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Abstract 
Most classification methods are based on the assumption that the data conforms to 

a stationary distribution.  However, the real-world data is usually collected over certain 

periods of time, ranging from seconds to years, and ignoring possible changes in the 

underlying concept, also known as concept drift, may degrade the predictive performance 

of a classification model.  Moreover, the computation time, the amount of required 

memory, and the model complexity may grow indefinitely with the continuous arrival of 

new training instances.  This paper describes and evaluates OLIN, an online classification 

system, which dynamically adjusts the size of the training window and the number of 

new examples between model re-constructions to the current rate of concept drift.  By 

using a fixed amount of computer resources, OLIN produces models, which have nearly 

the same accuracy as the ones that would be produced by periodically re-constructing the 

model from all accumulated instances. We evaluate the system performance on sample 

segments from two real-world streams of non-stationary data. 

Keywords. Classification, incremental learning, online learning, concept drift, 

info-fuzzy networks. 
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1. Introduction 

The so-called Information Age has provided us with huge amounts of digital data, 

which keep growing at unprecedented pace.  Business information systems, Internet 

servers, and telecommunication providers are producing and storing new data every day, 

hour, and even minute.  The reported rates include the maximum amount of 17,400 Web 

page requests per minute at a single university campus  [6], 500,000 transactions recorded 

during less than one day by the Lycos search engine  [1], and tens of millions of queries 

sent every day to Yahoo! Search  [25].  The accumulated data may contain some valuable 

information for an organization that is storing it. Data mining is the core stage of the 

KDD (Knowledge Discovery in Databases) process, which is aimed at “identifying valid, 

novel, potentially useful, and ultimately understandable patterns in data”  [9]. The 

problems of knowledge discovery in online data include real-time monitoring of 

manufacturing processes, prediction of stock prices, and intrusion detection in computer 

networks. 

Continuous streams of data pose new problems to classification methods of data 

mining, like CART  [4], ID3  [28], C4.5  [29], IFN  [23], and many others. The common 

approach of these methods is to store and process the entire set of training examples. The 

growing amounts of training data increase the processing requirements of data mining 

systems up to a point, where they either run out of memory, or their computation time 

becomes prohibitively long.  Furthermore, even if all the available examples can be 

handled by the system, the patterns discovered by an algorithm in the data from the past, 

may be hardly valid and useful for the new data obtained hours or even minutes later due 
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to unexpected changes in the data-generating process (e.g., a political event which affects 

the stock prices). 

Methods for extracting patterns from continuous streams of data are known as 

incremental (online) learning algorithms.  The basic idea of incremental induction is that 

upon receiving a new instance, it is much less expensive to update an existing model than 

to build a new one. On the other hand, as indicated in  [6], the incremental algorithms 

suffer from several shortcomings, like high sensitivity to the order of training examples 

and longer training times than the non-incremental (batch) methods.  Pure incremental 

methods consider every new instance, which may be impractical in environments, where 

transactions arrive at the rate of thousands per second. The algorithms for purely 

incremental learning include WINNOW  [21], COBWEB  [10], ITI  [31], and the stochastic 

gradient descent algorithm for training a neural network (see  [27]).  Most of these 

methods are focused on efficient ways of inducing a classification model from stationary 

data streams. 

The general problem of learning a drifting concept that is a concept which 

changes over time is studied by Helmbold and Long in  [12]. The rate of drift is defined 

there as the probability that the target function disagrees over two successive examples.  

Disagreements are minimized by an algorithm, which is polynomial in the sample size, 

given that the rate of drift is bounded.  Thus, for high-volume non-stationary data 

streams, where the actual rate of drift is unknown in advance, the run time of the 

algorithm may grow indefinitely. 

Widmer and Kubat  [32] describe a family of purely incremental algorithms for 

learning in the presence of drift.  These algorithms use a simple representational 



Intelligent Data Analysis 

Mark Last 4 

framework, called FLORA, which stores descriptions of positive, negative, and noisy 

examples in separate description sets.  One of the incremental algorithms, FLORA2, 

maintains a dynamically adjustable window of the latest training examples.  Whenever a 

concept drift is suspected, due to a drop in predictive accuracy or an explosion in the 

number of descriptions, the window size is decreased, by discarding the oldest examples. 

If the concept appears to be stable, the window size is left unchanged.  As long as the 

presence of drift is uncertain, no examples are forgotten, thus incrementally increasing 

the window size.  According to  [32], this window adjustment strategy may efficiently 

detect radical changes in the underlying concept, subject to a relatively low rate of 

change. The FLORA algorithms also assume a limited rate of data arrival, since they 

process one example at a time. 

A recent paper by Domingos and Hulten  [6] deals directly with the problem of 

mining high-speed streams of data.  Their data mining system, called VFDT, builds 

decision trees from symbolic attributes by using sub-sampling of the entire data stream 

generated by a stationary process.  A similar assumption of stationary concepts is used by 

the incremental method of Fan et al.  [7]. The sample size is determined in VFDT from 

distribution-free Hoeffding bounds. A new version of the VFDT system, called CVFDT  

[16], learns decision trees from continuously changing data streams by repeatedly 

applying the VFDT algorithm to a sliding window of fixed size.  CVFDT is aimed at 

detecting only one type of concept drift at the node level of the tree: namely, the 

importance of the current input attribute vs. other attributes.  The algorithm grows an 

alternative subtree for each attribute having a relatively high information gain and 

replaces the old subtree when a new one becomes more accurate. 
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Harries and Sammut  [11] have developed an off-line meta-learning system (based 

on C4.5) for partitioning the data stream into a set of time-dependent "conceptual 

clusters."  The off-line approach is aimed at analyzing concept drifts in historic data 

rather than at the online detection of evolving changes.  A strategy for dynamically 

updating a linear regression classifier by using a linear model of dynamic behavior is 

presented in  [17].  The linear approach of [17] is computationally efficient, but it 

obviously restricts the search space by eliminating nonlinear concepts and nonlinear 

(especially, abrupt) patterns of concept drift. 

