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ABSTRACT

This paper studies interval consensus for switched multiagent systems over di-
rected networks, which consist of a continuous-time subsystem and a discrete-time
subsystem regulated by a switching rule. Interval consensus refers to a state con-
strained consensus, where each agent is allowed to propose an acceptable interval
to saturate their expressed states and the final consensus state lies in the nonempty
intersection of all these intervals. We establish conditions guaranteeing interval con-
sensus for switched multiagent system under arbitrary switching rules. Furthermore,
we introduce the scaled interval consensus notion, which allows both the conver-
gence of states to a pre-assigned proportion and the scaled consensus values lying
in a desired range. Simulation results are provided to verify the effectiveness of the
theoretical results.
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1. Introduction

Distributed coordination in the control of multiagent systems has received consider-
able attention in control and system engineering. One of the fundamental topics is
consensus problems (Cao et al., 2013; Olfati-Saber et al., 2007), which capitalize on
the underlying network structure of complex systems to design distributed control
protocols that facilitate agreement on certain global behavior of common interest.
Many system constraints, including input saturation, measurement and communica-
tion, have been factored in recent research to accommodate realistic complexity in
various applications (Ding et al., 2020; Fu et al., 2019; Silva et al., 2021; Yan et al.,
2020).

Consensus in multiagent systems with state constraints has been challenging since
the consensus state has to stay in the constraint set given all other restrictions such
as system uncertainties and local information exchanges. For discrete-time systems, a
projection-based method has been introduced in Nedić et al. (2010) to confine state
trajectories in closed convex sets over networks with doubly stochastic adjacency ma-
trices. This algorithm is generalized to cope with time delay (Lin et al., 2017), random
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noise (Li & Ren, 2021), and higher-order agent dynamics (Lin et al., 2020). Con-
strained consensus in continuous-time has been investigated in Lee & Mesbahi (2011)
by using logarithmic barrier functions to push the states back to the constraint sets.
The idea of projection has also been applied to continuous-time systems in the pres-
ence of malicious agents (Shang, 2020a). A discarded consensus protocol is proposed
for both continuous- and discrete-time systems in Liu & Chen (2012) to discard a state
of neighbor that falls outside the constraint set.

An interesting direction considered by a recent group of work is to limit the system
excursion by employing the so-called interval consensus protocol (Fontan et al., 2020),
where each agent proposes an admissible interval indicating a preferred operating range
and only transmits its value saturated within this range. It is shown in Fontan et al.
(2020) that the final consensus value lies in the intersection of all admissible intervals
while the state trajectories are trespassable during the evolution. This idea is relevant
in many applications. For example, a group of robots in a surveillance network may
need to achieve a formation, where each robot has a certain target region; a processor
may be able to share a workload only if the task is within the constraint of its allocated
resource; an individual in social interactions may only feel comfortable to express their
opinion if its not too extreme (Shang, 2021). The research of interval consensus has
been conducted very recently in the case of uncertainty that is present in topology
structure (Fu et al., 2020) and agent behavior (Shang, 2020b).

However, to our knowledge consensus problems with state constraints have only
been investigated in multiagent systems consisting of only continuous-time subsystems
or only discrete-time subsystems. In reality, a switched multi-agent system consisting
of both continuous-time and discrete-time subsystems is more general and has many
applications (Zheng & Wang, 2016). For instance, activating all agents in a discrete
manner by a computer in an otherwise continuous-time multiagent system forms a
switched multiagent system consisting of both continuous-time and discrete-time sub-
systems. Continuous-time plant can also be controlled by a digitally performed regu-
lator or a physically performed one together with a switching protocol between them.
Some recent applications of switched multiagent systems in communication networks
with bumpless transfer control have been discussed in Ma et al. (2021). Based on the
Lyapunov theory, consensus has been firstly proved for switched multiagent systems
over connected undirected graphs in Zheng & Wang (2016). Since then switched mul-
tiagent systems have been deeply examined in a number of more advanced consensus
algorithms including finite-time consensus (Lin & Zheng, 2017), resilient consensus
(Shang, 2018), scaled consensus (Shang, 2019), controllability and observability (Tian
et al., 2019), leader-follower containment control (Wang et al., 2020), and cluster con-
sensus (Shang, in press). It is worth noting that asynchronously switched multiagent
systems have been extensively studied in e.g. Xue et al. (2020); Yoo (2018), where
heterogeneous dynamical agents do not share a common switching signal. However, in
these works agents only follow continuous-time control laws.

