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Bootstrapping in Controlled Calibration
Experiments

Geoffrey JONES and David M. ROCKE

Center for Image Processing and integrated Computing
University of California
Davis, CA 95616
(g-Jones@mussey.ac.nz)
(dmrocke@ucdavis.edu)

We consider the determination of an unknown quantity—for example, the concentration of a par-
ticular chemical in a given sample or samples—using controlled calibration. Here several samples
are prepared with concentrations chosen to cover a required range, and these are used to establish
the relationship between concentration and the measured response to an assay method. This rela-
tionship is then used to estimate the concentration in the unknown samples from their measured
responses. Confidence intervals for the estimated concentrations can usually be calculated by in-
verting a prediction interval, but in some situations this method becomes intractable. We explore
the use of the bootstrap as an alternative in linear, nonlinear, and multivariate controlled calibra-
tion, using both simulation and real datasets from the field of immunoassay. We also discuss the
alternatives afforded by replication of the design points. The bootstrap is found to be comparable to
the standard method in simple situations and is easy to apply even in complex situations in which
standard approaches perform poorly or are intractable.

KEY WORDS: Confidence intervals; ELISA; Immunoassay; Inverse estimation; Nonlinear
multivariate regression; Replication.

We are concerned with the application of an assay sys- sample with concentration z,, giving a response Yp. In many
tem that, given a sample with concentration z, produces a cases this would also be replicated and we would have sev-
response Y whose relationship to z has the form eral responses Yo,..., Yy, .

The classical method of estimating zy is to first use the
Y = f(z,0) +e, (1) standards to estimate the parameter ¢ by applying an ap-

where f is a function, assumed known, describing the rélg-  Propriate W‘ﬁ‘,‘“‘l“‘- This gives the Wbdeﬂ*‘r

tionship (perhaps a scientific or empirical law), § is a vector 1Dration curve ===
of unknown parameters, and ¢ is a term representing ex- Y = f(z.6), (3)
perimental error, which might be assumed to follow some .
known distribution. This includes, for example, the simple where @ is the regression estimate of the parameters. Given
linear model the response Y, from a sample with unknown concentration
o (or an appropriate mean response if replication is used),
Y=a+bz+e, (2)  then, provided that f(.,.) is monotonic and Y; lies in the
range of f(.,.), we can always invert the calibration curve to
produce an estimate X, for z,. For example, in the simple

in which a and b are the unknown intercept and slope pa-
rameters and ¢ is assumed to follow a normal distribution

with constant variance and zero mean. In Section 4 we dis-
cuss a multivariate extension in which both = and Y are
vectors and f(.,.) is nonlinear.

The data for such an experiment consist of two parts,
“standards” and “unknowns.” The standards are prepared
samples having known concentrations carefully chosen by
the experimenter to cover a required range of x values. We
assume here that the preparations are without error—that is,
that these = values are exact [but see Racine-Poon, Weihs,
and Smith (1991) for the case of dilution errors]. Appli-
cation of the assay procedure now yields data (z;,Y;) for
i =1,...,n. Often the standards are replicated so that some
of the z; are equal, to enable examination of the appropri-
ateness of the chosen f(.,.).

The data for the unknowns consist of observed Y values
only, from which we attempt to estimate their unknown
concentrations. We consider first the case of one unknown

linear model [Eq. (2)] we get
Yo -é

Xo = @

There are other ways of obtaining an estimate. Krutchkoff
(1967) advocated regressing z on Y to get a prediction equa-
tion for zo; Brown (1982) suggested that this method is
justifiable in the linear case even though z is not random,
because the resulting estimator is Bayesian with respect to
a particular prior distribution on z. This approach may not
be appropriate for nonlinear calibration, however, especially
when, as is the case in our examples, f(.,.) has horizontal
asymptotes. Another alternative is the maximum likelihood
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estimator (MLE) of z, possibly derived through the profile
likelihood as in the work of Brown and Sundberg (1987).
The MLE is identical to the classical estimator except in the
case of multivariate calibration when the dimension of the
vector response y is greater than that of the unknown z.
True maximum likelihood estimation then becomes prob-
lematic if many unknowns are calibrated from a single set
of standards, as is the case in our examples, because all
unknowns must be estimated simultaneously. We are con-
cerned here mainly with methods of producing bootstrap
datasets in the controlled calibration setting: Once these
datasets have been generated, any chosen estimator can be
applied to them. Thus, we use the classical estimator X,
as given previously, in our investigation.