Time-dependent changes in the class distributions of rules induced from data can 

be detected by the CD3 algorithm of Black and Hickey  [3] [13].  CD3 treats the time-

stamp as an additional input attribute in a decision tree.  Consequently, paths where the 

value of the time-stamp attribute refers to the old period(s) represent rules, which are out 

of date.  When the process is stable for a long period of time, the time-stamp attribute 

should not appear in any path of the tree. 

Closely associated with the problem of change detection is the task of discovering 

the robust knowledge, which is unlikely to be affected by database changes.  A Bayesian 

Network model for evaluating robustness of database rules is described in  [14].  The 

network probabilities are estimated by an off-line procedure, which assumes stationarity 

of the database transactions.    

Another related area is change detection, including an increasingly important 

problem of intrusion detection in computers and computer networks.  Lane and Brodley  

[18] suggest a compromise between purely batch and purely incremental learning for the 

task of detecting abnormal (possibly hostile) behavior of a computer user: their algorithm 
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is trained on a batch of the most recent user transactions.  However, the minimum batch 

size (80 examples) makes the system vulnerable to short-term cyber attacks.  According 

to Fawcett and Provost  [8], the most efficient method for detecting an intruder is the 

profiling approach, where a model of normal (stationary) activity is built and then used to 

alarm on significant deviations from the normal. 

This paper proposes an online classification system, which uses an info-fuzzy 

network  [23], or IFN, as a base classifier.  As shown in  [19] [23], the IFN method is able 

to produce much more compact models than other decision-tree methods, like CART and 

C4.5, while preserving nearly the same level of predictive accuracy. Moreover, it can also 

be used as an efficient feature selection method  [20].  The proposed system, called OLIN 

for On-Line Information Network, adapts itself automatically to the rate of concept drift 

in a non-stationary data stream by dynamically adjusting the size of the training window 

and the rate of model update.  The system does not impose any limitations on the rate, the 

extent, or the type of change in the underlying concept.  Like the batch version of the IFN 

method, it can handle both discrete and continuous attributes.  OLIN saves computer 

resources by increasing the update cycle when the concept appears to be stable and it 

shrinks the size of the training window, whenever a concept drift is detected.  Thus, 

OLIN can be applied to a time-changing data stream of arbitrary duration.  The 

cumulative accuracy of the models produced by OLIN tends to be higher than the 

accuracy obtained with a fixed-size sliding window though it may be slightly lower than 

the accuracy of an incremental system that does not “forget” any past examples. 

This paper is organized as follows.  In the next section, we provide a brief 

overview of the IFN method and its features. The OLIN system is described in the 
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following section.  We then present the empirical results of applying OLIN to real-world 

streams of non-stationary data coming from two different domains: semiconductor 

manufacturing and stock market.  The paper concludes with a discussion of results and 

future work. 

2. Information Networks 

2.1. Network Structure 

IFN, or info-fuzzy network  [23] is a tree-like classification model, which is 

designed to minimize the total number of predicting attributes.  Beyond classification, 

this model can be used for the tasks of discretization  [23], feature selection  [20], rule 

induction  [19], and evaluation of data reliability  [24]. An info-fuzzy network has the 

following components: 

1) I - a subset of input (predicting) attributes used by the model.  Input attributes are 

selected from the set C of candidate input attributes (available features). 

2) |I|  - total number of hidden layers (levels) in a network.  Unlike the standard decision 

tree structure used in CART  [4], ID3  [28], and C4.5  [29], where the nodes of the same 

tree level are independent of each other, all nodes of a given network layer are labeled 

by the same input attribute associated with that layer. This is why the number of 

network layers is equal to the number of input attributes. In layers associated with 

continuous attributes, an information network uses multiple splits, which are identical 

at all nodes of the corresponding layer. Most other decision-tree methods apply only 

binary splits in each layer. The first layer in the network (Layer 0) includes only the 

root node and is not associated with any input attribute.   
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3) Ll - a subset of nodes z in a hidden layer l.  Each node represents an attribute-based 

test, similarly to a standard decision tree.  If a hidden layer l is associated with a 

nominal input attribute, each outgoing edge of a non-terminal node corresponds to a 

distinct value of an attribute.  For continuous features, the outgoing edges represent 

consecutive intervals obtained from the discretization process.  If a node has no 

outgoing edges, it is called a terminal node. 

4) K - a subset of target nodes representing distinct values of the target (classification) 

attribute.  For continuous target attributes, the target nodes represent disjoint intervals 

in the attribute range.   A target layer is missing in the standard decision-tree 

structure.  The connections between terminal nodes and the nodes of the target layer 

may be used for extracting information-theoretic rules from a network  [19].  

In Figure 1, a structure of a two-layered info-fuzzy network (based on two 

selected input attributes) is shown. The first input attribute has three values, represented 

by nodes no. 1,2, and 3 in the first layer, but only nodes no. 1 and 3 are split by the 

network construction procedure described in sub-section  2.2 below.  The second layer has 

four nodes standing for the combinations of two values of the second input attribute with 

two split nodes of the first layer. The target attribute has three values, represented by 

three nodes in the target layer.  New examples can be classified by an info-fuzzy network 

in a similar way to standard decision trees: we start at the root node, test the attribute 

associated with the first layer, then move along the network path corresponding to the 

value of the first input attribute. The process continues until a terminal node is 

encountered (nodes 1,1; 1,2; 2; 3,1; and 3,2 in the network of Figure 1), at which time an 
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example is labeled with a single predicted class having the maximum probability at the 

node or with the probability distribution of classes. 