In this paper we contribute to this line of research by considering interval consensus
in switched multiagent systems over a directed network, where a continuous-time sub-
system and a discrete-time subsystem alternate possibly obeying an arbitrary switch-
ing law. We propose an interval consensus protocol and show that consensus can be
achieved with the final state converging inside the intersection of admissible intervals
of all agents provided the underlying network is strongly connected. Previous works
on switched systems (such as Lin & Zheng (2017); Shang (2018, 2019); Tian et al.
(2019); Wang et al. (2020); Zheng & Wang (2016)) rely on the agent dynamics where
state can evolve without restriction. The methods therein are not applicable in the
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constrained consensus problems considered here. Moreover, we extend the theory to
scaled interval consensus by incorporating a scaling coefficient for each agent so that
ratio of the states of any two agents asymptotically reach a prescribed value while
their scaled states remain in the common intersection of their admissible intervals. As
a byproduct, this result helps to demonstrate how ratio convergence is linked to state
convergence (Roy, 2015), which have only been studied as two orthogonal directions
so far. In fact, in the previous works, a domain of possible consensus state cannot be
determined when ratio convergence is the control objective (Roy, 2015; Shang, 2019;
Zhang et al., 2020). We mention that our framework is a two mode system, while the
works Xue et al. (2020); Yoo (2018) admit general m-mode dynamics.

The result of the paper is organized as follows. Section 2 presents some preliminaries
and the problem formulation. Section 3 is devoted to our main results. Numerical
examples are provided in Section 4. We conclude the paper in Section 5.

2. Model formulation

Let R+ = {x : x ≥ 0} and N+ = {0, 1, 2, · · · } be the sets of non-negative reals and non-
negative integers, respectively. Consider a directed graph G = (V, E) representing the
communication topology of n agents in the node set V = {1, 2, · · · , n}, where (i, j) ∈ E
is a directed edge from node i to node j indicating a communication link from i to j.
The neighborhood of i is denoted by Ni = {j : (j, i) ∈ E} and the adjacency matrix
associated with G is (aij) ∈ (R+)n×n, where aij > 0 if (j, i) ∈ E .

Inspired by the interval consensus framework, we assume each agent i ∈ V has
an admissible interval Ii = [pi, qi] which the agent would like their final state to be
in. The admissible interval is only assumed to be known to the agent i. Let xi(t) be
the information state of agent i at time t ≥ 0. We propose the following switched
multiagent system, which consists of a continuous-time subsystem

ẋi(t) =
∑
j∈Ni

aij(φj(xj(t)) − xi(t)), i ∈ V (1)

and a discrete-time subsystem

xi(t + 1) = xi(t) + h
∑
j∈Ni

aij(φj(xj(t)) − xi(t)), i ∈ V, (2)

where

φj(z) =

 pj , z < pj

z, pj ≤ z ≤ qj

qj , z > qj ,
(3)

is the saturated state that a neighbor received from agent j and h > 0 is the sampling
period. Recall that the interval for agent i is given by Ii = [pi, qi] satisfying pi ≤ qi

but the signs for pi and qi can be the same or different. Here, at each time instant t,
the activated subsystem, whether (1) or (2), is controlled by the switching rule under
consideration.
Remark 1. Note that the quantity φj(xj) can be well interpreted as the ‘expressed’
opinion of agent j in a social network, where their opinions may have a discrepancy
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with their ‘private’ opinions due to, for example, peer pressure or conformity to certain
norm (Shang, 2021). This mechanism is shown in Fontan et al. (2020) to have soft
control over the state evolution and hence is different from many previous work in Li
& Ren (2021); Lin et al. (2017); Liu & Chen (2012); Nedić et al. (2010), where private
states are directly adjusted and taken on a par with expressed states.
Remark 2. The discrete-time subsystem and the continuous-time subsystem is ac-
tivated alternatively in the switched multiagent system framework; c.f. Fig. 1 for a
schematic of the data flow. Note that this framework is different from hybrid systems
(Shang, 2020c; Zhao et al., 2020), where some nodes follow discrete-time protocols
while others follow continuous-time ones. If the continuous-time system (1) is switched
to the discrete-time system (2) at some time t0 ∈ R+, the system (2) will follow as
xi(t + 1) = xi(t) + h

∑
j∈Ni

aij(φj(xj(t)) − xi(t)) for t = t0, t0 + 1, t0 + 2, · · · . On the
other hand, if the discrete-time system (2) is switched to the continuous-time system
(1) at some time t0 ∈ R+, then the system (1) will similarly follow starting from this
time point.

Figure 1. Data flow for the switched multiagent system.

Given a continuous and locally Lipschitz function V (t) : R+ → R, the Dini derivative
is defined as D+V (t) = lim sups→0+(V (t + s) − V (t))/s. Let V (t) be a continuous
function on the interval (t1, t2). V is non-increasing over this interval if and only if
D+V (t) ≤ 0 for any t ∈ (t1, t2). Consider the differential equation

ẋ(t) = f(x(t)), (4)

where f : Rn → Rn. Let x(t) be a solution of (4). The upper right-hand derivative of
V with respect to (4) is defined by D+

f V (x) = lim sups→0+(V (x + sf(x)) − V (x))/s.

It is known that D+
f V (x)|x=x0 = D+V (x(t))|t=t0 , where x(t0) = x0 (Rouche et al.,

1977). Moreover, we will use the following property of the Dini derivative.
Lemma 1. ((Danskin, 1966; Shi et al., 2013)) For i ∈ V, let Vi(x) : Rm → R be C1

and V (x) = maxi∈V Vi(x). Let x(t) be an absolutely continuous function over some
interval (t1, t2). Then D+V (x(t)) = maxi∈Θ(t) V̇i(x(t)) for t ∈ (t1, t2), where Θ(t) =
{i ∈ V : V (x(t)) = Vi(x(t))}.

