vk} = 0,

E{vkvTl } = Rkδk,l +Rk,lδk,l−1 +Rk,lδk,l+1,

(10)

where Qk > 0, Qk,l, Rk > 0 and Rk,l are known matrices with appropriate dimensions.
δk,l is the Kronecker function

δk,l =

{
1 if k = l

0 if k ̸= l.

Moreover, the signals wk, vk, x0 are assumed to be mutually unrelated.
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Remark 3. In case 1, the process noise and the measurement noise are both assumed
to be uncorrelated. However, in practical engineering, such an assumption is fairly
conservative. For example, the correlated noises are often encountered in many practi-
cal situations such as the discretisation process of a continuous-time system (Li, 2003)
and the synchronisation process of the non-uniform data (Song, Zhu, Zhou, & You,
2007). Moreover, the complicated noisy environment and the applications of ADCs
may also result in the correlated noises (Feng, Wang, & Zeng, 2013). As such, in case
2, the autocorrelated noises are considered.

2.4. State Estimator Structure

Based on the Li-ion battery model mentioned above, the following state estimator is
constructed:

x̂k+1|k = Adx̂k|k +Bdik,

x̂k+1|k+1 = x̂k+1|k +Kk+1[zk+1 − (h(x̂k+1|k) + ik+1R0)]
(11)

where x̂k+1|k and xk+1|k+1 are the one-step prediction and the estimate of state xk+1,
respectively, and Kk+1 is the gain of estimator.

Substituting (9) into (11) yields

x̂k+1|k+1 = x̂k+1|k +Kk+1[(h(xk+1) + ik+1R0 + vk+1)− (h(x̂k+1|k) + ik+1R0)]

= x̂k+1|k +Kk+1[h(xk+1) + vk+1 − h(x̂k+1|k)].
(12)

Expanding h(xk+1) around x̂k+1|k with the aid of Taylor series expansion, we have

h(xk+1|k) = h(x̂k+1|k) +Hk+1x̃k+1|k + o(|x̃k+1|k|) (13)

where

Hk+1 , (∂h(xk+1)/∂xk+1)|xk+1=x̂k+1|k

and o(|x̃k+1|k|) represents the high-order terms of the Taylor series expansion which is
neglected in this paper.

Combining (12) and (13), we can rewrite xk+1|k+1 as

x̂k+1|k+1 = x̂k+1|k +Kk+1(Hk+1x̃k+1|k + vk+1). (14)

Let us define the one-step prediction error and the estimation error as follows:

x̃k+1|k , xk+1 − x̂k+1|k,

x̃k+1|k+1 , xk+1 − x̂k+1|k+1.
(15)

Then, it follows from (6), (9) and (11)-(15), we have

x̃k+1|k = Adx̃k|k +∆Akxk + wk, (16)

x̃k+1|k+1 = xk+1 − x̂k+1|k −Kk+1(Hk+1x̃k+1|k + vk+1)

= x̃k+1|k −Kk+1(Hk+1x̃k+1 + vk+1)
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= (I −Kk+1Hk+1)x̃k+1|k −Kk+1vk+1. (17)

Define the one-step prediction error covariance and the estimation error covariance
as Pk+1|k , E{x̃k+1|kx̃

T
k+1|k} and Pk+1|k+1 , E{x̃k+1|k+1x̃

T
k+1|k+1}, respectively. For

the sake of clarity, in the case of uncorrelated noises, we use Pu,k+1|k and Pu,k+1|k+1 to
represent the one-step prediction error covariance and the estimation error covariance,
and Pc,k+1|k and Pc,k+1|k+1 are the ones in the case of correlated noises.

The aim of this paper is to design state estimation schemes for the SOC estimation
under the foregoing two cases such that

(1) the upper bounds of the estimation error covariances Ξu,k+1|k+1 and Ξc,k+1|k+1

(Ξu,k+1|k+1 is in the case of uncorrelated noises and Ξc,k+1|k+1 is in the case of
correlated noises) must be guaranteed, i.e.,

Pu,k+1|k+1 ≤ Ξu,k+1|k+1,

Pc,k+1|k+1 ≤ Ξc,k+1|k+1.

(2) the upper bounds should be minimized by utilizing appropriate estimator gains
Ku,k+1 and Kc,k+1 (Ku,k+1 is in the case of uncorrelated noises and Kc,k+1 is in
the case of correlated noises) at each time step through a recursive method.