Layer No. 0
(the root node)

0

1

2

3

Connection 
Weights

Target 
Layer

1

2

3

Layer No. 1
(First input 
attribute)

1,1

1,2

3,1

3,2

Layer No. 2
(Second input 
attribute)  

Figure 1 Info-Fuzzy Network - Two-Layered Structure 

The connectionist nature of the info-fuzzy network (each terminal node is 

connected to every target node) resembles the topological structure of multi-layer neural 

networks (see  [27]), which also have input and output nodes and a variable number of 

hidden layers.  Consequently, we define our model as a network and not as a tree.   

2.2. Network Construction Procedure 

The network construction algorithm (called here IN for Information Network) 

starts with defining the target layer and the “root” node representing an empty set of input 

attributes. Unlike CART  [4] and C4.5  [29], IFN is built only in one direction (top-down).  

After the construction is stopped, there is no bottom-up post-pruning of the network 

branches.   As explained below, the network is pre-pruned by applying statistical 

significance testing. 

A node z can be split on an input attribute Ai’ only if the split provides a 

statistically significant increase in the mutual information of z and the target attribute Ai.  

Mutual information (see  [5]) is an information-theoretic measure of association between 
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two random variables X and Y, which is defined as a decrease in the entropy of Y as a 

result of knowing X (and vice versa). An increase in mutual information, also called 

conditional mutual information  [5] or information gain  [28], of a candidate input attribute 

Ai’ and the target attribute Ai, given a node z, is calculated by the following expression 

(based on  [5]): 
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where 

Mi / Mi’ - number of distinct values of the target attribute i /candidate input 

attribute i’.   

P (Vi’j’/ z)  - an estimated conditional (a posteriori) probability of a value j’ of a 

candidate input attribute i’ given a node z   

P (Vij/ z) - an estimated conditional (a posteriori) probability of a value j of the 

target attribute i given a node z. 

P (Vi’j’
ij/ z) - an estimated conditional (a posteriori) probability of a value j’ of a 

candidate input attribute i’ and a value j of the target attribute i given a node z. 

P (Vij; Vi’j’; z) - an estimated joint probability of a value j of the target attribute i, a 

value j’ of a candidate input attribute i’ and a node z. 

Conditional mutual information measures the benefit of adding an input attribute 

to the information network.  If the input and the target attributes are conditionally 

independent given a node z, their conditional joint probability should be equal to the 

product of their individual conditional probabilities.  This makes the logarithmic terms in 

Equation (1) equal to zero.  On the other hand, if the knowledge of an input value either 



Intelligent Data Analysis 

Mark Last 11 

increases, or decreases the conditional probability of a target value, the corresponding 

summation term in (1) becomes either positive, or negative respectively. 

If a tested attribute is continuous, its values in Equation (1) correspond to 

thresholds, which maximize an increase in mutual information.  Prior to adding a new 

layer, the algorithm re-computes the best threshold splits of each continuous attribute that 

is not in the network. More details on discretizing and selecting continuous attributes are 

provided in  [20] and  [23].  

The statistical significance of the estimated conditional mutual information, is 

evaluated by using the likelihood-ratio statistic (based on  [1]): 

G2 (Ai’ ; Ai / z) = 2•(ln2)• E*(z) • MI (Ai’ ; Ai / z) (2) 
Where E*(z) is the number of records associated with the node z 

The Likelihood-Ratio Test  [30] is a general-purpose method for testing the null 

hypothesis H0 that two discrete random variables are statistically independent. As can be 

seen from Equation (1), independence of two attributes implies that their expected mutual 

information is zero.  If H0 holds, then the likelihood-ratio test statistic G2 (Ai’; Ai / z) is 

distributed as chi-square with (NIi’ (z) - 1)•( NTi (z) - 1)  degrees of freedom, where 

NIi’(z)  is the number of values of a candidate input attribute i’ at node z and NT i (z) is the 

number of values of the target attribute i at node z (based on  [30]).  Thus, MI (Ai’ ; Ai / z) 

is considered statistically significant if H0 can be rejected at the significance level α: 

G2 (Ai’ ; Ai / z) ≥ χ2
α ((NIi’ (z) - 1)•( NTi (z) - 1))  (3) 

The default value of α used by the IN algorithm is 0.1%.  We have found 

empirically that in most datasets, higher values of α tend to decrease the generalization 

performance of the model. 
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At each iteration, the algorithm builds a new hidden layer by choosing an input 

attribute (either discrete, or continuous), which provides the maximum significant 

increase in mutual information relative to the previous layer. The nodes of a new layer 

are defined for a Cartesian product of split nodes of the previous layer and the values of a 

new input attribute.  The chain rule of the information theory (see  [5]) implies that the 

mutual information between an info-fuzzy network and the target attribute is equal to the 

sum of drops in conditional entropy (information gains) across all hidden layers.    If 

there is no candidate input attribute significantly increasing the mutual information, the 

network construction is stopped and the algorithm outputs the final network structure.   

3. The OLIN System 

3.1. Algorithm Description 

The OLIN (On-Line Information Network) system is a wrapper for the 

Information Network (IN) algorithm presented in the previous section.  OLIN is receiving 

a continuous stream of data examples. The system repeatedly applies the IN algorithm to 

a sliding window of training examples and it dynamically adapts the size of the training 

window and the frequency of model re-construction to the current rate of concept drift. 