As the state of agent j ∈ V is saturated via φj(xj) following (1) and (2), the following
results regarding robust consensus are useful. The continuous-time part stems from
Shi & Johansson (2013, Thm 4.1) and the discrete-time part is a special case of Lin
& Lei (2018, Thm 1).
Lemma 2. Assume that G is a directed graph containing a directed spanning tree. Let
x(0) = (x1(0), · · · , xn(0)) be the initial condition.
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(i) Consider the continuous-time system over G,

ẋi(t) =
∑
j∈Ni

aij(xj(t) − xi(t)) + νi(t),

i ∈ V, t ∈ R+, (5)

where νi(t) is piecewise continuous. Then for any ε > 0, there is δ > 0 such that
the following holds: If maxi∈V supt∈R+ |νi(t)| ≤ δ, then lim supt→∞ maxi,j∈V |xi(t) −
xj(t)| ≤ ε for any x(0).

(ii) Consider the discrete-time system over G,

xi(t + 1) = xi(t) + h
∑
j∈Ni

aij(xj(t) − xi(t)) + νi(t),

i ∈ V, t ∈ N+, (6)

where 0 < h < 1/ maxi∈V
∑

j∈Ni
aij and νi(t) is bounded. Then for any ε > 0,

there is δ > 0 such that the following holds: If maxi∈V supt∈N+ |νi(t)| ≤ δ, then
lim supt→∞ maxi,j∈V |xi(t) − xj(t)| ≤ ε for any x(0).
Remark 3. The quantity νi(t) in (5) and (6) presents noise or perturbation incurred
to the system. Lemma 2 indicates that consensus error can be made sufficiently small
if the noise can be appropriately controlled. We will show that the constructed noise
term in our switched multiagent system (1) and (2) is vanishing, and hence by letting
ε → 0 in Lemma 1 we will derive the desired consensus behavior.

3. Main results

3.1. Interval consensus analysis

In this section, we investigate the interval consensus of switched multiagent system
(1) and (2), where each agent can independently nominate an admissible interval and
the system dynamics switch between continuous-time and discrete-time following a
switching rule. Formally,
Definition 1. (Fontan et al., 2020) For each node i ∈ V, we say that the multiagent
system under consideration reaches interval consensus if limt→∞ xi(t) exits and the
limit belongs to ∩i∈VIi for any initial condition x(0) and i ∈ V.

Recall that φj in (3) is a non-decreasing function and we set [p̂, q̂] = ∩i∈VIi if
the intersection is non-empty. Clearly, p̂ = maxi∈V pi and q̂ = mini∈V qi. Let x(t) =
(x1(t), x2(t), · · · , xn(t)).

Our first result regarding interval consensus of switched systems is the following.
Theorem 1. Consider the switched multiagent system (1) and (2) over the directed
graph G under an arbitrary switching rule. Assume that G is strongly connected and
[p̂, q̂] is non-empty. If h < 1/ maxi∈V

∑
j∈Ni

aij, then for any x(0), there exists ĉ ∈ [p̂, q̂]
such that limt→∞ xi(t) = ĉ for all i ∈ V.

Before proving the theorem, several remarks are in order.
Remark 4. It is worth noting that merely having a directed spanning tree in G does
not work here. Suppose there is a root node r ∈ V such that Nr = ∅. If xr(0) 6∈ [p̂, q̂],
then obviously the above final consensus value ĉ can not be found.
Remark 5. We do not impose any restriction such as xi(0) ∈ Ii (i ∈ V), on the initial
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condition x(0). As mentioned in Fontan et al. (2020), this feature of interval consensus
provides more flexibility compared with other consensus algorithms with hard-wired
constraints; see e.g. Li & Ren (2021); Lin et al. (2017); Nedić et al. (2010); Shang
(2020a).
Remark 6. The switching law here between continuous-time subsystem and discrete-
time subsystem can be arbitrary, which is highly desirable as the switching law usually
can not be pre-determined. However, previous works on switched multiagent systems
often impose restrictive conditions such as lower bounds on the activation time of
continuous-time subsystems; see e.g. Lin & Zheng (2017); Tian et al. (2019); Wang et
al. (2020).

Figure 2. Schematic illustration of the proof structure of Theorem 1. It is divided into two situations: Case
(a) the discrete-time subsystem dominates and Case (b) the continuous-time subsystem dominates. In each
case, the procedure is divided into two steps: Step I shows that the convergence into the common interval and
Step II focuses on the robust consensus of the switched system.

