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Abstract

Neural network based variable structure control is proposed for the design of nonlinear
discrete systems. Sliding mode control is used to provide good stability and robustness
performance for nonlinear systems. An affine nonlinear neural predictor is introduced to
predict the outputs of the nonlinear process and to make the variable structure control
algorithm simple and easy to implement. When the predictor model is inaccurate, vari-
able structure control with sliding modes is used .to improve the stability of the systermn.
A recursive weight learning algorithm for the neural networks based affine nonlinear pre-
dictor is also developed and the convergence of both the weights and the estimation error
1s analysed.

Keywords: Neural networks, nonlinear discrete systems, variable structure control,
sliding mode control.
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1 Introduction

Variable structure control with sliding modes was first proposed in the early 1950s [4] [9]
[21] and has subsequently been used in the design of a wide spectrum of system types includ-
ing linear and nonlinear systems, large-scale and infinite-dimensional systems, and stochastic
systems. It has also been applied to a wide variety of engineering systems. The most distin-
guished feature of variable structure control based on sliding modes is the ability to improve
the robustness of systems which are subject to uncertainty. If however the uncertainty exceeds
the values allowed for the design, the sliding mode can not be attained and this results in an
undesirable response [21]. In the continuous-time case this problem was solved by combining
variable structure and adaptive control [20], but this requires that all the system variables are
available and can be measured. This case has also been discussed for linear discrete systems
using input-output plant model [7] [18]. But, as far as authors are aware the above problem
has not been solved for nonlinear discrete systems where the input-output model is unknown.

Recently, neural networks have become an attractive tool which can be used to construct
the model of complex nonlinear processes. This is because neural networks have an inherent
ability of learning and approximating a nonlinear function arbitrarily well. This therefore
provides a possible way of modelling complex nonlinear processes effectively. A large number
of identification and control structures have been proposed on the basis of neural networks in
recent years (see, for example, [1] [3] [5] [15] [17] [19]).

This paper presents a neural network based variable structure controller design procedure
for unknown nonlinear discrete systems. A neural network based affine nonlinear predictor
is introduced so that the control algorithm is simple and easy to implement. Two cases are
considered for variable structure neural control. First, a performance function which is only
concerned with minimization of the prediction error is considered. Second, a performance
function which includes the minimization of the prediction error and the control input is
studied. A recursive weight learning algorithm of a neural networks for the neural network
affine nonlinear predictor is also developed. This algorithm can be used for both on-line and
off-line weight training. It is shown that both the weights of the neural networks and the
estimation error converge.

The paper begins in Section 2 with the structure of the affine nonlinear predictors which
is based on neural networks. The variable structure neural control is given in Section 3. The
generalized variable structure neural control is discussed in Section 4. Section 5 develops
the recursive weight learning algorithm for the neural networks used for the d-step ahead
predictor and the properties of the algorithm are analysed. Finally, simulation results are
shown in Section 6.
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2 Neural Network Based Predictors

This paper considers a discrete-time affine nonlinear control system which has been described

by
Ye = F(x¢) 4+ G(x¢)up—g (1)

where F(.) and G(.) are nonlinear functions, y is the output and u the control input, respec-
tively, the vector x; = [y2-1 %—2 ... Yi_n], n is the order of y(¢) and d is the time-delay
of the system. It is assumed that the order n and the time delay d are known the nonlinear
functions F(.) and G(.) are smooth but unknown, and G(.) is bounded away from zero.

Based on the affine nonlinear system described by Eq.(1), we present a d-step ahead
affine nonlinear predictor to compensate for the influence of the time-delay. This predictor
uses sequences of both past inputs and outputs of the precess upto the sampling time ¢ to
construct the predictive models, which are of the following form:

Gira = F(xs) + G(xy)uy (2)

where F(x;) and G(x;) are nonlinear functions of the vector x; which are to be estimated.