The standard method of producing a confidence interval
for z is due to Fieller (1954). The regression procedure that
produces the calibration curve can also be used to calcu-
late prediction limits [Yz(z), Yy(z)], which when inverted
give the required confidence region {z : y € [V, Yy]}.
This method will work in the univariate case provided that
the slope of the calibration line is sufficiently large relative
to statistical uncertainty, a condition that has implications
for our simulation study as noted in Section 2. The situ-

y] ‘
A
Y, “
- x
"

Figure 1. The Standard Method of Producing a Confidence Interval
Given a Response Yy, Using the Prediction Limits From Regression
(dashed lines). In (a), the slope of the calibration curve is sufficient to
produce an interval. The method fails in (b) when the siope of the cali-
bration curve is too shallow relative to the statistical uncertainty.

TECHNOMETRICS, AUGUST 1999, VOL. 41, NO.
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from this pool to create the bootstrap datasets. Details are
given in Section 2.

The second aspect to consider is the way in which the
bootstrap data are used. The simplest, the percentile boot-
strap, involves simply calculating the estimate X for each
bootstrap dataset and then taking the appropriate percentiles
of this distribution. Hall (1992) suggested that this is equiv-
alent to “looking up the wrong table backwards” (p. 36)
and that a better approach is to use some form of piv-
otal statistic, a bootstrap t. Gruet and Jolivet (1993) ex-
amined two methods of doing this, the usual pivot based
on the asymptotic distribution of X and the predictive
pivot based on that of Yy — f(zo,8). The two are easily
seen to be exactly equivalent in univariate linear calibra-
tion. For the univariate nonlinear case, we investigate both
alternatives, together with the naive percentile method. We
find that pivoting is indeed superior for small datasets with
few unknowns and is probably better than the standard,
nonbootstrap method when the error distribution is non-
normal. With a moderate number of replicated unknowns,
however, the percentile bootstrap can be surprisingly com-
petitive, provided that the residuals are adjusted before re-
sampling in a manner described later. This result is partic-
ularly useful in nonlinear multivariate calibration in which
the asymptotic approaches do not appear to be very reliable
and pivoting becomes mathematically or computationally
intractable.

We first discuss the method of generating of bootstrap
datasets in controlled calibration. Then we examine the use
of our proposed methods in the production of confidence
intervals for calibration in the simple linear case [Eq. (2)],
using simulation to compare with the standard intervals as

GEOFFREY JONES AND DAVID M. ROCKE

Bootstrap responses, Y* for a standard and Y3 for an
unknown, are then given by

Y* = f(z,6) + R* )
and
Yy =Yo+ R, )

where R* represents random drawings with replacement
from the residual pool.

We also suggest adjusting the residuals as described, for
example, by Efron and Tibshirani (1993, p. 122). The resid-
ual variation around a sample mean or fitted curve is too
small, by a known factor, to accurately reflect the variation
in responses. Multiplying by the appropriate factor,

M
yn-—-p
where n is the number of points and p the number of pa-
rameters, adjusts the residuals to allow for this known un-
dervariability. This adjustment factor may differ between
standards and unknowns and between unknowns having dif-
ferent numbers of replicates; not to use it would create im-
balance in the resampling plan. One could go further and
adjust each regression residual by its standard error, but this
would greatly increase the complexity, therefore the time,
of the analysis, and simulations suggest that it does not sig-
nificantly change the properties of the bootstrap intervals.
In the case of nonlinear regression, the residuals may not
add to O: In this case it is necessary (Freedman 1981) to
center the regression residuals before proceeding.
This method assumes that the mean response is modeled

)

correctly by f(x,0) and that the variance of the error terms

given previously. Next we look at an-example of nonlin=—is constant. If we require a transformation, kn6wn a priori,

ear calibration, using both simulation and real data. Finally
we consider, using a real dataset, a difficult nonlinear mul-
tivariate problem in which the simple percentile bootstrap
outperforms the asymptotic methods.

1. BOOTSTRAP DATASETS

Efron (1979) illustrated the use of the bootstrap method
for setting confidence limits. The bootstrap examines the
variability of an estimate by using the existing data, together
with some assumptions about how they were generated, to
produce new, but plausible, “pseudodatasets” by the pro-
cess of resampling. In controlled calibration the structure
of the data allows several different methods of resampling,
as noted previously. Our proposal is to use both parts of the
data, standards and unknowns, to create a “residual pool,”
then to use resampling from this pool to create our boot-
strap datasets. In the case of the standards, the regression
used to estimate the calibration curve also provides resid-
uals Y; — f(z;,8), which are placed in the pool. For an
unknown, provided that more than one replicate exists, we
take as residuals the deviation Yp; — Yp of each replicate
from the mean response. If the unknown is not replicated,
it will not contribute to the pool, although it will receive
from the pool when the bootstrap data are produced. We
discuss later a technical issue concerning this case.