Proof of Theorem 1. Let M(t) = maxi∈V xi(t) and m(t) = mini∈V xi(t) be the
maximum and minimum of the states at time t ≥ 0. Without loss of generality, suppose
that there exists a sequence of time instants 0 ≤ t1 ≤ t̄1 ≤ t2 ≤ t̄2 ≤ · · · ≤ t̄k−1 ≤ tk ≤
t̄k ≤ · · · such that the continuous-time subsystem (1) is activated during t ∈ (tk, t̄k] and
the discrete-time subsystem (2) is activated during t ∈ (t̄k−1, tk]. Two complementary
scenarios will be considered below: (a) limk→∞ t̄k − tk = 0; and (b) there exists ∆ > 0
such that for any k1 ∈ N+ we have some k ≥ k1 satisfying t̄k − tk ≥ ∆. A schematic
diagram for the proof structure is shown in Fig. 2.

(a). We divide the proof in this scenario into two steps. In Step I, we show xi(t) ∈
[p̂, q̂] for any node i ∈ V as t → ∞. In Step II, we show the existence of ĉ.

Step I. For t ≥ 0, we define two functions Mq̂(t) = max{q̂,M(t)} and mp̂(t) =
min{p̂,m(t)}. When the discrete-time subsystem (2) is activated over [t, t + 1], using
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the assumption h < 1/ maxi∈V
∑

j∈Ni
aij and (3), we have

Mq̂(t + 1) =max
{

q̂, max
i∈V

{(
1 − h

∑
j∈Ni

aij

)
xi(t)

+ h
∑
j∈Ni

aijφ(xj(t))
}}

≤max
{

q̂, max
i∈V

{(
1 − h

∑
j∈Ni

aij

)
Mq̂(t)

+ h
∑
j∈Ni

aijMq̂(t)
}}

= Mq̂(t). (7)

Hence, there exists a constant M̂ such that limt→∞ Mq̂(t) = M̂ . On the other hand,
when the continuous-time subsystem (1) is activated over some interval I ⊆ [t, t+1], the
above limit still holds since limt→∞ |I| = 0 and xi(t) is continuous when (1) is in action.
Similarly, we have a constant m̂ such that limt→∞ mp̂(t) = m̂, and m̂ ≤ p̂ ≤ q̂ ≤ M̂ .

We next show m̂ = p̂ by using a contradiction argument. Assume that m̂ < p̂. For
any time s, there exists some node i0 ∈ V satisfying xi0(s) = m(s) ≤ m̂ < p̂. Since
G is strongly connected, consider a node i1 with i0 ∈ Ni1 . When the discrete-time
subsystem (2) is activated on [s, s + 1], we obtain

xi1(s + 1)

=
(
1 − h

∑
j∈Ni1

ai1j

)
xi1(s) + h

∑
j∈Ni1 ,j 6=i0

ai1jφj(xj(s))

+ hai1i0φi0(xi0(s))

≤
(
1 − h

∑
j∈Ni1

ai1j

)
Mq̂(s) + h

∑
j∈Ni1 ,j 6=i0

ai1jMq̂(s)

+ hai1i0 p̂

=(1 − hai1i0)Mq̂(s) + hai1i0 p̂

≤(1 − θ1)Mq̂(s) + θ1p̂, (8)

where we take θ1 = h min{aij : aij > 0, (i, j) ∈ E}/2 > 0, and note that p̂ ≤ Mq̂(s).
When the continuous-time subsystem (1) is activated inside [s, s + 1], there exists a
number δ(s) ≥ 0 satisfying lims→∞ δ(s) = 0 such that

xi1(s + 1) ≤(1 − hai1i0)(Mq̂(s) + δ(s)) + hai1i0(p̂ + δ(s))
≤(1 − θ1)Mq̂(s) + θ1p̂, (9)

where we choose s sufficiently large and hence δ(s) can be sufficiently close to zero.
Likewise, we examine the state of node i0 at time s + 1 as follows. When the discrete-
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time system (2) is activated on [s, s + 1], we have

xi0(s + 1) ≤
(
1 − h

∑
j∈Ni0

ai0j

)
p̂ +

(
h

∑
j∈Ni0

ai0j

)
Mq̂(s)

≤θ2p̂ + (1 − θ2)Mq̂(s), (10)

where we take θ2 = (1 − h maxi∈V
∑

j∈Ni
aij)/2 > 0. When the continuous-time sub-

system (1) is activated inside [s, s + 1], similarly arguing as (9) we can derive (10)
again. Hence, we have for k = i0, i1 and sufficiently large s,

xk(s + 1) ≤ θp̂ + (1 − θ)Mq̂(s), (11)

where θ := min{θ1, θ2}.
Consider the contiguous time interval [s+1, s+2]. When the discrete-time subsystem

is activated on it, we have for k = i0, i1,

xk(s + 2)

=
(
1 − h

∑
j∈Nk

akj

)
xk(s + 1) + h

∑
j∈Nk

akjφj(xj(s + 1))

≤θp̂ + θ
(
h

∑
j∈Nk

akj

)
(Mq̂(s) − p̂) + (1 − θ)Mq̂(s)

≤θp̂ + θ(1 − 2θ)(Mq̂(s) − p̂) + (1 − θ)Mq̂(s)