3. Main Results

In this section, we aim to study the SOC estimation problem with uncertain param-
eters under the cases of uncorrelated noises and correlated noises. In each case, the
one-step prediction error covariance and the estimation error covariance are firstly
characterized. Then, the upper bounds of these covariances are derived based on the
stochastic analysis technique. Finally, the estimator gains are obtained by minimizing
the upper bound of the estimation error covariance, respectively.

For deriving main results, we introduce the following useful lemmas.

Lemma 3.1. For x and y are the two vectors with any dimension and γ is a positive
scalar. We have

xT y + yTx ≤ γxTx+ γ−1yT y.

Lemma 3.2. For matrices M, N, X and P with appropriate dimensions, the following
equations hold

∂tr(MXN)
∂X = MTNT , ∂tr(MXTN)

∂X = NM,
∂tr((MXN)P (MXN)T )

∂X = 2MTMXNPNT .

3.1. Design of The Estimator With Uncorrelated Noises

Taking (16) and (17) into account, we can obtain the recursion forms of the one-
step prediction error covariance and the estimation error covariance in the case of
uncorrelated noises which will be shown in the following lemma.
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Lemma 3.3. The one-step prediction error covariance Pu,k+1|k and the estimation
error covariance Pu,k+1|k+1 can be obtained as follows:

Pu,k+1|k = AdPu,k|kA
T
d +AdE{x̃k|kxTk }∆AT

k +∆AkE{xkx̃Tk|k}A
T
d

+∆AkE{xkxTk }∆AT
k +Qk

(18)

and

Pu,k+1|k+1 = (I −Ku,k+1Hk+1)Pu,k+1|k(I −Ku,k+1Hk+1)
T

+Ku,k+1Rk+1K
T
u,k+1.

(19)

Proof. Based on the definitions of one-step prediction error covariance and estimation
error covariance, the validations (18) and (19) can be derived directly. Thus, the proof
is omitted here for brevity.

Theorem 3.4. Consider the one-step prediction error covariance Pu,k+1|k and the es-
timation error covariance Pu,k+1|k+1 in (18) and (19). Let γ1,k and γ2,k be the positive
scalars. If the following two Riccati-like difference equations

Ξu,k+1|k = (1 + γ2,k)AdΞu,k|kA
T
d + (1 + γ−1

2,k)× tr{Nk[(1 + γ1,k)Ξu,k|k

+ (1 + γ−1
1,k)x̂k|kx̂

T
k|k]N

T
k }MkM

T
k +Qk,

and

Ξu,k+1|k+1

=(I −Ku,k+1Hk+1)Ξu,k+1|k(I −Ku,k+1Hk+1)
T +Ku,k+1Rk+1K

T
u,k+1

with the initial condition Pu,0|0 ≤ Ξu,0|0 have the positive-definite solutions Ξu,k+1|k
and Ξu,k+1|k+1, then Ξu,k+1|k+1 is an upper bound of Pu,k+1|k+1, i.e., Pu,k+1|k+1 ≤
Ξu,k+1|k+1.

Moreover, such an upper bound can be minimized with the following estimator gain:

Ku,k+1 = Ξu,k+1|kH
T
k+1(Hk+1Ξu,k+1|kH

T
k+1 +Rk+1)

−1. (20)

Proof. To begin with, let us handle the first term of right-hand side of (18). By
applying Lemma 3.1 and (15), we have

E{xkxTk }
=E{(x̃k|k + x̂k|k)(x̃k|k + x̂k|k)

T } ≤ (1 + γ1,k)Pu,k|k + (1 + γ−1
1,k)x̂k|kx̂

T
k|k

(21)

where γ1,k is a positive scalar.
Similarly, the second and third terms of the right-hand side of (18) can be tackled

as

AdE{x̃k|kxTk }∆AT
k +∆AkE{xkx̃Tk|k}A

T
d

≤γ2,kAdPu,k|kA
T
d + γ−1

2,k∆AkE{xkxTk }∆AT
k

where γ2,k is a positive scalar.

11



Next, according to (7) and (21), we have

∆AkE{xkxTk }∆AT
k

≤MkFkNk[(1 + γ1,k)Pu,k|k + (1 + γ−1
1,k)x̂k|kx̂

T
k|k]N

T
k F

T
k MT

k

≤tr{Nk[(1 + γ1,k)Pu,k|k + (1 + γ−1
1,k)x̂k|kx̂

T
k|k]N

T
k }MkM

T
k .