TECHNOMETRICS, AUGUST 1999, VOL. 41, NO. 3

to achieve constant variance, we simply work with the trans-
formed data and model; if on the other hand the variance
is a known function of z, as in Bonate’s (1993) example,
then the residuals can be adjusted appropriately using the
known z values for the standards and the estimated X, for
the unknown. For example if the standard error of the re-
sponse Y is thought to be proportional to the concentration
z we would use weights 1/z2 in the regression and obtain
residuals

Y, -Y;
R = = (8)
from the standards and
Yo; - Yo
R; = 2 9
$ . 9

from the unknowns. A more complicated situation arises
if the variance-stabilizing transformation is estimated from
the data (as in the Box—Cox approach) or if the variance
function contains parameters to be estimated. The effect
of estimating these transformation or weighting parameters
on prediction intervals was noted by Carroll and Ruppert
(1991). They suggested a bootstrap adjustment to the usual
intervals. The effect on calibration confidence intervals was
shown by Zeng and Davidian (1997), with a similar proposal
for bootstrap adjustment. An approach to the bootstrapping
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of heteroscedastic data, using the “wild bootstrap,” that does
not require estimation of a variance function was given by
Hirdle and Mammen (1991). For further details, see Mam-
men (1992, pp. 13-17).

If all the standard concentrations are replicated, we also
have the possibility of using residuals from each replicate
set, calculated as for the unknowns, instead of the regres-
sion residuals. New responses for the standards are then
obtained by adding a resampled residual onto the mean of
the replicates, as was done for the unknowns. This simpler,
more symmetrical arrangement does not make the assump-
tion that the model used in the analysis is in fact correct: We
need only to assume independence and a known variance
structure for the errors. An additional advantage is that the
residuals are automatically centered at 0.

2. LINEAR CALIBRATION

We now investigate the characteristics of 90% confidence
intervals derived from our proposed bootstrapping method
in the case of the simple linear model. To this end, we sim-
ulated from the model in Equation (2) witha = 0,b = 5
and with errors € having zero mean and standard deviation
o = 1. Note that fixing the values of a and b(# 0) is without
loss of generality because of equivariance, but the value of
b/o affects the accuracy of the calibration. Nine calibration
standards were used comprising concentrations of 1, 1, 1,
3,3, 3,5, 5, 5. The calibration line & + bz was estimated
using ordinary least squares regression. Because the stan-
dard method fails if the estimated slope is too shallow, it
would be necessary to reject any datasets for which b was

not significantly nonzero (3% two-tailed test). The chosen
design and parameter values ensure that this is extremely =

unlikely.
The prediction limits are given by

(z—-32)
SSz

where I is the mean and SSz the sum of squares of the
n standard concentrations, r is the number of replicates of
the unknown, ¢ is a percentage point of the appropriate ¢
distribution, and s is an estimate of the standard deviation
of the errors. If s is taken as the square root of the mean
squared error from the calibration curve estimation, it has
n —~ 2 df; a better approach is to combine estimates from this
and from the replicates of the unknown, givingn + r — 3
df. Then, for a 90% prediction interval, ¢ is the 95th per-
centile of the t,,,,_3 distribution. The standard confidence
interval for an unknown with mean response , is calcu-
lated by finding the values of z that make either predic-
tion limit equal to fj,. On rearranging, this gives quadratic
equations for the lower and upper limits, which are easily
solved.

For the bootstrap, ordinary least squares regression of the
standards data gives nine regression residuals Y; — & — bz;,
which are multiplied by the adjustment factor (here 1/9/7)
and placed in the residual pool. The unknown has three
replicates and so contributes three residuals Yoj—%, each of
which is multiplied by 1/3/2. We then create our bootstrap

&+5x:tts\/1+ + (10)

dataset of responses,

Y =a+bz; + R, i=1,...,9, (11)
for the standards and
Yo;=Yo+R;, j=1,...,3, (12)

for the unknown, where R} and R; represent random draw-
ings with replacement from the residual pool. An alternative
procedure, given that here the standard concentrations are
themselves in triplicates, would be to treat the standards in
the same way as the unknowns, using only their respective
means to get the residuals and to calculate their bootstrap
responses. This second method of using only residuals from
within replicates is “model-free” in the sense that it does
not use the assumption of linearity or the parameters of the
fitted model.