Due to the arbitrary approximation property of neural networks, the nonlinear functions
F(x;) and G(x;) can be approximated by single hidden layer networks. This is expressed by

Ny

P(x) = 3 fudn(xs) (3)
=

- Nll

G(x) =Y grye(xe) (4)
k=1

where @,(x;) and ¢x(x;) are the basis functions of the networks, Ng and N; denote the size
of the networks. Define the weight and basis function vectors of the neural networks as

F=[fi fo « fwl (5)
G=[g1 92 - g, ]T (6)
O = [d1(x:) Pa(xt) .. Bwg(xe) ] (7)
Ti=[7(xe) 7Y2(%e) oo Y (xe)]F (8)

Then the neural network based predictors can be rewritten by

Pi4d = FTo, + G_‘Tf‘tut+d (9)

It is well known from the universal approximation theory for neural networks that the
modelling error of the predictor can be reduced arbitrarily by properly choosing the basis
functions and adjusting the weights. There are many basis functions available, e.g., radial
functions, sigmoidal functions, polynomial functions and so on. This paper does not intend
to discuss how to choose between these. But a recursive learning algorithm for the weight
adjustment of the networks used in the predictors will be presented in a later section.
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3 Variable Structure Neural Control

Based on the d-step-ahead affine nonlinear predictor modelled using the neural networks
described in the previous section, this section considers variable structure neural control
using sliding modes. It will be assumed that all the basis functions in the neural network
predictor are given but the weights of the network are unknown.

The objective of the control is to minimize the following performance function.

Liss
Js = E(yt-pd - TH-d)Z (10)
where r is the reference input and j;,, is the optimal d-step-ahead prediction of the output

Y.

For the given neural network structure, the optimal d-step ahead predictor is given by
Gieg = (F)T 0+ (G Touy (11)

where F* and G* are the optimal estimates of the weights which yield a prediction error
within the required accuracy.

Based on the optimal d-step ahead predictor given by Eq.(11), the control input to mini-
mize J. can be solved analytically and is expressed by

ug = ((G*)TT4) N (rega — (F*)79,) (12)

In practice , it is very difficult to know the optimal weight vectors F* and G* in the affine
nonlinear predictor if some uncertainties or disturbances exist in the system. This section
considers the use of the above neural predictor and the variable structure controller based on
the set = defined below. Let

Sthd = Uipq — Tt+d (13)
E(e) = {£: 6] <€} (14)
F(xy) = (F*-F)7%, = FTy, (15)
G(xy) = (G* - G)TTy = GTT, (16)

where ¢ is a positive number. Thus, the following control input is considered:
uy = (GTTy) M (rpa — FT®y + 51 + ) (17)

From now on, it is assumed that the weight vector G is such that GTT; is bounded away from
zero. This reasonable assumption is based on that the nonlinear function G(.) of the system
is assumed to be bounded away from zero. The auxiliary control input v; is chosen to achieve
St1q = 8¢ and v is chosen as the output feedback

No Ny
vy = (Z axdr(xe) + Y bk’rk(xz)lbt) (18)

k=1 k=1
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where
Py = (GTft)—l(THa! + & — FT‘i’t)

ay and by are the coefficients which are to be designed.

(19)

The problem is to choose the coefficients a and by to guarantee the stability of the system.

To solve this problem, the following theorem is obtained.

Theorem 1: If the the coefficients a; and by of v; are chosen as

| —dosign(rs:) s¢ & Z(oy)
g = :
0 otherwise

b = —dosign(yx1P1s:) st & =(oy)
e = )
0 otherwise

do > K+ p—1>0and 7> 1, where

_ 7(dokg + p)? Lul; N
"= 20do+ 1 — ke — p) (1;::1 |fi(xe)| + g:_; |k (e) |

N,
Ky = Z hk(xt)(GTFi)_lm +1
k=1
H= g, max {|fi — fil;1g5 - gjl}

then s, 4 converges to =(oy).