The OLIN system is limited neither by the overall duration of a data stream, nor by the 

cumulative number of examples arrived. At each point in time, the purpose of the system 

is to predict a correct class for the next arriving example by using a current classification 

model. We assume that immediately afterwards the correct classification becomes 

available to the wrapper.  This assumption, used by many incremental learning methods  
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[32], is reasonable as long as the delay between receiving an example and receiving its 

class is negligible with respect to the time between the arrivals of successive examples.   

The general architecture of the OLIN system is presented in Figure 2.  The system 

has three modules: the Learning Module, which implements the IN algorithm to produce 

an info-fuzzy network; the Classification Module, which uses the current network to 

classify the incoming examples; and the Meta-Learning Module, which controls the 

operation of the Learning Module.  In the sample data stream of Figure 2, each one of V0 

examples in the validation interval [t2, t3] is classified by a model induced from T0 

examples of the training interval [t0, t2].  The number of examples in the training and the 

validation intervals do not have to be equal.  At the time t3 the network is re-constructed 

by the Learning Module using T1 examples from the training interval [t1, t3] and 

subsequently applied to V1 examples in the validation interval [t3, t4].  We assume here 

that the first example in the interval [t3, t4] arrives after the network construction has been 

completed. In massive data streams, examples that arrive in the process of network 

construction may be classified by a partially constructed model using the anytime nature 

of the IN algorithm (see  [23]). 

The Meta-Learning Module obtains as input the training and the validation 

accuracy rates of the model, measured on the training and the validation intervals 

respectively.  It also gets the description of the model itself (selected attributes, entropy 

information, etc.).  Using the OLIN algorithm (see below), the module re-calculates the 

size of the next training window (interval) and the number of validation examples to be 

classified with the new model. The last validation example of the current window is 

always the last training example of the next window.  To classify every example in the 
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data stream exactly one time, the validation intervals ([t2, t3], [t3, t4], etc.) have to be 

disjoint and consecutive. However, the training windows may overlap with each other 

(but not with their respective validation intervals).  
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Next Window (T1 examples)
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Classification 
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Training 
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Meta-learning 
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Figure 2 OLIN System Architecture 

The basic intuition behind the OLIN algorithm resembles the FLORA2 

framework  [32]: a narrow training window may be too small to identify any stable 

concept with a high degree of confidence; on the other hand, a wide training window may 

completely miss short-term changes in the underlying concept.  Since the timing, the rate, 

and the extent of concept drift in a data stream are not known in advance, the window 

size should be adjusted dynamically in the process of data arrival.  A good heuristic is to 

shrink the training window to a minimum size, when a drift seems to occur, and increase 

the window (up to a certain limit dictated by the data size and the available computer 

resources) if stability is observed.  OLIN uses the statistical significance of the difference 
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between the training and the validation accuracy of the current model as an indicator of 

concept stability. 

The purely incremental approach of FLORA2 does not seem appropriate for 

massive data streams, where the concepts are not expected to change drastically between 

the arrivals of consecutive instances.  For this reason, the CVFDT algorithm of Hulten et 

al.  [16] checks for drift only once in a fixed number of examples (20,000).  The OLIN 

approach is to adjust dynamically the number of examples between model re-

constructions by using the following heuristic: keep the current model for more examples 

if the concept appears to be stable and reduce drastically the size of the validation 

window, if a concept drift is detected. 

Table 1 shows the pseudo-code outline of the OLIN algorithm.  The algorithm 

does some initializations and then processes a user-specified number of incoming 

examples from a continuous data stream. If the user does not provide the number of the 

last example to be classified by the system, the algorithm runs indefinitely.  The 

following parameters are calculated by OLIN: initial size of the training window, updated 

window size, and the maximum difference between the training and the validation errors.  

These calculations are described in the next sub-sections. 

The IN algorithm, like other batch decision-tree methods, stores all the training 

examples in the computer memory.  Thus, applying IN to an indefinitely growing training 

window is not feasible.  Consequently, we have limited the maximum size of the training 

window used by OLIN to Max_Win examples.  This number can be adjusted to the 

amount of available memory on a given computer.  Another important parameter is the 

training time required per each new example.  As shown by us in  [23], the computation 
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time of the IN algorithm is directly proportional to the number of training examples for 

each discrete attribute and to the square of this number, if an attribute is continuous.  This 

imposes an additional limitation on the size of the training window, which can be handled 

by a given computer system.  Since the size of the training window is bounded by 

Max_Win and the minimum number of examples in a validation interval is 

Min_Add_Count, we can say that during the slowest periods of its operation, the training 

time of OLIN per a discretely-valued new example can be proportional to Max_Win / 

Min_Add_Count. With continuous attributes, this value increases to (Max_Win) 2 / 

Min_Add_Count.  However, when the concept appears to be stable, the algorithm training 

time will go down to the order of Max_Win / Max_Add_Count or (Max_Win)2 / 

Max_Add_Count, depending on the nature of the data stream attributes. 
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Table 1 The OLIN Algorithm 

Inputs: S - A continuous stream of examples 
 n min The number of the first example to be classified by the system (nmin – 1 

examples have already arrived) 
 n max The number of the last example to be classified by the system (if 

unspecified, the system will run indefinitely) 
 C A set of candidate input attributes (discrete and continuous) 
 Sign A user-specified significance level  
 Pe Maximum allowable prediction error of the model 
 Init_Add_Count The number of new examples to be classified by the first model 
 Inc_Add_Count Amount (percentage) to increase the number of examples between model 

re-constructions 
 Max_Add_Count Maximum number of examples between model re-constructions 
 Red_Add_Count Amount (percentage) to reduce the number of examples between model re-

constructions 
 Min_Add_Count Minimum number of examples between model re-constructions 
 Max_Win Maximum number of examples in a training window 
Output: IFN Info-fuzzy network  
Procedure OLIN  
Calculate the initial size of the training window Winit (using Equation 7) 
Let the training window size W = Winit 
Initialize the index i of the first training example to n min - W 
Initialize the index j of the last training example to W 
Initialize the number of validation examples Add_Count to Init_Add_Count 
While j < n max Do 