Once a bootstrap dataset has been produced, we estimate
the bootstrap calibration line parameters &¢* and b* from
the bootstrap standards and hence the bootstrap estimate
X§ = (Yg — a*)/b*. For the ordinary percentile bootstrap,
1,000 such values can be used to produce a 90% confi-
dence interval for zo by sorting and finding the 5th and
95th percentage points. As an alternative, we also consider
the bootstrap t. Here we use, instead of Xj, the asymptotic
“pivotal” statistic

se(Xo) ; oy
which is analogous to the usual ¢ statistic in normal the-
ory statistics. We require se(Xj), the standard error of X,
whleh mfommately in the pmsentcase’does not ‘exist- ﬁc-»

nite asymptotic variance glven by the delta method (Stuart
and Ord 1987, pp. 323-329) as
(Xo - )y

-~ s /1

Se(x")‘i\/ +' S5z
Bootstrap datasets are generated as previously, each yield-
ing a bootstrap-t value t*. The 5th and 95th percentage

points (t%5,t%s) are found and the confidence interval
(X1, Xy) calculated as

Xp = Xo — t'9s58(Xo), Xy =Xo—t7s$(Xo). (15

Theory suggests (Hall 1992) that these intervals should
achieve greater coverage accuracy than the ordinary per-
centile bootstrap, provided that the scale parameter se(Xo)
can be well estimated.

The predictive pivot is based on the statistic

. __Z):'- f(z())é)

(14)

(1K)
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so that in the linear case the predictive pivot gives the same
result as the usual pivot.

We now compare the performance of the standard con-
fidence interval (S), the percentile bootstrap (PB), and the
bootstrap ¢ (BT) using the linear model as described previ-
ously. Results for 10,000 simulations are given in Table 1
for one and three replicates of a single unknown sample, for
various values of the true concentration zy. The estimated
coverage probability (p) is the proportion of intervals con-
taining the true concentration. If the actual coverage is ap-
proximately equal to the nominal coverage (here 90%), then
the estimates of p have a standard error of approximately
.003. PB can be seen to produce confidence intervals with
inadequate coverage, the actual coverage being about 85%—
86%. BT, however, appears to perform much better, with
coverage a little lower than S but slightly shorter intervals.

If we adopt the alternative method of producing bootstrap
datasets, using only residuals from within replicates, the
percentile bootstrap (PBR) and bootstrap ¢ (BTR) change
little in performance. Thus, this simpler procedure seems a
reasonable alternative to the use of residuals from the cali-
bration curve in the case in which standards are replicated.

To investigate the effect of adjusting the residuals as de-
scribed, we repeated the simulation without residual adjust-
ment. The coverage of the percentile bootstrap fell to about
.80 for r = 1 and .81 for r = 3, showing that residual ad-
justment can significantly improve the performance of the
percentile method. The effect on the bootstrap t, however,
was negligible. Any scale factor appears in both the nu-
merator and denominator of Equation (13); hence we could
double all the residuals and the calculated t would be un-
changed. Residual -adjustment in-this case produces-only -
a balancing out of the contributions of the standards and
unknowns.

When we repeated the experiment with a larger number
of standards, n = 15 instead of n = 9, we found that now
BT is comparable to S, but although the coverage of PB
improves, it is still short of the target. The results are sum-

Table 1. Comparison of Coverage Probability and Interval Length for
Four Methods and Different Error Distributions (n = 10,000 simulations)

r=1 r=3

Xo Method p m sd P m sd
5 S .899 .864 .240 .901 .603 151
PB .858 757 212 .866 541 137
BT .889 .846 .240 .898 .599 .150
PBR .849 749 226 .861 539 144
BTR .888 .840 .236 .899 599 150
15 S 904 811 224 .901 .530 .130
PB .853 .709 199 .867 476 118
BT .884 .782 .220 .899 526 129
PBR .848 .703 214 .859 472 123
BTR .883 777 219 .901 523 .128
25 S .899 776 216 897 484 120
.845 676 193 .862 435 107
.872 .740 211 .894 480 117
.842 .669 .205 .865 432 114
.872 737 210 .900 .480 119

NOTE: p = achieved coverage; m = mean iength of interval; sd = standard dewviation of
interval length; S = standard method; PB = percentile bootstrap; BT = bootstrap f; PBR = P8
with replication residuals; BTR = BT with replication residuals.

TECHNOMETRICS, AUGUST 1999, VOL. 41, NO. 3
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marized in Figure 2. This is in line with theoretical predic-
tions: The bootstrap ¢ converges more quickly to the target
coverage, but for larger samples both will be approximately
correct.

Because S is designed specifically for the case of nor-
mally distributed errors, it might be expected to fail when
this assumption is incorrect; the bootstrap methods, how-
ever, use the observed errors, so they might be expected to
outperform the standard method when the errors are non-
normal. To test this, we investigated two other error struc-
tures, a lognormal distribution (achieved by exponentiating
and recentering a standard normal) and a ¢ distribution with
6 df. Results are summarized in Figure 3. With t¢ errors,
the coverage is too low even for S when there is only one
replicate of the unknown; for two or more replicates, the
situation reverts to that of normal errors. The lognormal dis-
tribution causes different problems: The coverage becomes
too high, but with BT less seriously affected than S. There
might thus be some advantage in using the bootstrap t in
place of the standard method.