(20)

(21)

(22)

Proof: To ensure the stability of the system, the Lyapunov technique is used. Choose the

Lyapunov function as
Vitd = st
The difference of the Lyapunov function can be expressed by the following form:
AViga = Viga — Vi = (81 + Asipa)® — 57 = 28;As404 + (Asppq)?
Using the control input given by Eq.(17), it can be shown form Eq.(13) that
F*(x4) + G*(x¢)us — riqq

= (F T F)T‘i)f £ (1 + éTit(GTft)_l)(Tt+d - FTi)t + 5+ 'Ut) — Tt4+d
= FTo + GTTue + (14 GTT(GTTy) M Jve +

St4d

and it then follows that
Aspya = FTO, + GTT o, + pivy
where
pr =1+ GTT,(GTT,)™

4

(25)

(26)
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Substituting Eq.(18) into Eq.(28) results in

Ny _ Ny
|Aseral < D0 |(fe + arpe)di(x)] + D 1k + brepe )y )|
k=1 k=1

No N
(dokt + p) (Z [dr ()| + Z |7k(Xz)¢t|) (30)
k=1 k=1

[FAN

Using Eqs.(20) and (21) yields

28;Asp1a = 284 (FT‘i’t + (GTF:)"I)% + Pt'f)t)

Ny
= 25 (Z(fk + appt)dr(x:) + Z(gk + brpe)vr(Xe) 1 )

k=1 k=1

IA

Np N,
—2(do+1— Kt —p) (Z |dr(xe)se] + |‘Yk(xt)¢t3t|)

k=1 k=1

2
< (doht+# (ZI%(X:HZH}: (% 1/Jz))
< —1(Aspq)? (31)

As a result, the following relation is derived
AVipa < —(7 = 1)(Asg4q)? (32)

The above relation implies that As,,; converges to zero as t approaches infinity. This shows
that s;y4 is brought into the inside of the set =(oy).

4 Generalized Variable Structure Neural Control

In the previous section, the performance function J; only involves the difference between the
reference and the optimal prediction. For many practical systems, the control input of the
system should be taken into account in the performance function. Thus, the objective of the
control in this section is to minimize the following performance function, which includes the
control input.

I,

i 1
Jy = 5 Uea -~ riyd)” + 50'(/1”%)2 (33)

where Auy = 1y — uz—1, a is a positive number.

Using the neural network based d-step-ahead affine nonlinear predictor, the control input
to minimize J, is given by

s (((G*)Tit)2+a)_1 ((@ )T Ty(regg — (F)T8,) + aus 1) (34)

5
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To avoid the difficulty of finding the optimal weight vectors F* and G* in the affine
nonlinear predictor, this section considers the use of a predictive neural controller and variable
structure control. Similar to the previous section, the following control input is used:

ue = ((GTT)* + @)~ (GTft(‘f‘a-M — FT, + 534 w) + sz_J,) (35)

The auxiliary control input v; is chosen as

Nog
=BT (Z aktly "ok + E bk Ykthe + clwt) (36)

k=1 k=1
where
¥y = GTLu(reqd + 85— FT8,;) + awy_y (37)
Wy = ap I(Tt-l-d -+ S — FTé)t — Q‘GTftut_l) (38)
M = ((C?Tf‘t)z +a)? (39)

For this case, the following theorem gives the design of the auxiliary control input v so
that s;44 converges from the outside to the inside of the set =.

Theorem 2: If the the coefficients aj and by of the v, are given by

| —dosign(¢rs:) s € =(m)
e = { 0 otherwise (401)
by = —dpsign(Veist) Sy &€ E(Tt) (41)
0 otherwise
|} —dosign(wysy) s & E()
‘= { 0 otherwise ()
do >kt +p—1>0and 7> 1, where
T(doky + pt)? e .
T = + + | ew 43
t 5(do + 1 — rs — 1) kX:I | ok kE:l [Yem:0| + Mo (43)
Ny o
ke =3 (o) (GTT) ™ e + 1 (44)
k=1
B o DR {If — fil, lg5 - 9j|} (45)
¢ and dp are positive numbers, then s;,4 converges to the set ().
Proof: Choose the Lyapunov function as
Vitd = 5244 (46)

6
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It is known from the proof of Theorem 1 that the difference of the above Lyapunov function
can be given by Eq.(26). With Eqs.(13) and (35), s¢+4 can be expressed by

St4d = F7(xg) + G™(%)us — r444q
= (F + F)T‘i’t + (G + G)Tfﬂ?t (G’Tft(rt-f-d ~FT®; 45 + vt) + Cmt—l)
= FT&,+ GTT,G Tym(rera — FT8, + 5, + a(GTT,)  tus_q)
—an(Tird — FT3; + s — GTTyusr) + (GTT.GTT, + (GTF:)z)UtW + st