Then we can obtain the following inequality:

Pu,k+1|k ≤ (1 + γ2,k)AdPu,k|kA
T
d + (1 + γ−1

2,k)tr{Nk[(1 + γ1,k)Pu,k|k

+ (1 + γ−1
1,k)x̂k|kx̂

T
k|k]N

T
k }MkM

T
k +Qk

≤ (1 + γ2,k)AdΞu,k|kA
T
d + (1 + γ−1

2,k)tr{Nk[(1 + γ1,k)Ξu,k|k

+ (1 + γ−1
1,k)x̂k|kx̂

T
k|k]N

T
k }MkM

T
k +Qk

In virtue of mathematical induction, we can obtain that Pu,k+1|k ≤ Ξu,k+1|k.
Moreover, based on the above discussions, the following inequality can be derived

Pu,k+1|k+1

=(I −Ku,k+1Hk+1)Pu,k+1|k(I −Ku,k+1Hk+1)
T +Ku,k+1Rk+1K

T
u,k+1

≤(I −Ku,k+1Hk+1)Ξu,k+1|k(I −Ku,k+1Hk+1)
T +Ku,k+1Rk+1K

T
u,k+1.

By using the mathematical induction approach, it is not difficult to verify that

Pu,k+1|k+1 ≤ Ξu,k+1|k+1.

Finally, we are ready to derive the estimator gain by minimizing the upper bound
Ξu,k+1|k+1. According to Lemma 3.2, taking the partial derivative of Ξu,k+1|k+1 with
respect to Ku,k+1 and letting the derivative be zero, we have

∂tr(Ξu,k+1|k+1)

∂Ku,k+1

=− 2(I −Ku,k+1Hk+1)Ξu,k+1|kH
T
k+1 + 2Ku,k+1Rk+1

=0.

(22)

Based on (22), the estimator gain can be determined as the form shown in (20).
Therefore, the proof of this theorem is complete.

Up to now, the upper bound of the estimator error covariance has been obtained in
the presence of uncertain parameters and such an upper bound has been minimized by
appropriately designing an estimator gain. It is worth noting that the developed state
estimation scheme can be applied to the dynamic state estimation for SOC due to its
iterative nature. In the following, the impacts of the correlated noises are considered.

3.2. Design of The Estimator With Correlated Noises

In this subsection, the correlated noises with properties (10) are considered. The one-
step prediction error covariance and the estimation error covariance are firstly shown

12



in the following lemmas.

Lemma 3.5. Taking the impacts of the correlated noises into consideration, the one-
step prediction error covariance Pc,k+1|k can be described as

Pc,k+1|k = AdPc,k|kA
T
d +AdE{x̃k|kxTk }∆AT

k +∆AkE{xkx̃Tk|k}A
T
d

+Ad(Qk−1,k −Kc,kHkQk−1,k) + (Qk−1,k −Kc,kHkQk−1,k)
TAT

d

+∆AkE{xkxTk }∆AT
k +∆AkQk−1,k +QT

k−1,k∆AT
k +Qk.

(23)

Proof. From (16), the one-step prediction error covariance is obtained as follows:

Pc,k+1|k = E{x̃k+1|kx̃
T
k+1|k}

= AdPc,k|kA
T
d +AdE{x̃k|kxTk }∆AT

k +∆AkE{xkx̃Tk|k}A
T
d

+AdE{x̃k|kwT
k }+ E{wkx̃

T
k|k}A

T
d +∆AkE{xkxTk }∆AT

k

+∆AkE{xkwT
k }+ E{wkx

T
k }∆AT

k + E{wkw
T
k }.

(24)

Noting (10), we can derive that

E{xkwT
k } = E{[(Ad +∆Ak−1)xk−1 +Bdik−1 + wk−1]w

T
k }

= Qk−1,k.
(25)

Moreover, by applying (6), (10), (14) and (25), the term E{x̃k|kwT
k } can be derived as

follows:

E{x̃k|kwT
k } = E{xkwT

k } − E{x̂k|kwT
k }

= Qk−1,k − E{[x̂k|k−1 +Kc,k(zk − h(x̂k|k−1)−R0ik−1)]w
T
k }

= Qk−1,k − E{[x̂k|k−1 +Kc,k(Hkx̃k|k−1 + vk)]w
T
k }

= Qk−1,k − (I −Kc,kHk)E{x̂k|k−1w
T
k } −Kc,kE{(Hkxk + vk)w

T
k }

= Qk−1,k −Kc,kHkE{xkwT
k } −Kc,kE{vkwT

k }
= Qk−1,k −Kc,kHkQk−1,k.

