
Supplementary

S.I. Calculating Size of a Virtual Obstacle

The navigation space is an indoor environment, and has adequate features for detection
and identification. Moreover, recent image procesing techniques are equipped with
algorithms to predict size of a detected object with substantial accuracy.
With these assumptions, let us consider there are several closely spaced obsacles with
no passage space in between (constraint boundaries will overlap each other). The
collection of obstacles can be grouped together to form a larger obstacle. The centroid
of the set of obstacles is computed by considering the centroid of each individual
obstacle as a vertex of a planar polygon. The resultant point forms the centre of the
virtual obstacle, (xobs, yobs). Let, the largest line segment joining the centroid of the set
of obstacles and any of the centroids of the individial obstacles be denoted as r1. Let,
the line segment joinging the corresponding obstacle and its farthest vetrex be termed
as r2. Then, r1 + r2 forms the radius robs of the virtual obstacle. Any arbitrarily
shaped obstacle can be treated like an irregular non-intersecting polygon. Hence,a
similar argument can be applied to visible portions of the same. Figure 1 explains the
mechanism pictorially. This method promotes a far more safe maneuver and is robust
in avoiding local minima conditions compared to a standard wall-following strategy.
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Figure 1. A virtual obstacle can be created from the closely located obstacles of arbitrary shapes, which
allow no passage through them.

S.II. Derivations of the ODEs for Tracking and Collision Avoidance

Differentiating (4) (also, applicable to equation (13)) with respect to the control vari-
ables, v(t) and θ(t) one can arrive at the following equations (S.1).

v(t) =
1

2wv

(

λ1(t) cos(θ(t)) + λ2(t) sin(θ(t))
)

(

− λ1v(t) sin(θ(t)) + λ2v(t) cos(θ(t))
)

= 0

(S.1)

Assuming the vehicle does not stop in the mission interval (persistent excitation con-
dition), that is v(t) > 0,∀t ∈ [0, Tint], we can write the expression for heading to
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be θ(t) = tan−1
(

λ2(t)
λ1(t)

)

. This further enables us to express the terms, cos(θ(t)) and

sin(θ(t)) in terms of λ1(t) and λ2(t) as given in equation (S.2).

sin(θ(t)) =
λ2(t)

√

λ2
1(t) + λ2

2(t)

cos(θ(t)) =
λ1(t)

√

λ2
1(t) + λ2

2(t)
(S.2)

Replacing the angles defined above, into the expressions for velocity in equation
(S.1), we finally arrive at equation (5). Similarly the expressions for v(t) and θ(t) can
be derived for equation (14).

Equation (5) can be used to replace the control variables in equation (2) to yield
the time derivatives of x(t) and y(t) in equations (6) (Also, equation (14) can be used
to replace the control variables in equation (2) to obtain the time derivatives of the
states in (15)). Therefore, we obtain equation (S.3).

ẋ(t) =
λ1(t)

2wv

ẏ(t) =
λ2(t)

2wv

(S.3)

Equation (6) and (15) represent the derivatives of the Hamiltonians defined in equation
(4) and (13) respectively, with respect to the states and costates. Equations (6) and
(15) have been derived according to the relation (S.4), where H may represent the
Hamiltonian constructed for tracking or collision avoidance.

∂H

∂λ1(t)
= ẋ(t)

∂H

∂λ2(t)
= ẏ(t)

−
∂H

∂x(t)
= λ̇1(t)

−
∂H

∂y(t)
= λ̇2(t)

(S.4)

S.III. Existence-Uniqueness of Tracking Trajectory

Existence and uniqueness of the tracking trajectory can be proved by showing that the
second order system corresponding to equation (6) are Lipschitz continuous functions
for given state boundary values. Let us define a new set of variables, x̃(t), ỹ(t), λ̃1(t),
λ̃2(t), such that

x̃(t)=x(t)− xtar(t), λ̃1(t)=λ1(t)− 2wvvtar cos(θtar)

ỹ(t)=y(t)− ytar(t), λ̃2(t)=λ2(t)− 2wvvtar sin(θtar) (S.5)
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Equations in (6) are thereby linearly transformed into equation (S.6).