(47)
Moving the term s; from the right side to the left side in the equation above gives
Asprg = FT0, + GTTypemy; — s + T}t(GTf\t)zft’Ut (48)
where
L= G TG T L 4 1 (49)
The upper bound of the absolute value of As;, is estimated by
No Ny
|Aseyal < D0 |(Fi + anG)dr(xe)] + > Gk + beCe)mevi(xe) vl + |(enle — p)muey]
k=1 " k:;l‘fl
< (p+ doky) (1;1 |o ()| + ;; [7r(xt)mete| + lmwtl) (50)

Using Eqgs (40)-(42) leads to
250As14q = 28 (FT‘i’t e GTftlﬁ’tT]t = WUy + UtCtUt)

k=1 k=1

No N Nl
= 28 (Z(fk + akle)Pr(x:) + Z(E’k + 0kCe)mevi(xe) e + (crl — li)ﬁtwt)

Ny

N,
—2(do+ 1 - Kt — p) (Z |dr(xe)se] + D [y(xe)mstese] + Imwml)
k=1 k=1

A

No N, -
B =T ((doﬁt + 1) (Z | pre(xe)] + Z |7k (xe)met0e| + ]"]twtl))
k=1 k=1
< —7(Aspyg) (51)
Thus, the following relation is derived

AViga < —(1 — 1)(Asy4q)? (52)

The above relation shows that s;y4 converges to the inside of the set Z(o¢) as ¢ approaches
infinity. Thus, this proves the theorem.
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5 Recursive Weight Learning of Neural Networks

In practice uncertainties and/or disturbances will always exist and recursive weight learning
of the neural networks used to construct the d-step ahead affine nonlinear predictor becomes
necessary. Here, we consider the recursive adjustment algorithm of the weights of the d-step
ahead predictor. The algorithm can be used for both on-line and off-line weight training.

Using the available output data y;—g_1,...,Y4—d—n and the input data w4, the d-step
ahead predictor is given by

Yt = (F*}T‘i’:—d. 4+ (G*) Tsgtismq + &2 (53)

where F* and G* are the optimal estimates of the weights, ; is the approximation error of
the predictor which is assumed to be bounded, i.e., max |e;| < ér, but the upper bound &y, is
not known exactly.

The estimated d-step ahead predictor can be compactly written as
§e =W @ (54)
where the weight vector W;_; and the basis function vector ®;_, are

Wer=[f fo oo foo 01 92 - g7 (55)

Dy = [d1(Xe—d) --- ONp(Xt—d) Y2(Xe—d)Uig ... ’YNl(Xt—d)ﬂ-t—d]T (56)

Based on the recursive least squares algorithm for a bounded noise [22] [23], the recursive
weight learning algorithm for the neural network is proposed as

Wi =Wig + AP qeq (57)

P =P - }‘t'}’tPt—lq)t—1¢g1_1Pt—1 (58)

At = Bi(8BT  Poo1®i1) " (led] — &) (59)

7o = bl (60)

€t = Yt — Ut (61)
0 e < 6.

b= { o (62)

where the positive number 6, is assumed not to be less than the upper bound 47 of the
approximation, P(0) is a positive finite matrix and Apqz(.) is the maximum eigenvalue of its
argument matrix.

Consider the Lyapunov function

V; = WI P7YW, (63)

8
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where W, = W; — Wi, WY is the optimal estimate of the weight vector W,. Combining Egs.
(57)-(61), the Lyapunov function can be expressed by

Vi = (Wit 4+ MP®y1e)T P Wisy + A Pi®y_1ey) (64)
= WE B AW + Nk At (65)

Since max |e4| < ér,

Vi S WEPAWi_ g + M2 — Apype? (66)
Using Eqs.(59)-(60) gives
Ve < Vier = Bu(@F 1 Py ®41)  (lee] — 6)(Jee] — 67262) (67)
Thus,
AV <V = Vg < —f(6e) (68)
where
F(8e) = Bu( @1 Pe1®em1) " (Jee| = 8.)(Jes] — 67767 (69)

Since the bound ér, of the estimation error £1(t) is assumed not to be greater than 6., it
is easy to show that f(é.) > 0 until the error |es| = .. So, the error |es| converges to §.. On
the other hand, if |e;| < &, it is possible that AV; > 0. This implies that the weight vector
Wy may drift away over time. In this case, set the 8; = 0 in the weight learning algorithm
given by Eqs.(57)-(62) to avoid divergence of the weight vector. Thus the error |e;| always
converges to the range [0, 6.].