(26)

By noting that x̂k|k−1 and vk are uncorrelated with the noise wk, the term

E{x̂k|k−1w
T
k } and E{vkwT

k } equal to zero when deriving (26). It follows from (24)-
(26) that (23) holds, which completes the proof.

Lemma 3.6. The estimation error covariance Pc,k+1|k+1 in this situation can be writ-
ten as follows:

Pc,k+1|k+1

=(I −Kc,k+1Hk+1)Pc,k+1|k(I −Kc,k+1Hk+1)
T + (I −Kc,k+1Hk+1)AdKc,kRk,k+1

×KT
c,k+1 +Kc,k+1R

T
k,k+1K

T
c,kA

T
d (I −Kc,k+1Hk+1)

T +Kc,k+1Rk+1K
T
c,k+1.

(27)

13



Proof. From (17), the estimation error covariance Pc,k+1|k+1 can be obtained as

Pc,k+1|k+1

=E{x̃k+1|k+1x̃
T
k+1|k+1}

=(I −Kc,k+1Hk+1)Pc,k+1|k(I −Kc,k+1Hk+1)
T − (I −Kc,k+1Hk+1)E{x̃k+1|kv

T
k+1}

×KT
c,k+1 −Kc,k+1E{vk+1x̃

T
k+1|k}(I −Kc,k+1Hk+1)

T +Kc,k+1E{vk+1v
T
k+1}KT

c,k+1.

(28)
The term E{x̃k+1|kv

T
k+1} in (28) can be derived as follows:

E{x̃k+1|kv
T
k+1} = E{xk+1v

T
k+1} − E{x̂k+1|kv

T
k+1}

where

E{xk+1v
T
k+1} = E{[(Ad +∆Ak)xk +Bdik + wk]v

T
k+1}

= 0
(29)

and

E{x̂k+1|kv
T
k+1}

=E{(Adx̂k|k +Bdik)v
T
k+1}

=E{Ad[x̂k|k−1 +Kc,k(zk − h(x̂k|k−1)−R0ik−1)]v
T
k+1 +Bdikv

T
k+1}

=E{Ad[x̂k|k−1 +Kc,k(Hkx̃k|k−1 + vk)]v
T
k+1 +Bdikv

T
k+1}

=Ad(I −Kc,kHk)E{x̂k|k−1v
T
k+1}+AdKc,kHkE{xkvTk+1}+AdKc,kE{vkvTk+1}

=AdKc,kRk,k+1.

(30)

By noting that x̂k|k−1 and xk are uncorrelated with vk+1, the term E{x̂k|k−1v
T
k+1}

and E{xkvTk+1} equal to zero when deriving (30). It follows from (28)-(30) that (27)
holds, which completes the proof.

Theorem 3.7. Consider the one-step prediction error covariance Pc,k+1|k and the
estimation error covariance Pc,k+1|k+1 in (23) and (27). Let γ3,k, γ4,k and γ5,k be the
positive scalars. If the following two Riccati-like difference equations

Ξc,k+1|k

=(1 + γ4,k)AdΞc,k|kA
T
d + (1 + γ−1

4,k)tr{NkΘkN
T
k }MkM

T
k + γ5,kNkN

T
k MkM

T
k

+ γ−1
5,kQk−1,kQ

T
k−1,k +Ad(Qk−1,k −Kc,kHkQk−1,k)

+ (Qk−1,k −Kc,kHkQk−1,k)
TAT

d +Qk

and

Ξc,k+1|k+1

=(I −Kc,k+1Hk+1)Ξc,k+1|k(I −Kc,k+1Hk+1)
T + (I −Kc,k+1Hk+1)AdKc,kRk,k+1
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×KT
c,k+1 +Kc,k+1R

T
k,k+1K

T
c,kA

T
d (I −Kc,k+1Hk+1)

T +Kc,k+1Rk+1K
T
c,k+1,

with the initial condition Pc,0|0 ≤ Ξc,0|0 have the positive-definite solutions Ξc,k+1|k and
Ξc,k+1|k+1 where

Θk = (1 + γ3,k)Ξc,k|k + (1 + γ−1
3,k)x̂k|kx̂

T
k|k,

then, the matrix Ξc,k+1|k+1 is the upper bound of Pc,k+1|k+1, namely

Pc,k+1|k+1 ≤ Ξc,k+1|k+1.