We compared our resampling schemes, in which all resid-
uals are pooled, with the two plans investigated by Gruet
and Jolivet (1993)—namely, resampling from the regression
residuals only or resampling separately for the regression
data and the unknowns. We found that for one unknown
with a small number of replicates (3) there was very little
difference in performance between the methods. In many
applications, however, there are a moderate number of repli-
cated unknowns. With six unknowns, each replicated three
times, our pooling methods performed slightly better for
the bootstrap ¢ and considerably better for the percentile
rap;-the- coverage being about-:88 -with pooling and
85 without.

To summarize, the bootstrap ¢t would seem to be a use-
ful method of obtaining confidence intervals in linear re-
gression. There is no need to adjust the residuals, and any
of the resampling schemes considered previously would be
satisfactory provided there are a reasonable number of stan-
dards (e.g., the nine standards used in the simulation). The
simpler percentile bootstrap can also be made to perform
reasonably well if there are many replicated unknowns, but
residual adjustment and pooling should be used.

4]
0.91
0.89 |- BTs
- PBis
0.88 |- =
0.87- /e—————-é"”*)
PBs
0.86 O/e/
0.85 N
1 2 3 4 5

Number of Replicates

Figure 2. Comparison of Coverage Probabilities Using 9 and 15 Cal-
ibration Standards. p = coverage in 10,000 simulations, averaged over
six concentrations: PB = percentile bootstrap; BT = bootstrap t.
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P o cur. All processing of the 96 observations on a plate oc-
F curs simultaneously. The dose-response curve is typically
sigmoidal with unknown horizontal asymptotes that have

=

090 | /E;“ :-a...::.L_ = SE to be cstirr}a.ted. The responses typigally sl}ow marked het-

09 | A = BT eroscedasticity, the variance increasing with the mean re-
- ,,«;f sponse, although this aspect is ignored in some commercial

Bl software packages.

0.87 i —r|

data is the four-parameter logistic model (Rodbard 1981).

87 1 W_ T PB A common method of fitting a calibration curve to such
0.86 ][

085 A detailed account of the fitting, estimation of unknown
1 2 3 4 5 concentrations, and calculation of the standard confidence
Number of Replicates interval was given by O’Connell, Belanger, and Haaland

(1992). They used pseudolikelihood to estimate the variance

oo | |
0.90 1, BT .
0.89 + ’
0.88 +
PB -

0.7 logY =log (——4——:—D—§ + D) +¢, (18)
026 1+ (%)
0.85 -t a2 ___ wr s a2 L

1 2 3 4 5

Number of Replicates

Figure 3. Coverage Probabilities for Nonnormal Errors With Nine Cal-
ibration Standards, Using the Standard Method (S), Percentile Boolstrap
(PB), and Bootstrap t (BT).

Finally in this section we note a curious phenomenon that
occurs when there is only one replicate of the unknown: The
distribution of the bootstrap estimates X and t* can be
bimodal. This occurs when there is'a “gap” in'the résidials =
derived from the standards so that the bootstrap unknown
responses Yy divide into two distinct groups. The problem
disappears when there are two or more replicates of the
unknown; it can be remedied in the case of one unknown
by smoothing the empirical distribution of the residuals or
by switching to a parametric approach using the appropriate
normal distribution.

L

contributes three further residuals to the pool; alternatively
we could use only within-replicate residuals, treating the

zero 1 9 17
0.1 2 10 18
0.3 3 11 19
1.0 4 12 20
3.0 5 13 21
10 6 14 22
100 7 15 23
blark | |8 16] | o4
Standards Unknowns
o 52:55‘4. Typical ELISA Template, With 24 Unknown Samples in
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0 * 1T * *
0.001 0.01 0.1 (._...._ 1 100
) Concentralnon (ppb)

1000

Figure 5. A Typical Dose-Response Curve for ELISA, With Prediction
Limits (dashed lines) and Confidence Interval.

standards in the same way as the unknowns. There are now
96 residuals, and these are resampled to construct the 96
bootstrap observations. Analysis of the bootstrap datasets
now yields a bootstrap estimate X, a bootstrap-t value t*,
or a predictive pivot value ¢} for each of the 24 unknowns.