The analysis above shows that if the upper bound é, is known, then the error |e;| will
converge to 67 by simply setting 6. = ér. In the case where the upper bound é; of the
estimation error er,(t) is not known exactly, the error |e;| still converges to &, if 6. is set to be
greater than éz. Thus, the closer the number ¢é. is chosen to the upper bound ér, the more
accurate the estimation of the predictor is.

6 An Example

In this section, consider the following affine nonlinear system [2]:

g 2.5y1-1Y1—2
i
T+ oyl + i,

+ 0.3c0s(0.5(ys—1 + Ye—2)) + 1.2us—4 (70)

The initial condition of the plant is (y-1,y-2) = (0,0) and the reference input

2] = Geos(7t/80) 0 <t <160
1o > 160
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* %

1 e

-4/ _ the system output L
~—— tha reference input

Tha outpul and reference input

] 50 100 150 200 250 300
time {

Figure 1: The output y; and the reference input 7; of the system without using variable
structure control.

| N———

-4

The tracking error

o 50 100 150 200 250 300
time |

Figure 2: The tracking error y; — 7; of the system without using variable structure control.

Since the structure and parameters of the functions F(x;) and G(x;) in the affine nonlinear
system are assumed to be unknown. Growing Gaussian radial basis function (GRBF) neural
network was used to approximate the functions. The growing GRBF network was initialised
with no basis function units. As observations are received the network grows by adding new
units. The decision to add a new unit depends on the observation novelty for which two
conditions must be satisfied. The first condition states that the approximation error between
the real output and the estimated output must be significant. The second condition states
that the new centre of the GRBF must be far away from existing centres. The more details
about the growing GRBF neural network are given in [16]. In this way, the the approximation
accuracy of the functions F(x;) and G(x;) will converge to the required bound.

In the simulation, the recursive weight algorithm was used for off-line training of the
growing GRBF network. When the variable structure neural control was applied, the recursive

weight algorithm was then used for on-line training of the growing GRBF network. The

10
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generalized variable structure neural control strategy was used. The parameters were a = 0.5,
7=1.1, p = 0.1, dg = 0.5. The performance of the system is shown in Figs.1 and 2 without
the neural network based variable structure control and in Figs. 3 and 4 with neural network
based variable structure control. Figs.1 and 3 show the output y; and the reference input r;
of the system. The tracking error r; — y; is shown in Figs.2 and 4.

The results of the simulation shows that the tracking error of the system using variable
structure control is smaller and converges faster than one of the system without variable
structure control. Thus, it is clear that the difference with the variable structure control is
significant.

The output and reference inpul
n

___ the system outpul 4

—- the reference input

o 50 100 150 200 250 300
time 1

Figure 3: The output y; and the reference input r; of the system using variable structure
control.

The tracking error
=)

0 50 100 150 200 250 300
time |

Figure 4: The tracking error y; — r; of the system using variable structure control.

11
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7 Conclusions

This paper has presented a novel neural network based variable structure controller design for
unknown nonlinear discrete systems. A neural network based affine nonlinear predictor was
introduced to predict the outputs of the nonlinear process, and a variable structure control
algorithm was developed which is simple and easy to implement. In order to improve the
stability and robustness performance of the system, discrete sliding mode control technique
was applied. Two cases were considered for the variable structure neural control. The first was
based on the minimization of the square prediction error. The second was based on combined
minimization of both the squared prediction error and the squared control input. A recursive
weight learning algorithm for the affine nonlinear predictors was also developed which can
be used for both on-line and off-line weight training. The analysis of the weight learning
algorithm demonstrated that both the weights of the neural networks and the estimation
erTors converge.
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