Obtain a model (IFN) by applying the IN algorithm to W latest training examples 
Calculate the training error rate E tr of the obtained model on W training examples 
Calculate the index of the last validation example k = j + Add_Count; 
Calculate the validation error rate E Val of the obtained model on Add_Count validation 
examples 
Update the index of the last training example j = k 
Find the maximum difference between the training and the validation errors Max_Diff 
(using Equation 10) 
If (E Val - E tr) < Max_Diff      // concept is stable 
 Add_Count =Min( Add_Count * (1+ 

(Inc_Add_Count/100)), Max_Add_Count) 
 W = Min (W + Add_Count, Max_Win) 
Else //concept drift detected 
 Re-calculate the size of the training window W (using 

Equation 8)  
 Update the index of the first training record i = j - W 
 Add_Count = Max (Add_Count * (1-

(Red_Add_Count/100)), Min_Add_Count) 
Return the current model (IFN) 

End Do 
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3.2. Calculating the Number of Training Examples 

We assume that the OLIN system can be applied to a continuous data stream at its 

beginning or after any number of incoming examples.  If the data stream has just started, 

the question is, how many examples need to arrive before the algorithm can induce an 

initial model at a given significance level?  If, on the other hand, we have an indefinite 

number of past examples, what is a minimum number of latest examples that we need to 

store in the computer memory?  Since the IN algorithm uses an information-theoretic 

heuristic in constructing the information network, the minimum number of examples 

E*(z) required to confirm the statistical significance α of an attribute Ai’ at a node z can be 

found by combining Equations 2 and 3: 
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Equation 4 is less conservative than the distribution-independent Hoeffding bound 

 [6], since it is based on the assumption that the split heuristic (conditional mutual 

information) is distributed as chi-square with a specific number of degrees of freedom. 

However, before we apply OLIN to a new data stream, we do not know the conditional 

mutual information MI (Ai’; Ai / z) for any of the network nodes.  In fact, we do not even 

know the network structure in terms of the total number of nodes and the selected 

attributes to be associated with each layer.  To estimate the minimum number of 

examples, we first assume, without loss of generality, that the network has one layer only.  

This is a good approximation, since empirical results  [23] show that most nodes of the 

first layer are usually terminal nodes and only a small portion of examples is associated 

with subsequent layers.  In general, the minimum number of examples in the training 
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window can always be derived from the number of examples required to split every node 

in the network.  We also assume that the first input attribute selected by the algorithm has 

only two values: NTi’ (z) = 2.   This number can be adjusted to the actual domain size of 

candidate input attributes in a given dataset. 

Since we consider only the attribute that is used to split the root node, the 

conditional mutual information MI (Ai’; Ai / z= 0) is equal to the mutual information MI 

(Ai’; Ai), which can be expressed as  [5]): 

MI (Ai’; Ai) = H(Ai) – H (Ai / Ai’) (5) 

Where H(Ai) is the unconditional entropy of the target attribute Ai  and H (Ai / Ai’) 

is the conditional entropy of Ai given an input attribute Ai’. The unconditional entropy 

H(Ai) can only be estimated by processing some training examples.  However, it can be 

approximated by its maximum value of log2 (NTi), where NTi is the number of classes  [5].  

If a dataset is very unbalanced, NTi may include only the most common classes.  The 

upper bound for the conditional entropy can be found from Fano’s inequality [5]:  

H (Ai / Ai’) ≤  H (Pe) + Pe log2 (NTi -1)   (6) 
Where Pe is the error rate of the information network having conditional entropy 

of H (Ai / Ai’).  Since the right-hand expression is a non-decreasing function of Pe, we can 

assume that Pe represents the maximum allowable error rate of the model.  The 

assumption of NTi’ (z) = 2 and Equations 4 – 6 lead to the following expression for the 

initial size of the training window: 

))1(log)()((log2ln2
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Intuitively, the expression for Winit can be interpreted as follows.  A higher 

significance level α requires more examples, since it increases the corresponding value of 
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chi-square.  More examples are needed to distinguish between a larger number of target 

classes.  Given that other factors remain unchanged, the error rate Pe is also proportional 

to the number of required examples, since the algorithm needs more examples to confirm 

the significance of a less accurate model.  It is important to note that a high statistical 

significance of the likelihood-ratio test does not necessarily imply a high predictive 

accuracy of the resulting model.  A significance level just represents the probability that 

the model is not random, i.e., it is more accurate than the default (majority) prediction 

rule. 

The expression for the size of an updated window is also based on Equations 4 – 

6, but it uses information, which is available from the latest window of the training 

examples: 
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Where NTi’ is the number of values (or discretized intervals) for the first attribute 

Ai’ in the info-fuzzy network, H (Ai) is the entropy of the target, and Etr is the training 

error of the current model.  The resulting number of examples W should be sufficient to 

confirm the significance of the first layer in the latest trained model.  We assume that a 

new concept, which is still unknown, can be learned from at least the same number of 

examples.  If a new concept pertains for fewer examples than W, the algorithm cannot 

detect it at all. 

3.3. Comparing the Training and the Validation Error Rates 

If a concept is stable, the examples in the training window and in the subsequent 

validation interval should conform to the same distribution.  Consequently, there should 
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not be a statistically significant difference between the training and the validation error 

rates of the IFN model, as we have seen in our previous studies of static datasets  [23].  