˙̃x(t)=
λ̃1(t)

2wv

,
˙̃
λ1(t)=2wd(x̃(t))

˙̃y(t)=
λ̃2(t)

2wv

,
˙̃
λ2(t)=2wd(ỹ(t))

(S.6)

The transformed equations in (S.6) can be re-written as second order differential equa-
tions (S.7) in x̃ and ỹ, where, f(x̃) = −(wd

wv
)x̃(t) and f(ỹ) = −(wd

wv
)ỹ(t).

¨̃x(t)−
(wd

wv

)

x̃(t)=0, ¨̃y(t)−
(wd

wv

)

ỹ(t)=0 (S.7)

(S.7) presents a second order boundary value problem with known x̃ and ỹ at both
the boundaries. Suppose, (x̃1, ỹ1) and (x̃2, ỹ2) are two tuples satisfying equation (S.7)
and wo = −(wd

wv
). Triangle inequality can be applied to write equation (S.8).

|f(x̃1)− f(x̃2)|=|(wo)(x̃1 − x̃2)|≤|wo|·|x̃1− x̃2|

|f(ỹ1)− f(ỹ2)|=|(wo)(ỹ1 − ỹ2)|≤|wo|·|ỹ1− ỹ2|
(S.8)

f(x̃) and f(ỹ) are assumed to be continuous bounded functions in time over [0, Tint].
To prove that f(x̃) and f(ỹ) are Lipschitzian, non-negative constants, Kx and Ky can
always be chosen, such that, |wo|≤Kx and |wo|≤Ky. A positive real Tint<

π
max{Kx,Ky}

assures existence of exactly one solution [31].

S.IV. Existence-Uniqueness of Avoidance Trajectory

It can be shown by Lipschitz continuity, that one and only one solution exists. For a
split boundary value problem, existence and uniqueness of the solution are simulta-
neously valid in the domain [t3, t3 +∆], only if the boundary values are zero. Linear
transformations are applied to x(t) and y(t) and new variables are defined as x̃(t),
ỹ(t).

Let, x̃(t)=x(t)− lx(t) and ỹ(t)=y(t)− ly(t), such that

x̃(t3)=0, ỹ(t3)=0

˙̃x(t3 +∆)=0, ˙̃y(t3 +∆)=0 (S.9)

The linear functions of time are defined as in (S.10) such that (S.11) holds.

lx(t)=x(t3)−(t3 − t)
λ1(t3 +∆)

2wv

ly(t)=y(t3)−(t3 − t)
λ2(t3 +∆)

2wv

(S.10)

lx(t3)=x(t3), l̇x(t3 +∆)=ẋ(t3 +∆)

ly(t3)=y(t3), l̇y(t3 +∆)=ẏ(t3 +∆) (S.11)
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l̇x(t) and l̇y(t) are constants and so, ¨̃x(t)=ẍ(t) and ¨̃y(t)=ÿ(t). This leads to a pair of

second order ordinary differential equations (S.12) in x̃(t) and ỹ(t), where, p= λ3

wv
(λ3

is a constant).

¨̃x(t)+p(x̃(t)+ lx(t)−xobs)=0

¨̃y(t)+p(ỹ(t)+ ly(t)− yobs)=0
(S.12)

Defining f(t, x̃)=p(x̃(t)+ lx(t)− xobs) and f(t, ỹ)=p(ỹ(t)+ ly(t)− yobs), we arbitrarily
choose (x̃1, ỹ1) and (x̃2, ỹ2) to be two tuples satisfying equation (S.12) at any t ∈
[t3, t3 +∆]. Applying triangle inequality gives (S.13).

|f(t, x̃1)− f(t, x̃2)|=|p(x̃1(t)+ lx(t)−xobs)−p(x̃2(t)+ lx(t)− xobs)|

≤|p|·|x̃1(t)− x̃2(t)‖

|f(t, ỹ1)− f(t, ỹ2)|=|p(ỹ1(t)+ ly(t)− yobs)−p(ỹ2(t)+ ly(t)− yobs)|

≤|p|·|ỹ1(t)− ỹ2(t)|

(S.13)

Hence, f(t, x̃) and f(t, ỹ) are Lipschitzian as, it is always possible to choose two non-
negative constants, Kx and Ky, such that, |p|≤Kx and |p|≤Ky. Assuming f(t, x̃) and
f(t, ỹ) are continuous in t ∈ [t3, t3 + ∆], both existence and uniqueness of the trans-
formed problem is guaranteed [31]. Since, lx(t) and ly(t) are also Lipschitz continuous,
the original problem will also have one and only one solution.
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