=2θ2p̂ + (1 − 2θ2)Mq̂(s), (12)

where we have used the definition of θ and (7). When the continuous-time subsystem
(1) is activated inside [s + 1, s + 2], we can take s sufficiently large such that

xk(s + 2) ≤θ(p̂ + δ(s)) + θ(1 − 2θ)(Mq̂(s) − p̂ + δ(s))
+ (1 − θ)(Mq̂(s) + δ(s))

≤θ2p̂ + (1 − θ2)Mq̂(s), (13)

where, again as in (9), δ(s) ≥ 0 is a number satisfying lims→∞ δ(s) = 0. Combining (12)
and (13) we have for k = i0, i1 and sufficiently large s, xk(s+2) ≤ θ2p̂+(1−θ2)Mq̂(s).
Repeating the above arguments, we obtain for k = i0, i1,

xk(s + τ) ≤ θτ p̂ + (1 − θτ )Mq̂(s), (14)

where τ = 1, 2, · · · , n− 1. As G is strongly connected, we next consider a node i2 such
that i0 ∈ Ni2 or i1 ∈ Ni2 . Without loss of generality, we assume the latter. When the
discrete-time subsystem (2) is activated on [s+1, s+2], by using (7) and (14) we have

xi2(s + 2) ≤(1 − hai2i1)Mq̂(s) + hai2i1((1 − θ)Mq̂(s) + θp̂)
≤(1 − 2θ)Mq̂(s) + 2θ((1 − θ)Mq̂(s) + θp̂)

=2θ2p̂ + (1 − 2θ2)Mq̂(s). (15)

When the continuous-time subsystem (1) is activated inside [s + 1, s + 2], similarly as
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above there exists δ(s) ≥ 0 and lims→∞ δ(s) = 0 such that

xi2(s + 2)
≤(1 − 2θ)(Mq̂(s) + δ(s)) + 2θ((1 − θ)Mq̂(s) + θp̂)

≤(1 − θ2)Mq̂(s) + θ2p̂, (16)

where we take s sufficiently large. Hence, combining (15) and (16) we know that
xi2(s + 2) ≤ (1 − θ2)Mq̂(s) + θ2p̂ always holds. Repeating the above arguments, we
obtain

xi2(s + τ) ≤ (1 − θτ )Mq̂(s) + θτ p̂ (17)

for τ = 2, 3, · · · , n − 1. Since the graph is strongly connected, we can then consider a
node i3 so that i0 ∈ Ni3 or i1 ∈ Ni3 or i2 ∈ Ni3 . We eventually can visit all nodes in
G and a recursion gives rise to

xk(s + n − 1) ≤ (1 − θn−1)Mq̂(s) + θn−1p̂ (18)

for k = i0, i1, · · · , in−1 and sufficiently large s.
We examine two situations: (i) p̂ < M̂ and (ii) p̂ = M̂ . We will show

lim sup
t→∞

M(t) ≤ p̂ (19)

is always true. In fact, in the case of (i), by the definition of M̂ we have (1 −
θn−1)Mq̂(s)+θn−1p̂ < M̂ for any sufficiently large s. By (18) we have xk(s+n−1) < M̂

for all k ∈ V. This means M̂ = q̂. Therefore, there is T > 0 such that φi(xi(t)) ≤ Mp̂(t)
for all i ∈ V and t ≥ T regardless of the specific subsystems. Hence, we can prove in-
equalities (8)-(18) again by replacing Mq̂(s) with Mp̂(s) therein employing the same
argument for sufficiently large s satisfying s ≥ T . In particular, the bound (18) can be
recast as

M(s + n − 1) ≤ (1 − θn−1)Mp̂(s) + θn−1p̂ (20)

for sufficiently large s. Let s → ∞ and we obtain (19). In the case of (ii), the statement
lim supt→∞ M(t) > p̂ = M̂ would lead to a contradiction against the definition of M̂ .
Hence, (19) is true.

Recall we have assumed that m̂ < p̂. This means limt→∞ m(t) = m̂. We next claim
that lim supt→∞ M(t) = p̂. In fact, if, on the contrary, lim supt→∞ M(t) < p̂ holds,
then there must exist some node j0 ∈ V and T > 0 such that for any t ≥ T we have
φj0(xj0(t)) = p̂. Since G is strongly connected, we consider j1 with j0 ∈ Nj1 . Since
lim supt→∞ M(t) < p̂, xj1(t) < p̂ − ε for some ε > 0 and all t sufficiently large. If the
discrete-time subsystem (2) is activated, then xj1(t + 1)−xj1(t) ≥ δ > 0 for some δ; if
the continuous-time subsystem (1) is activated, then we have ẋj1(t) ≥ δ > 0. In either
case, this contracts xj1(t) < p̂. Therefore, we conclude lim supt→∞ M(t) = p̂.