First, we consider a simulation, based on a real dataset,
to be examined later, to compare the standard method (S),
the ordinary percentile bootstrap (PB or PBR if within-
replicate-only residuals), the bootstrap ¢t (BT or BTR), and
the predictive pivot bootstrap (PP or PPR). The parameter
values A = 5,B = 1.1,C = .86,D = .02, and o = .06
used in the simulation were based on the real data, as were
the standard concentrations. Responses for standards and
unknowns were simulated using Equation (16). The con-

centrations used for the unknowns 0, -1, 3 1 3 10, 100_

and 10,000 ppb (parts per billion). We &
with the very small and very large concentrations bccause
se(Xg) is unbounded as the concentration increases and its
asymptotic approximation breaks down as the concentration
tends to 0. Furthermore, zo = 0 is at the boundary of the
parameter space, so the usual asymptotic theory is not as-
sured. We find that all methods overcover at zo = 0; perhaps
one-sided intervals would be more appropriate and better
behaved here. Two important points should be noted: First,
it is important to include 0 and very high concentrations
in the calibration dataset because these are what determine
the asymptote parameters A and D; second, concentrations
near 0 and at high levels are very poorly determined anyway
and would not ordinarily be used in a quantitative way.
The results are given in Table 2. Use of within-replicate-
only residuals did not significantly affect the performance
of any of the bootstrap methods, so these results are not
shown. It can be seen that, for the middle range of con-
centrations .3-10 ppb, all four methods achieve approxi-
mately the target coverage of 90% but with the bootstrap
intervals slightly shorter and much less variable in length
than the standard method. Interestingly, the percentile boot-
strap outperformed both pivotal methods, perhaps because
of the inaccuracy of the delta-method approximations used.
It would seem that the expected advantage of pivoting can
be lost by not pivoting well. Gruet and Jolivet (1993) used
Edgeworth expansions in powers of r to suggest the supe-
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riority of the predictive pivot over the ordinary bootstrap
that this is not borne out in practice here implies that suc
expansions are of limited use when r is small because tt
size of the function derivatives also comes into play. F
the large and small concentrations, however, the ordina:
bootstrap t fails when either X, or X3 becomes 0 or inf
nite (or nearly so), whereas the predictive pivot can cof
with these values. The preference for one or the other ¢
these pivotal methods then depends on the characteristic
of the particular f(.,.) used.

We now examine the real dataset on which the simulatio
was based and find several new problems to be surmounte:
The data were originally produced to examine experimer
tal variation in ELISA curves: A detailed description w:
given by Jones et al. (1995). Thirty-two microtiter plates us
ing the same template of atrazine concentrations were run :

145 .03,

.896 140 .02

PP 911 137 .02

3 S 900 166 .03
P8 .895 160 .01

8T 887 156 01

PP .886 155 o

1.0 S 899 .268 .04!
PB .894 257 .02

BT .888 254 .02

PP .887 253 .02(

3.0 S .901 591 A0
PB .896 566 .06

BT .889 557 .06

PP .888 555 .06!

100 ) 899 2.536 .50(
P8 890 2.421 .33

BT 883 2.378 33¢

PP 883 2.382 340

100.0 S 804 inf —
PB .897 inf —

BT — -— -

PP 892 inf _

10,000.0 S 868 inf —
PB .898 inf —_

BT — —_ -—

PP .889 inf -—

NOTE: p = achieved coverage; m = mean length of interval; sd = standard deviation of interva
length: S = standard method; P8 = percentile bootstrap; BT = bootstrap t. PP = predictive pivol
bootstrap.
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centration they are estimating. A valid procedure should
produce confidence intervals that contain the true concen-
tration 90% of the time, so the number of “successes” at
each concentration should have a mean of 96 x .9 = 86.4.
The original results, using the template shown in Figure
4, gave very poor coverage (about 75%) for the standard
and the bootstrap methods. All methods showed nonunifor-
mity of coverage across concentrations, which might be an
indication of lack-of-fit of the model. An alternative expla-
nation is the presence of spatial effects on the plates. It is
well known to practitioners that spatial effects can some-
times develop, especially in certain locations such as the
edges or corners of a microtiter plate. They are variously
attributed to temperature gradients, dilution errors, inhomo-
geneity of the plate material, bias in the plate-reading de-
vice, and others. Because the same template was used for
each plate, some of the samples could be expected to be
affected more than others. One of the 100 ppb samples was
consistently missed, and it was located in one of the cor-
ners of each plate. To investigate the effect of spatial cor-
relation, we rearranged the template by randomly grouping
the 12 replicates at each concentration level into a cali-
bration triplicate and three triplicated unknowns. The ef-
fect on coverage performance was dramatic, as shown in
Table 3. Most concentrations now achieved greater than
nominal coverage, with the shortfall at the 100 and 10,000
ppb concentrations being due apparently to their corner
positions. The coverage across all concentrations was es-
sentially at the nominal, with slightly lower coverage at
100 and 10,000 ppb and slightly higher compensating cov-
erage at the other concentrations. The bootstrap ¢t (BT*)

different from what they are often assumed to be. This very
serious problem is beyond the scope of the present article
and remains for further work.