On the other hand, a sharp increase in the error rate may indicate a possible concept drift  

[32].  Using a Normal approximation to the Binomial distribution, we calculate the 

variance of the difference between error rates by the following formula (based on  [27]): 

CountAdd
EE

W
EEDiffVar valvaltrtr

_
)1()1(_ −+−=  (9) 

If the concept is stable, the maximum difference between the error rates, at the 

99% confidence level, is: 

DiffVarDiffVarzDiffMax _2.326__ 99.0 ==  (10) 

If the difference between the error rates exceeds Max_Diff, a concept drift is 

detected and the size of the next training window is re-calculated by using the Equation 8.  

Also, the number of examples in the next validation interval is reduced by 

Red_Add_Count percent.  Otherwise, the concept is considered stable and both the 

training window and the validation interval are increased up to their maximum sizes. 

4. Empirical Results 

4.1. Manufacturing Data 

We have applied OLIN to a sample of yield data recorded at a semiconductor 

plant. In semiconductor industry, the yield is defined as the ratio between the number of 

good parts (microelectronic chips) in a completed batch and the maximum number of 

parts, which can be obtained from the same batch, if no chips are scraped at one of the 

fabrication steps.  Due to high complexity and variability of modern microelectronics 

industry, the yield is anything but a stationary process.  It is affected daily by hundreds of 
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material-related, equipment-related, and human-related factors.  Maintaining current 

models for yield prediction, as well as timely detection of changes in yield behavior, 

usually called “yield excursions”, constitute the primary tasks of process engineers. 

A semiconductor company has provided us with the records of 1,378 

manufacturing batches that completed their production during a four months period.  Due 

to the confidentiality of the original data, we omit here the name of the company, the 

description of the products, and many other details, which are irrelevant to the evaluation 

of our method.  The records include seven candidate input attributes, which represent the 

main properties of a given batch (chip size, production priority, etc.).  The target 

(dependent) attribute is the percentage of outgoing yield, discretized to three intervals of 

approximately equal frequency.  These intervals can be characterized as a low yield, a 

normal yield, and a high yield.   

In our experiments, we have assumed, for the sake of convenience, that the online 

learning starts after the completion of the first 378 batches, which leaves us with exactly 

1,000 records for validating the performance of the constructed models.  Table 2 shows 

the settings used by OLIN in this dataset. The parameter values have been chosen 

experimentally to provide the best classification performance of the system. All runs were 

carried out on a Pentium III processor with 128 MB of RAM. 
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Table 2 OLIN Parameter Values (Manufacturing Data) 

Parameter Meaning Value 
n min The number of the first example to be classified by the system 378 
n max The number of the last example to be classified by the system  1377 
Sign A user-specified significance level  0.1% 
Pe Maximum allowable prediction error of the model 0.50 
Init_Add_Count Initial number of examples to be classified by the first model 10 
Inc_Add_Count Amount to increase the number of examples between model re-

constructions (if the model is stable) 
50% 

Max_Add_Count Maximum number of examples between model re-constructions 100 
Red_Add_Count Amount to reduce the number of examples between model re-

constructions (if a concept drift is detected) 
75% 

Min_Add_Count Minimum number of examples between model re-constructions 1 
Max_Win Maximum number of examples in a training window 1,000 

  

In Table 3, we compare the overall performance of OLIN to other methods of 

online learning.  The “laziest” approach, implemented in Run 0, is to build a model from 

all the examples available at the beginning of the run (378) and to subsequently apply it 

to all the validation examples (1,000) without ever re-training the IN algorithm.  The “no 

re-training” approach is based on the assumption that the data stream is stationary. 

Another extreme approach (“no-forgetting”) is to repeatedly re-construct the 

model from all the past instances after the arrival of every new example.  The “no-

forgetting” learning requires longer training times as more examples arrive, and, 

eventually, its training time may exceed the time between arrivals of successive examples 

or surpass the limits of the computer memory.  Runs no. 1 and 2 in Table 3 show the 

results of this method for initial training windows of 50 and 100 examples respectively. 

The next three runs (3–5) show the experiments, which apply static windowing by 

adding and removing the same number examples from the training window at each 

iteration.  Finally, Run no. 6 presents the results of OLIN, which uses dynamic 
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windowing.  The columns of the table present the total number of training windows in the 

process of classifying 1,000 examples, the average number of examples in a training 

window, the total run time of the system on the stream of 378 training and 1,000 

validation examples, the aggregated error rate on the validation records (including its 

variance), and the probability that the error rate in a given run is significantly different 

from the error rate of OLIN.  One and two asterisks designate 5% and 1% significance 

levels respectively.  

Table 3 Manufacturing Data: Summary of Experiments 

Run 
No. 

Initial 
Window 

Add 
Count 

Remove 
Count 

Number 
of 
Windows 

Av. 
Window 
Size 

Run 
Time 
(sec.) 

Error 
Rate Variance p-value   

0 378 1000 0 1 1000 0.14 0.558 0.2466 0.027 * 
1 50 1 0 1000 550 32.57 0.507 0.2500 0.360   
2 100 1 0 1000 600 35.81 0.512 0.2499 0.447   
3 50 1 1 1000 50 5.16 0.563 0.2460 0.016 * 
4 50 10 10 100 50 0.60 0.598 0.2404 0.000 ** 
5 100 50 50 20 100 0.28 0.556 0.2469 0.033 * 
6 117 Dynamic Dynamic 23 348.2 0.66 0.515 0.2498     

 

The high error rate of the “no re-training” approach (Run 0) indicates that even 

during a relatively short period of several months, the yield does not preserve a stationary 

pattern.  It is also clear that OLIN (Run 6) is significantly more accurate on this data than 

the static windowing (Runs 3-5).  The no-forgetting approach (Runs 1-2) appears slightly 

more accurate than OLIN, but the differences are not statistically significant.  In terms of 

system resources, OLIN with its average window size of 348.2 examples requires more 

memory than the static windowing.  On the other hand, the no-forgetting method requires 

an indefinite amount of memory to store its ever-growing window. In terms of run time, 
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OLIN is comparable with the static windowing and it is considerably faster than the no-

forgetting approach even for a limited stream of 1,000 records. 