Next, we claim that limt→∞ m(t) = p̂. In fact, if this is not the case, then there
exists ε > 0 satisfying limt→∞ xj0(t) = limt→∞ m(t) = p̂ − ε and lim supt→∞ xj1(t) =
lim supt→∞ M(t) = p̂. Hence, for any T there exists t ≥ T such that xj0(t) < p̂−ε/2 <
p̂−ε/4 < xj1(t). If the discrete-time subsystem (2) is activated, xj0(t+1)−xj0(t) → 0
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as t → ∞. If the continuous-time subsystem (1) is activated, ẋj0(t) → 0 as t → ∞.
Therefore, for any k ∈ Nj0 , xk(t) is sufficiently close to p̂ − ε as t tends to infinity.
Likewise, any node k ∈ Nj1 , xk(t) is sufficiently close to p̂ as t tends to infinity. Since
G is strongly connected and finite, there exists some time T such that (i) there is a
directed spanning tree with root node r and two directed paths linking r to j0 and r to
j1 respectively, and (ii) xr(T ) < p̂− ε/2 < p̂− ε/4 < xr(T ). We obtain a contradiction
in (ii). Hence, we proved limt→∞ m(t) = p̂.

This contracts our assumption m̂ < p̂. Thus, we proved m̂ = p̂. Analogously, we can
show M̂ = q̂. This indicates xi(t) ∈ [p̂, q̂] for any node i ∈ V as t → ∞.

Step II. If the discrete-time subsystem (2) is activated on [t, t + 1], we can rewrite
the system (2) as follows:

xi(t + 1) = xi(t) + h
∑
j∈Ni

aij(xj(t) − xi(t)) + νi(t), i ∈ V, (21)

where νi(t) = h
∑

j∈Ni
aij(φj(xj(t)) − xj(t)). If the continuous-time subsystem (1) is

activated at some t instead, it can be recast as (1):

ẋi(t) =
∑
j∈Ni

aij(xj(t) − xi(t)) + νi(t), i ∈ V, (22)

where νi(t) =
∑

j∈Ni
aij(φj(xj(t)) − xj(t)). By the result of Step 1 and our definition

of the saturation function (3), we conclude that for any δ > 0, there exists a time
T > 0 such that |νi(t)| ≤ δ for all i ∈ V and t ≥ T regardless of the specific subsystem
in action. We can then use the robust consensus result Lemma 2 and let ε tend to zero
to derive

lim
t→∞

max
i,j∈V

|xi(t) − xj(t)| = 0. (23)

Fix a node i ∈ V and denote a limit point of it by ĉ. We will show all nodes converge
to ĉ, which will conclude our proof in Case (a). Note that ĉ ∈ [p̂, q̂]. We only need to
consider the situation p̂ < q̂. In view of (23), for any ε > 0, there is a sufficiently large t0
satisfying (i) the discrete-time subsystem (2) is activated at t0, and (ii) |xj(t0)− ĉ| ≤ ε
for any j ∈ V.

If p̂ < ĉ < q̂, then we can choose a sufficiently small ε so that p̂ < xj(t0) < q̂
also holds true for any node j ∈ V. The system starting from time t0 then becomes
a standard switched multiagent system (Zheng & Wang, 2016), and hence the final
consensus state is ĉ for all nodes. Next, if ĉ = q̂, then we choose a sufficiently small ε
satisfying p̂ < xj(t0) ≤ q̂ +ε for any j ∈ V. Applying the argument in the beginning of
Step 1, we know that M(t) converges to a limit M since ε is vanishing. It follows from
(23) that m(t) converges to the same limit, and hence we have M = q̂ = ĉ. Finally, if
ĉ = q̂, we can proceed analogously as above by showing m(t) converges to some limit
m and m = p̂ = ĉ. This concludes the proof of Case (a).

(b). In this scenario, we will similarly approach through two steps. In Step 1, we
show xi(t) ∈ [p̂, q̂] for any node i ∈ V as t → ∞. In Step 2, we show the existence of ĉ.

Step I. For t ≥ 0, recall the definitions of Mq̂(t) = max{q̂,M(t)} and mp̂(t) =
min{p̂,m(t)}. When t ∈ (tk, t̄k) with t̄k − tk ≥ ∆ for some large k, we know that
M(t) > q̂ over an interval [t, t + ε) with t + ε < t̄k as long as Mq̂(t) > q̂. Define
a non-empty set Θ(t) = {i ∈ V : M(t) = xi(t)}. It follows from Lemma 1 and the
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continuous-time subsystem (1) that the Dini derivative takes the form

D+Mq̂(t) = max
i∈Θ(t)

( ∑
j∈Ni

aij(φj(xj(t))) − xi(t)
)
. (24)

Fix a node i0 ∈ Θ(t), and we have xi0(t) ≥ xj(t) for any j ∈ V. Clearly, if xj(t) > q̂ then
φj(xj(t)) ≤ xj(t); if xj(t) ≤ q̂ then φj(xj(t)) ≤ q̂. Therefore, under the assumption
of Mq̂(t) > q̂, we obtain φj(xj(t)) ≤ xi0(t) and furthermore D+Mq̂(t) ≤ 0 by using
(24). A direct proof by contradiction shows that if Mq̂(t0) = q̂ and t0 ∈ (tk, t̄k], then
Mq̂(t) = q̂ for all t ∈ [t0, t̄k]. On the other hand, from the proof of Case (a), we see
that Mq̂(t + 1) ≤ Mq̂(t) when t ∈ (t̄k, tk+1] and t + 1 ∈ (t̄k, tk+1].