4. NONLINEAR MULTIVARIATE CALIBRATION

Most approaches to multivariate calibration have con-
sidered only the linear case or simple extensions that are
still linear in the model parameters. Brown (1982) extended
Fieller’s approach to give confidence regions in multivari-
ate linear calibration. The coverage is exact, but when the
dimension of x is less than that of Y the region may
be empty. Several proposals have been made to overcome
this (Brown and Sundberg 1987; Oman 1988; Mathew and
Kasala 1994; Mathew and Zha 1996). These proposals tend
to be very difficult to implement even in the linear cases
considered by the authors. Clarke (1992) considered a non-
linear model with multivariate Y but univariate z; he needed
simulation to derive the distribution of his suggested statis-
tic. Bootstrapping is thus an attractive possibility here; we
shall demonstrate that it can be done fairly easily even
with complex nonlinear models with multivariate x and
Y. For comparison purposes we also investigate a non-
linear multivariate extension of Fieller’s approach and the
likelihood ratio statistic suggested by Brown and Sundberg
(1987).

We use here as an example the analysis of mixtures
of the herbicides atrazine and terbutryn using multiana-
lyte ELISA (MELISA). MELISA uses a panel of antibodies
to detect and quantitate mixtures of analytes which cross-
react in single-antibody assays, by generalizing the four-
parameter logistic model (see Jones et al. 1994; Wortberg,

could again not be used-for-high and low concentrations;-Jones, Kreissis, Rocke, and Hammock 1995).-In the case of

this is not necessanly a serious disadvantage because these
concentrations were known to be beyond the limits of ac-
curate quantitation. Both pivotal methods, however, failed
to outperform the simpler percentile methods, as in the
simulations. Again the use of within-replicate-only resid-
uals made little difference; only PBR is shown here for
comparison.

The poor coverage without randomization shows the dan-
ger of spatial correlation in microplate data. It is perhaps
impractical to expect a technician to pipette each sample
replicate in a random position, but not to do so means that
the real errors in the estimated concentrations may be very

Table 3. Number of 90% Confidence Intervals Containing the True
Concentration from 96 Samples (expected number should be 86.4)

Confidence interval method

x s PB PBR BT PP
0 g5 94 94 — 94
R 94 94 93 — 94
3 96 96 95 96 95
1 91 91 91 91 91
3 93 92 92 91 92
10 93 93 93 91 93
100 68 60 60 —_ 60
10,000 77 77 77 -_ 77
Total 92.1% 90.8% 90.! 96.1% 90.go

NOTE: Methods are as in Tables 1 and 2.

“binary mixtures, we use two smtably chosen antibodies so
that the responses (Y7,Y;) from a mixture with concentra-
tions (z1,z3) are modeled by

logY;
= .f(zy 9.) + &
= log (
+ &, 1=1,2, uy)

where A;, Bij, Cij, D; are the parameters of the calibration
curve for analyte j with antibody ¢ and B} is the geometric
mean of B;; and B;;. Two microtiter plates are needed for
the assay, each treated with a different antibody. The two
plates are analyzed separately, so €; and e, are indepen-
dent. Two single-analyte calibration curves are run on each
plate, together with unknown samples. We assume that pa-
rameters A and D are common to both curves on the same
plate. Estimates of the unknowns z; and z, for each sample
are calculated by solving the system of equations (17) using
the measured responses (Y7, Y2). Because of this complexity
the standard asymptotic methods of producing confidence
intervals for the estimates are mathematically and compu-
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tationally difficult; implementation of the percentile boot-
strap as described previously is, however, straightforward:
We generate new bootstrap data for each plate separately
and then calculate the bootstrap estimates (z;, 7).

To produce a confidence region from many bootstrap
point estimates is more problematic now than in the one-
dimensional case. One alternative is to assume multivariate
normality of the estimator, estimate the mean and covari-
ance matrix, and draw the appropriate elliptical contour.
An alternative, nonparametric approach is to estimate the
multivariate density. We used ASH, or average shifted his-
tograms (Scott 1992), to estimate the bivariate density, then
drew a contour at a level such that the integrated ASH es-
timate inside the contour was 90%. Figure 6 shows the re-
sults of 1,000 bootstrap estimates for one of the unknowns
together with the ASH-derived confidence region (B).