Moreover, such an upper bound can be minimized at each time step through the fol-
lowing estimator gain:

Kc,k+1 = (Hk+1Ξc,k+1|k −RT
k,k+1K

T
c,kA

T
d )Ω

−1
k+1 (31)

where

Ωk+1 = Hk+1Ξc,k+1|kH
T
k+1 −Hk+1AdKc,kRk,k+1

−RT
k,k+1K

T
c,kA

T
dH

T
k+1 +Rk+1.

Proof. Let’s consider the right side of (23) term by term. Based on Lemma 3.1 and
(15), the term E{xkxTk } can be tackled as

E{xkxTk }
=E{(x̃k|k + x̂k|k)(x̃k|k + x̂k|k)

T } ≤ (1 + γ3,k)Pc,k|k + (1 + γ−1
3,k)x̂k|kx̂

T
k|k.

(32)

Similarly, the second and third terms of the right side of (23) can be rearranged as

AdE{x̃k|kxTk }∆AT
k +∆AkE{xkx̃Tk|k}A

T
d

≤γ4,kAdPc,k|kA
T
d + γ−1

4,k∆AkE{xkxTx }∆AT
k .

Moreover, the seventh and eighth terms of the right side of (32) can be written as
follows:

∆AkQ
T
k−1,k +Qk−1,k∆AT

k ≤ γ5,k∆Ak∆AT
k + γ−1

5,kQk−1,kQ
T
k−1,k.

Noting that (7) and (32), we can obtain the following two inequalities:

∆Ak∆AT
k

= MkFkNkN
T
k F

T
k MT

k ≤ NkN
T
k MkM

T
k

and

∆AkE{xkxTk }∆AT
k

≤MkFkNk[(1 + γ3,k)Pc,k|k + (1 + γ−1
3,k)x̂k|kx̂

T
k|k]N

T
k F

T
k MT

k

≤tr{Nk[(1 + γ3,k)Pc,k|k + (1 + γ−1
3,k)x̂k|kx̂

T
k|k]N

T
k }MkM

T
k .
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Based on the above discussions, we have

Pc,k+1|k

≤ (1 + γ4,k)AdPc,k|kA
T
d + (1 + γ−1

4,k)tr{Nk[(1 + γ3,k)Pc,k|k + (1 + γ−1
3,k)x̂k|kx̂

T
k|k]N

T
k }

+ γ5,kNkN
T
k MkM

T
k + γ−1

5,kQk−1,kQ
T
k−1,k +Ad(Qk−1,k −Kc,kHkQk−1,k)

+ (Qk−1,k −Kc,kHkQk−1,k)
TAT

d +Qk

≤ (1 + γ4,k)AdΞc,k|kA
T
d + (1 + γ−1

4,k)tr{Nk[(1 + γ3,k)Ξc,k|k + (1 + γ−1
3,k)x̂k|kx̂

T
k|k]N

T
k }

+ γ5,kNkN
T
k MkM

T
k + γ−1

5,kQk−1,kQ
T
k−1,k +Ad(Qk−1,k −Kc,kHkQk−1,k)

+ (Qk−1,k −Kc,kHkQk−1,k)
TAT

d +Qk.
(33)

In virtue of mathematical induction, it is not difficult to verify that Pc,k+1|k ≤
Ξc,k+1|k.

Based on Lemma 3.6 and (33), we have

Pc,k+1|k+1

=(I −Kc,k+1Hk+1)Pc,k+1|k(I −Kc,k+1H
T
k+1) + (I −Kc,k+1Hk+1)AdKc,kRk,k+1K

T
c,k+1

+Kc,k+1R
T
k,k+1K

T
c,kA

T
d (I −Kc,k+1Hk+1)

T +Kc,k+1Rk+1K
T
c,k+1

≤(I −Kc,k+1Hk+1)Ξc,k+1|k(I −Kc,k+1H
T
k+1) + (I −Kc,k+1Hk+1)AdKc,kRk,k+1K

T
c,k+1

+Kc,k+1R
T
k,k+1K

T
c,kA

T
d (I −Kc,k+1Hk+1)

T +Kc,k+1Rk+1K
T
c,k+1.