Likewise, we have

D+mp̂(t) = − min
i∈Γ(t)

( ∑
j∈Ni

aij(φj(xj(t))) − xi(t)
)
, (25)

where Γ(t) = {i ∈ V : m(t) = xi(t)} is non-empty. We can show D+mp̂(t) ≥ 0
when mp̂(t) < p̂. If mp̂(t0) = p̂ and t0 ∈ (tk, t̄k], then mp̂(t) = p̂ for all t ∈ [t0, t̄k].
Similarly, from the proof of Case (a), we have mp̂(t + 1) ≥ mp̂(t) when t ∈ (t̄k, tk+1]
and t + 1 ∈ (t̄k, tk+1].

Define V (t) = Mq̂(t)−mp̂(t). We have D+V (t) = D+Mq̂(t)−D+mp̂(t) ≤ 0 for any
t ≥ tk. Define a set Ξ = {x ∈ Rn : D+V (x) = 0}. We claim that Ξ is a subset of [p̂, q̂]n.
In fact, suppose that there is a point x̂ = (x̂1, · · · , x̂n) ∈ Ξ and x̂ 6∈ [p̂, q̂]n. Without loss
of generality, we can assume x̂i = maxj∈V x̂j > q̂. Consider a solution of the continuous-
time subsystem (1) with x(tk) = x̂. Define a non-empty set Λ = {j ∈ V : x̂j = x̂i}.
Since G is strongly connected, along either the continuous-time subsystem (1) or the
discrete-time subsystem (2), any node in Λ is eventually dragged down by the other
nodes in V\Λ or by q̂. Thus, there exists some time τ with τ ∈ (tk0 , t̄k0 ] for some k0 ≥ k
satisfying xj(τ) < x̂i for all j ∈ V. Hence, we have Mq̂(τ) < Mq̂(tk) and accordingly
V (x(τ)) < V (x(tk)). This contradicts D+V (x) = 0, i.e., the trajectory is not inside Ξ.
Thus, we see that the claim Ξ ⊆ [p̂, q̂]n holds true.

Thanks to the LaSalle invariance principle (Rouche et al., 1977, Thm 3.2), the set
of ω-limit points of x(t) in (tk, t̄k] for any k ∈ N+ is contained in Ξ and hence in [p̂, q̂]n.
By the results in Rouche et al. (1977, p.364-p.365), x(t) ∈ [p̂, q̂]n for t ∈ (tk, t̄k] with
all large enough k. In view of the proof of Case (a), we know that for any sufficiently
large t, x(t) ∈ [p̂, q̂]n.

Step II. To prove the existence of ĉ, we can proceed the same way as Step 2 in
Case (a). This concludes the proof of Theorem 1. ¤

3.2. Scaled interval consensus analysis

Next, we introduce the following scaled interval consensus problem, which can be
viewed as a generalization of standard interval consensus if all scaling coefficients of
agents equal to one.
Definition 2. For each node i ∈ V, let αi 6= 0 be its scaling coefficient. We say
that the multiagent system under consideration reaches scaled interval consensus with
respect to (α1, · · · , αn) if (i) limt→∞ αixi(t)−αjxj(t) = 0 for all i, j ∈ V and all initial
condition x(0), and (ii) αixi(t) ∈ [p̂, q̂] = ∩i∈VIi.

To achieve scaled interval consensus for a switched multiagent system with both
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continuous-time and discrete-tine subsystems, we propose the following agent dynam-
ics. Given the scaling coefficients (α1, · · · , αn), we have a continuous-time subsystem:

ẋi(t) = sgn(αi)
∑
j∈Ni

aij(φj(αjxj(t)) − αixi(t)), i ∈ V (26)

and a discrete-time subsystem:

xi(t + 1) =xi(t) + sgn(αi)h

·
∑
j∈Ni

aij(φj(αjxj(t)) − αixi(t)), i ∈ V, (27)

where sgn(·) is the signum function with sgn(z) = 1 if z > 0 and sgn(z) = −1 if z < 0,
the saturation function φj(·) is defined in (3) and h > 0 is the sampling period.
Theorem 2. Consider the switched multiagent system (26) and (27) over the
directed graph G under an arbitrary switching rule. Assume that G is strongly
connected and [p̂, q̂] is non-empty. Given the scaling coefficients (α1, · · · , αn), if
h < 1/ maxi∈V |αi|

∑
j∈Ni

aij, then for any x(0), there exists ĉ ∈ [p̂, q̂] such that
limt→∞ αixi(t) = ĉ for all i ∈ V.