The Fieller approach may be regarded as an adjustment
of the squared distance function || Yo—~f (%o, 6)|i2 to account
for uncertainty in the parameter estimate 8. It was argued
by Jones (1996) that approximately

f(x010))2 2
2(1 +vt) ~ X2,

D(xq) = Z (log Yo; — (20)

where o2 is the variance of ¢; and o2v; the asymptotic vari-
ance of f(xo,®), obtained via the delta method. Because x
and Y have the same dimension here, then, provided that we
are away from the boundary (zo; and zg, both nonzero),
solves D(xg) = 0. A confidence region can then be ob-

tained by evaluating L)(zy) -over a- gﬂd -and. contouring at

the appropriate level. Such a region is shown in Figure 6,

marked F.

The likelihood ratio approach is in principle straightfor-
ward, provided that we deal with one unknown at a time.
For a trial value xo, the point (zo, Yo;) (or points, if repli-
cated) is added to the ith calibration set; estimation of the
curve parameters by least squares regression leads to an
error sum of squares SS;. Assuming normality, the log-

=1
o

“

-

Tarbutryn ppb
1.0
L

05

T T T T T

0.0 05 10 15 20
Atrazine ppb

Figure 6. Bootstrap Estimates and Estimated 90% Confidence Re-
gions From MELISA of 1 ppb Atrazine With 1 ppb Terbutryn: B = Boot-
strap Method; F = Fieller Method; L = Likelihood Ratio Method.
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Figure 7. Template for MELISA With Two Analytes. Two such plat
are used, each treated with a different antibody.

likelihood, to within an added constant, is given by
I(xo) = —% logSS; — % 1ogSS»,

where n; and n; give the total number of data points
each augmented calibration set. We now find the minimiz:
%o of I(xg) and assume the usual asymptotic result

2(U(zo) — U(%0)) ~ X3 - (X

to get a confidence region. In practice, however, there a
considerable computational difficulties both in minimizin
!(x0) and in evaluating it over a grid where the convergenc
of the curve-fitting algorithm may break down for some x,
The resulting confidence region is marked L in Figure 6.

Our full dataset for this example consisted of six pais
of plates, each contammg duphcated standards for bot
tnplxcated ‘unknown samples of 1 ppb atrazine w1th 1pp
terbutryn (see Fig. 7). This gave a total of 132 determin:
tions of the 1 + 1 mixture, although results from the sam
pair of plates are not independent because they use the sam
estimated standard curves. To reduce the problem of spz
tial effects noted earlier, we randomized the positions of th
unknowns, separately for each plate. The number of cor
fidence regions containing the true concentrations for eac
pair of plates by each method is shown in Table 4. Th
two asymptotic methods (F and L) do not perform wel
the bootstrap confidence regions, however, would seem t
provide a reasonable summary of the uncertainty in eac
estimate,

Table 4. Coverage of Confidence Regions in
Multianalyte ELISA Experiment

Confidence interval method

Plates Fieller L. ratio Bootstrap

14
8
7
14
20
19
74.5%

NOTE: Figures show the number of regions (out of 22 samples on each pair of piates) containir
tha irie inn. The exp number at the nominal 90% coverage is 19.8.




BOOTSTRAPPING IN CONTROLLED CALIBRATION EXPERIMENTS

5. CONCLUSION AND DISCUSSION

Our results suggest that bootstrapping can be made to
work reasonably well in controlled calibration experiments
even when the sample size is not large. Pivoting may lead to
better coverage properties in small datasets, but for larger
datasets even the simple percentile bootstrap, with resid-
ual adjustment, can approximate the correct coverage; the
advantage of pivoting may be lost in nonlinear models in
which the standard error must be approximated.

If both standards and unknowns are replicated, the use
of within-replicate residuals is simpler and gives results
comparable with those obtained using regression residuals.
These different approaches correspond to different levels
of assumptions made in constructing the bootstrap datasets.
The use of regression residuals assumes that the mean re-
sponse is modeled correctly and that the correct variance
function is used: Within-replicate residuals assume only the
correct variance function. If the mean response is modeled
incorrectly, this will bias the calibration estimates and the
calculated confidence intervals from either method will be
misleading. In some cases it might be better to estimate
the calibration curve nonparametrically (Knafl, Speigelman,
Sacks, and Ylvisaker 1984). Our bootstrap methodology
could be applied in this case without adaptation.

Another possible failure of assumptions concerns nonin-
dependence of the errors. There may be spatial or tempo-
ral effects that cannot be eliminated by randomization of
the design, resulting again in inadequate coverage of both
standard and bootstrap intervals. In general, false assump-
tions will tend to give misleadingly reassuring intervals, by
whatever method they are produced. The advantage of our
bootstrap methodology is that it is easy to apply even in

the standard method in simple ones.
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