In the light of the mathematical induction approach, we can conclude that

Pc,k+1|k+1 ≤ Ξc,k+1|k+1.

Now, we are ready to solve the estimator gain by minimizing the upper bound
Ξc,k+1|k+1. Taking the partial derivative of the upper bound Ξc,k+1|k+1 with respect
to Kc,k+1 and letting the result be zero, we have

∂tr(Ξc,k+1|k+1)

∂Kc,k+1

=− 2(I −Kc,k+1Hk+1)Ξc,k+1|kH
T
k+1 + 2Kc,k+1Rk+1 + 2AdKc,kRk,k+1

− 2Kc,k+1Hk+1AdKc,kRk,k+1 − 2Kc,k+1R
T
k,k+1K

T
c,kA

T
dH

T
k+1

=0.

Based on the above equation, the estimator gain Kc,k+1 is obtained as the form
shown in (31). The proof is complete.

So far, we have designed the recursive estimation scheme to estimate SOC of bat-
teries. The designed state estimators will be validated in the next section in the ex-
periments and simulations of a detailed battery.

Remark 4. Until now, the SOC estimation problem has been studied for Li-ion bat-
teries with uncertain parameters and uncorrelated/correlated noises. Based on the
Kirchhoff’s laws and internal features of batteries, the Li-ion batteries with uncertain
parameters and uncorrelated/correlated noises are modeled in (6) and (9) and the
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state estimator is constructed in (11). It should be noted that the exact value of the
one-step prediction error covariance can’t be obtained directly due to the presence of
the uncertainty matrix ∆Ak. Hence, it is impossible to obtain the exact value of the
estimation error covariance. In order to sort out this problem, the upper bounds of
the one-step prediction error covariance as well as the estimation error covariance are
obtained in Theorem 3.4 and Theorem 3.7. Then, the upper bounds of the estimation
error covariances are minimized by appropriately designing the estimator gain.

4. Simulation Results

In this section, the parameter identification of a Li-ion battery is performed firstly.
Then, simulation experiments under two cases are carried out to test our proposed
SOC estimation scheme. Moreover, the comparisons between the standard EKF and
our proposed estimation method are also presented.

4.1. Battery Parameter Extraction

The battery data set can be obtained by testing a Panasonic NCR18650PF Li-ion
battery, which is used in Tesla’s electric vehicles (Kollmeyer, 2018).

To identify the parameters of the battery, the Electrochemical Impedance Spec-
troscopy (EIS) tests, which is a general method of analyzing the electric double layer
and diffusion of the electrode process by measuring the changes of the impedance with
the frequency changing sine wave, are carried out in 25 ◦C (Andre, Meiler, Steiner,
Walz, Soczka-Guth, & Sauer, 2011). The experimental fitting model is sufficient to fit
the battery performance since it can cover the frequency from 1 kHz to 100 mHz. The
measured EIS curve and the fitted curve at 25 ◦C are shown in Fig. 3.

0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06 0.065 0.07

-0.03

-0.02

-0.01

0

0.01

Modeled
Measured

Figure 3. The fitting result to EIS measurement at 25 degree.

According to the least square method, the obtained parameters of the battery model
at a temperature of 25 ◦C are shown in Table 1.
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Table 1. The parameter values of Li-ion batteries

Parameter Value
L 2.47×10−7 H
R0 0.0207 Ω
R1 0.0034 Ω
C1 0.1676 F
R2 0.0042 Ω
C2 1.9570 F
Rwb 0.1894 Ω
Cwb 1084 F

In accordance with (5), the system parameters are

Ad =



2.1580× 10−76 0 0 0 0 0 0 0
0 5.2922× 10−6 0 0 0 0 0 0
0 0 0.9940 0 0 0 0 0
0 0 0 0.9474 0 0 0 0
0 0 0 0 0.9704 0 0 0
0 0 0 0 0 0.9588 0 0
0 0 0 0 0 0 0.9474 0
0 0 0 0 0 0 0 1


,

Bd =



0.0034
0.0042

9.1974× 10−4

3.0475× 10−4

1.8176× 10−4

1.2905× 10−4

9.9779× 10−5

9.5785× 10−6


.

The parameters of the uncertainty ∆Ak are set as Fk = 0.2sin(k), Mk =
[0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0001]T and Nk = [1 1 1 1 1 1 1 0.001].