Figure 3 shows how OLIN adjusts the window size to the rate of concept drift. To 

remove short-term effects, the error rate is averaged over past 100 validation examples.  

During the first segment of the run, approximately up to Example no. 500, the error rate 

keeps going up until the system recognizes a concept drift and the window size is 

drastically decreased.  As a result of this window adjustment, the error rate goes down 

rapidly from 70% to less than 40%.  However, between Examples no. 660 and 760 there 

is again a sharp increase in the average error rate, followed by a very slow decline in the 

error.  The second peak in the error rate is not high enough to be identified as a concept 

drift, and, hence, the training window continues to grow until the end of the run, where it 

approaches the maximum size of 1,000 examples. 
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Figure 3 Manufacturing Data: Adjusting to Drift 
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Figure 4 compares the performance of four methods for online learning: no re-

training, no-forgetting (initial size = 100), static windowing (size = 100, increment = 50), 

and dynamic windowing (OLIN).  The error rates of all methods are calculated as moving 

averages of the past 100 validation examples.  The no re-training approach is leading in 

the beginning of the run, but eventually its error goes up and it becomes inferior to other 

methods most of the time, probably due to changes in the yield behavior.  The no-

forgetting method is consistently providing the most accurate predictions for nearly the 

entire length of the data stream.  The static windowing is doing better than OLIN in the 

first part of the stream, up to approximately Example no. 900.  Afterwards, there is a 

sharp increase in the error rate of the static windowing, while OLIN and the no-forgetting 

provide the lowest error.  In other words, by the end of the run, the large windows of 

OLIN and the no-forgetting method are more accurate than the small, fixed-size windows 

of the static method.   
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4.2. Stock Market Data 

The second set of experiments has been performed on a stock market dataset, 

initially used by us in  [19] for evaluation of a batch learning algorithm (IFN).  The raw 

data represents the daily stock prices of 373 companies from the Standard & Poor’s 500 

index  [33] over a 5-year period (from 8/29/94 to 8/27/99) and it has been obtained from 

the Microsoft MoneyCentral web site  [34].  In  [19], we have applied signal-processing 

techniques to partition each series of daily stock values into a sequence of intervals 

having distinct slopes (trends). An average of 15.64 intervals per company have been 

identified. The classification problem has been defined as predicting the correct length of 

the current interval based on the known characteristics of the current and the preceding 

intervals.  Consequently, we have converted every sequence of m intervals related to a 

specific stock into m-1 interval-pairs each containing information about two consecutive 

intervals.  This resulted in a total of 5,462 records of interval-pairs.  The candidate input 

attributes include the duration, the slope, and the fluctuation measured in each interval, as 

well as the major sector of the corresponding stock (a static attribute).  The target 

attribute, which is the duration of the second interval in a pair, has been discretized to 

five sub-intervals of nearly equal frequency.  These sub-intervals have been labeled as 

very short, short, medium, etc. 

To restore the original order of data arrival, we have sorted the records by the 

dates of change points between the adjacent intervals.   The online classification task is to 

predict the timing of the next change point.  To make the calculations more convenient, 

we have started the online learning after the arrival of the first 462 records, which has left 

us with exactly 5,000 records for validation.  The parameters of OLIN were kept as 
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similar as possible to the settings of the experiment with semiconductor data in sub-

section  4.1.  Due to a larger size of this dataset, the initial number of validation examples 

was set to 100 and it was allowed to vary between 10 and 400 examples.  The number of 

the last example to be classified is 5,461.  The values of other parameters remained 

unchanged and the runs were performed on the same computer that was used for the first 

experiment. 

Table 4 compares the performance of OLIN to other methods of online learning.  

Run 0 represents the “no re-training” learner. Runs 1 –3 were performed with the no-

forgetting learner for a varying number of new examples accumulated before each model 

re-construction.  We could not reduce this number below 100 due to extremely long 

training times (more than 24 hours for Add_Count = 10).  Runs 4 – 6 show the results for 

a static window size, while Run 7 represents dynamic windowing with OLIN.  Like in 

Table 3, one and two asterisks denote 5% and 1% significance levels respectively vs. 

dynamic windowing. 

Table 4 Stock Data: Summary of Experiments 

Run 
No. 

Initial 
Window 

Add 
Count 

Remove 
Count 

Number of 
Windows 

Av. 
Window 
Size 

Run Time 
(sec.) 

Error 
Rate Variance p-value   

0 462 5000 0 1 5000 1.26 0.450 0.2475 0.000 ** 
1 100 100 0 50 2600.0   0.384 0.2365 0.001 ** 
2 400 100 0 50 2900.0 18691.09 0.392 0.2383 0.010 ** 
3 400 200 0 25 2900.0   0.398 0.2396 0.042 * 
4 100 100 100 50 100 3.02 0.423 0.2441 0.209   
5 400 100 100 50 400 28.73 0.412 0.2423 0.380   
6 400 200 200 25 400 15.27 0.424 0.2442 0.181   
7 41 Dynamic Dynamic 41 274.0 76.90 0.415 0.2428     
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The non-stationary nature of the stock data is confirmed by the “no re-training” 

approach having the highest error rate in Table 4 (see Run 0).  The no-forgetting method 

(Runs 1-3) is significantly more accurate on this data than OLIN, though the difference 

between the error rates of the two methods is about 2-3% only.  Table 4 also 

demonstrates how fast is an increase in the computation time, if no examples are removed 

from the training window: after the arrival of 5,000 records, it takes more than five hours 

to get an overall accuracy, which is just by 2% higher than the accuracy, which could be 

obtained within a little more than a minute!   The static windowing (Runs 4-6), which 

appears to be the fastest method, is not significantly worse on this dataset than OLIN, 

though its error rates tend to be slightly higher.  One should also note that the static 

windowing provides the best result with a fixed window of 400 examples, while OLIN’s 

dynamic windows contain an average of 274 examples only.  As indicated above, the 

training window size is directly related to the memory requirements of the learning 

system. 