Clearly, from Theorem 2 we know that scaled interval consensus can be reached
for the switched multiagent system (26) and (27) under any switching rule. Theorem
1 is a special case for αi ≡ 1 (i ∈ V). In the previous study of scaled consensus,
e.g., Roy (2015); Shang (2019); Zhang et al. (2020), the final consensus value (or
even the convergence of the states) is generally not required. Our result here reveals
a mechanism of regulating both the convergence value for each agent and the ratio
between each pair of agents at the same time.
Proof of Theorem 2. Let yi(t) = αixi(t) for each i ∈ V. The continuous-time
subsystem (26) and the discrete-time subsystem (27) can be rewritten as

ẏi(t) = |αi|
∑
j∈Ni

aij(φj(yj(t)) − yi(t)), i ∈ V (28)

and

yi(t + 1) = yi(t) + |αi|h
∑
j∈Ni

aij(yj(t)) − yi(t)), i ∈ V, (29)

respectively.
By re-defining Mq̂(t) = max{q̂, maxi∈V yi(t)} and mp̂(t) = min{p̂, mini∈V yi(t)}, we

can proceed as in the proof of Theorem 1 and obtain the desired result. ¤

4. Simulation results

In this section, we consider a network G = (V, E) with V = {1, 2, 3, 4} as shown in
Fig. 3. This directed graph is strongly connected with a binary adjacency matrix,
namely, aij = 1 if (j, i) ∈ E and zero otherwise. For the nodes in V, we propose their
admissible intervals as I1 = [0, 3], I2 = [−2, 1], I3 = [−1, 4], I4 = [−2, 2]. Hence, their
intersection is ∩4

i=1Ii = [p̂, q̂] = [0, 1]; see Fig. 4.
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Figure 3. Strongly connected network topology G = (V, E) over n = 4 nodes.

Example 1. In this example, we set the scaling coefficients α1 = α2 = α3 = 1 and
α4 = −1, we consider the scaled interval consensus for the switched multiagent system
characterized by (26) and (27). We specify an alternating switching rule as shown in
Fig. 5(a) and set the control gain h = 0.5, which satisfies the condition of Theorem 2.
In addition, we use the following initial condition x(0) = (−1, 2, 0, 3).
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Figure 4. Admissible intervals Ii = [pi, qi] for each agent i ∈ V. The two horizontal lines indicate the common
interval [p̂, q̂] = [0, 1]. The limit states for the switched multiagent system of Example 1 are shown as black
circles.

We perform simulations for the switched multiagent system (26) and (27) and the
evolution of agents’ trajectories is shown in Fig. 5(b). We observe that agents 1, 2 and
3 converges to ĉ ≈ 0.25 ∈ [0, 1] and the agent 4 tends to −ĉ, which is consistent with
our prediction in Theorem 2. The proposed scaling coefficients here mean that agent
4 will reach the opposite value of the consensus state of the other three agents. The
final asymptotic states are also displayed in Fig. 4. It is worth noting that both the
initial states and the trajectories of the agents are not entirely within their respective
admissible intervals. Nevertheless, the final (scaled) consensus resides in the common
interval, demonstrating the very feature of soft constraint in interval consensus.
Example 2. As a further example, we set the scaling coefficients α1 = α2 = α3 =
α4 = 1 in this example, and consider the interval consensus for the switched multi-
agent system described by (1) and (2). Here, we take the alternating switching rule
as an aperiodic general switching rule shown in Fig. 6(a). We set h = 0.5 and initial
configuration x(0) = (3,−1,−2, 1). The state evolution result is shown in Fig. 6(b),
where all four agents converge to the common consensus value around 0.34 sitting in
the intersection of admissible interval [p̂, q̂] = [0, 1]. The agrees with our theoretical
prediction in Theorem 1.
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Figure 5. (a) Switching rule of the switched multiagent system, where the signal 1 means the activation
of continuous-time subsystem (26) and 0 means the activation of the discrete-time subsystem (27). (b) Time
evolution of the agents’ states for Example 1.
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Figure 6. (a) Switching rule of the switched multiagent system, where the signal 1 means the activation
of continuous-time subsystem (1) and 0 means the activation of the discrete-time subsystem (2). (b) Time
evolution of the agents’ states for Example 2.

5. Conclusion

In this paper, we have studied the interval consensus problem over directed networks
with switched agent dynamics. The system under consideration has a continuous-time
subsystem and and a discrete-time subsystem, regulated by a switching rule. We estab-
lished the condition that guarantees interval consensus for switched multiagent system
under an arbitrary switching rule. Interval consensus here features a soft constraint on
the agents’ state by offering each agent an individual admissible interval, where the
agent would like its ultimate consensus value to sit. Moreover, we introduce the scaled
interval consensus problem and extend the result to accommodate constant scaling
coefficients. This further allows flexibility that is appealing for many transcale control
systems such as compartmental mass-action systems and spacecraft robotic simula-
tions (Roy, 2015). The interval consensus is studied in a fixed directed graph here. It
would be interesting to consider switching topologies or a general m-mode system by
extending the analysis of robustness consensus, in which time-dependent topologies
are combined with transition of the agent dynamics.
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