Since the OCV is a function of the SOC, we can obtain the OCV-SOC curve by
performing the Hybrid PulsePower Characteristic (HPPC) test (Kollmeyer, Hackl, &
Emadi, 2017). Fig. 4a shows the mean squared error (MSE) of various polynomials
which are used to fit the OCV-SOC curve.

From Fig. 4a, we can find that the six-order polynomial equation can achieve a
tradeoff between the accuracy of fitting and the computational burden. Therefore, as
shown in Fig. 4b, the six-order polynomial equation is used to fit the OCV-SOC curve.
To be more specific, the expression of the OCV-SOC curve is given by:

E0 = 12.1428SOC6 − 33.3722SOC5 + 30.7913SOC4 − 8.1766SOC3

− 2.6534SOC2 + 2.3112SOC + 3.1322.

4.2. Battery SOC Estimation

In this part, the pulse current test is carried out on the MATLAB/Simulink firstly.
Experiments consist of a series of the constant pulse which lasts for 140s and then
returns to 0 for 1860s. The pulse current is a typical 1 C rate (i.e. 2.9 A). The plots
of the input current and battery terminal voltage are shown in Fig. 5. Moreover,
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Figure 4. (a) The MSE of different polynomial orders. (b) The OCV-SOC curve.

the current and terminal voltages under the Urban Dynamometer Driving Schedule
(UDDS) are shown in Fig. 6 (Kollmeyer, Hackl, & Emadi, 2017).
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Figure 5. Pulse current test. (a) Discharging current. (b) Terminal voltage.
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Figure 6. UDDS drive cycle. (a) Discharging current. (b) Terminal voltage.

Case 1: The Simulation Results with Uncorrelated Noises.
Let the covariances of the process and measurement noises be Qk = 10−14I8 and

Rk = 10−6, respectively. Set other parameters as γ1,k = 0.3, γ2,k = 3 × 10−4 and
Ξu,0|0 = 10−10I8.

The comparison results under the pulse current test are shown in Fig. 7a. Moreover,
the error curve between the true SOC and the estimated SOC is shown in Fig. 7b.
Similarly, under the UDDS situation, the results are shown in Fig. 8.

From Figs. 7b and 8b, we can find that the error of our proposed SOC estimation
scheme is much less than the standard EKF, which demonstrates the effectiveness of
our proposed SOC estimation scheme.

Case 2: The Estimator With Correlated Noises.
The correlated noises are set as

wk = αk + αk−1,

vk = βk + βk−1
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Figure 7. Pulse current test. (a) The comparison of actual SOC and estimated SOC. (b) The error of SOC.
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Figure 8. UDDS drive cycle. (a) The comparison of actual SOC and estimated SOC. (b) The error of SOC.

where αk is a zero-mean Gaussian white noise with covarianceQk and βk is a zero-mean
Gaussian white noise with covariance Rk.

We set γ3,k = 0.3, γ4,k = 3 × 10−4 and γ5,k = 10−3. The noise covariances Qk and
Rk are set as 10−12I8 and 10−6, respectively. The initial estimation error covariance
is set as Ξc,0|0 = 10−10I8.

The comparison results under the pulse current test are shown in Fig. 9a. Moreover,
the error curve between the true SOC and the estimated SOC is shown in Fig. 9b.
Similarly, under the UDDS situation, the results are shown in Fig. 10. From Figs. 9-
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Figure 9. Pulse current test. (a) The comparison of actual SOC and estimated SOC. (b) The error of SOC.
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Figure 10. UDDS dirve cycle. (a) The comparison of actual SOC and estimated SOC. (b) The error of SOC.
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10, it can be seen that the proposed SOC estimation scheme performs well even in the
presence of uncertain parameters and correlated noises.

5. Conclusion

In this paper, the SOC estimation problem for Li-ion batteries has been investigated.
A model of Li-ion batteries with uncertain parameters has been established. The un-
correlated and correlated noises have been considered in the SOC estimator design,
respectively. Based on the proposed SOC estimation scheme, the upper bound for the
estimation error covariance has been derived. Then, such an upper bound is minimized
by appropriately designing the estimator gain. Finally, simulation experiments for the
SOC estimation have been carried out to verify the state estimator performance. The
results show that the proposed estimator scheme performs better than the EKF in the
presence of uncertain parameters and uncorrelated/correlated noises. In future work,
we plan to identify a more accurate model to reduce the model error and extend some
novel theoretical results to the SOC estimation problem.
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