Figure 5 shows how OLIN adjusts the window size to the rate of the concept drift. 

It also shows the error rate averaged over the past 400 validation examples.  Between the 

beginning of the run and approximately Example no. 2,700, the concept appears to be 

stable and there is even some decrease in the error rate vs. the initial part of the run.  Due 

to this apparent stability, OLIN keeps growing the window size.  After Example 2700, we 

observe a sharp increase in the error rate, which causes OLIN to reduce the size of the 

training window.  Subsequently, OLIN performs frequent updates of the window size, 

trying to keep track of a rapidly changing concept.  However, OLIN fails to decrease the 

error rate for about the next 1,400 examples.  The steep decline of the error rate in the last 
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500 examples, accompanied by an increase in OLIN’s window size, reveals the nature of 

data pre-processing rather than a stock market phenomenon: the last interval of each 

stock was truncated at the end of the period covered by the dataset (five years).  

Consequently, the last intervals tend to be much shorter than the preceding intervals, and 

their classification becomes almost deterministic. 
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Figure 5 Stock Data: Adjusting to Drift 

Figure 6 compares the performance of the “no re-training” approach, no-

forgetting (initial size = 100, increment = 100), static windowing (size = 400, increment = 

200), and dynamic windowing (OLIN).  The error rates of all methods are calculated as 

moving averages of the past 400 validation examples.  During the first 40% of the run, 

while the concept appears to be stable, no method is consistently better or consistently 

worse than the other two, which is quite reasonable. In the next segment, which is 

characterized by a high rate of concept drift, the static windowing approach is less 
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successful than OLIN.  However, OLIN itself performs worse in this segment than the 

no-forgetting learner.  This implies that in the second segment, retaining all the past 

examples improves the classification accuracy, though it requires an increasing amount of 

computer resources. A similar result has been obtained by Hulten et al.  [16] in a 

comparison between a static and a dynamic system. At the same time, one can see that 

the gap between OLIN and the no-forgetting method remains nearly constant as more 

examples arrive.  It is also noteworthy that OLIN is better at adapting to a new, though 

artificial concept in the last segment of the run: its error rate goes down much faster than 

the error rates of the other methods, especially the no-forgetting learner.  The “no re-

training” approach is close to static windowing most of the time, but it becomes 

extremely inaccurate for the last 800 examples of the run, since it does not adjust itself to 

an abrupt change in the underlying concept.  
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5. Conclusions 

This paper has presented OLIN, a new system for on-line classification of 

continuous data streams.  To sum-up, the system is based on the following principles.  

The induced concept is represented in the form of an info-fuzzy network (IFN), a tree-

like classification model.  The system is repeatedly constructing a new network from a 

sliding window of latest examples.  The latest model classifies the examples that arrive 

before the subsequent network re-construction.  A concept drift is detected by an 

unexpected rise in the classification error rate.  When a concept is stable, the system 

increases the size of the training window, up to a pre-specified limit, and reduces the 

frequency of model updates.  With the detection of a concept drift, the system re-

calculates the size of the training window by using the principles of information theory 

and statistics. 

The efficiency of OLIN has been confirmed by experiments on two real-world 

sets of online data.  In the case of 1,000 records from a manufacturing dataset, it took 

OLIN 50 times less computation time to obtain practically the same classification 

accuracy like the “brute force” no-forgetting method.  In the second experiment, 

performed on 5,000 records of stock data, the ratio between the computation times of 

“no-forgetting” and OLIN was even more dramatic: about 240.  In terms of classification 

accuracy, the no-forgetting approach has outperformed OLIN by 2% only. 

Hulten and Domingos  [15] present a number of criteria for designing an online 

data mining system.  These criteria include constant time and memory per incoming 

record, single scan of data, availability of a usable model at any time, equivalence to an 
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ordinary data mining algorithm, and adaptability to time-changing concepts along with 

the preservation of concepts from the past that are still relevant.  With respect to these 

criteria, we have seen that OLIN requires a limited amount of time and memory per 

record, does not revisit old records after they are removed from the training window, uses 

an anytime algorithm for constructing an info-fuzzy network (see  [23]), is almost as 

accurate as models induced from all the available instances and has a method for 

adjusting the system parameters in response to a concept drift.  The empirical results 

presented in this paper show that when applied to nonstationary data, OLIN tends to be 

more accurate than the static windowing methods.  However, OLIN is usually less 

accurate than the extremely inefficient “no-forgetting” approach due to apparent presence 

of long-term concepts, which are eventually forgotten by OLIN, while being retained by 

the no-forgetting learner. 

The future work includes evaluating OLIN on more real-world datasets, as well as 

on artificially built data streams.  Considering the time dimension as an explicit input 

attribute available to the system (similar to the approach of  [3] [13]) is another promising 

direction.  Finding a better trade-off between the efficiency of OLIN and the accuracy of 

the no-forgetting method should also be examined. Other topics to study include 

incremental updating of information network structure and application of a similar 

approach to other classification methods.  A visual environment for running beta versions 

of the batch algorithm (IN) and the online algorithm (OLIN) is available for download at 

http://www.ise.bgu.ac.il/faculty/mlast/ifn.htm. 
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