

Online Classification of Nonstationary Data Streams
Mark Last1

Ben-Gurion University of the Negev
Department of Information Systems Engineering

Beer-Sheva 84105, Israel
Email: mlast@bgumail.bgu.ac.il

Abstract
Most classification methods are based on the assumption that the data conforms to

a stationary distribution. However, the real-world data is usually collected over certain

periods of time, ranging from seconds to years, and ignoring possible changes in the

underlying concept, also known as concept drift, may degrade the predictive performance

of a classification model. Moreover, the computation time, the amount of required

memory, and the model complexity may grow indefinitely with the continuous arrival of

new training instances. This paper describes and evaluates OLIN, an online classification

system, which dynamically adjusts the size of the training window and the number of

new examples between model re-constructions to the current rate of concept drift. By

using a fixed amount of computer resources, OLIN produces models, which have nearly

the same accuracy as the ones that would be produced by periodically re-constructing the

model from all accumulated instances. We evaluate the system performance on sample

segments from two real-world streams of non-stationary data.

Keywords. Classification, incremental learning, online learning, concept drift,

info-fuzzy networks.

1 Also with Department of Computer Science and Engineering, University of South Florida, USA

mailto:mlast@bgumail.bgu.ac.il

Intelligent Data Analysis

Mark Last 2

1. Introduction

The so-called Information Age has provided us with huge amounts of digital data,

which keep growing at unprecedented pace. Business information systems, Internet

servers, and telecommunication providers are producing and storing new data every day,

hour, and even minute. The reported rates include the maximum amount of 17,400 Web

page requests per minute at a single university campus [6], 500,000 transactions recorded

during less than one day by the Lycos search engine [1], and tens of millions of queries

sent every day to Yahoo! Search [25]. The accumulated data may contain some valuable

information for an organization that is storing it. Data mining is the core stage of the

KDD (Knowledge Discovery in Databases) process, which is aimed at “identifying valid,

novel, potentially useful, and ultimately understandable patterns in data” [9]. The

problems of knowledge discovery in online data include real-time monitoring of

manufacturing processes, prediction of stock prices, and intrusion detection in computer

networks.

Continuous streams of data pose new problems to classification methods of data

mining, like CART [4], ID3 [28], C4.5 [29], IFN [23], and many others. The common

approach of these methods is to store and process the entire set of training examples. The

growing amounts of training data increase the processing requirements of data mining

systems up to a point, where they either run out of memory, or their computation time

becomes prohibitively long. Furthermore, even if all the available examples can be

handled by the system, the patterns discovered by an algorithm in the data from the past,

may be hardly valid and useful for the new data obtained hours or even minutes later due

Intelligent Data Analysis

Mark Last 3

to unexpected changes in the data-generating process (e.g., a political event which affects

the stock prices).

Methods for extracting patterns from continuous streams of data are known as

incremental (online) learning algorithms. The basic idea of incremental induction is that

upon receiving a new instance, it is much less expensive to update an existing model than

to build a new one. On the other hand, as indicated in [6], the incremental algorithms

suffer from several shortcomings, like high sensitivity to the order of training examples

and longer training times than the non-incremental (batch) methods. Pure incremental

methods consider every new instance, which may be impractical in environments, where

transactions arrive at the rate of thousands per second. The algorithms for purely

incremental learning include WINNOW [21], COBWEB [10], ITI [31], and the stochastic

gradient descent algorithm for training a neural network (see [27]). Most of these

methods are focused on efficient ways of inducing a classification model from stationary

data streams.

The general problem of learning a drifting concept that is a concept which

changes over time is studied by Helmbold and Long in [12]. The rate of drift is defined

there as the probability that the target function disagrees over two successive examples.

Disagreements are minimized by an algorithm, which is polynomial in the sample size,

given that the rate of drift is bounded. Thus, for high-volume non-stationary data

streams, where the actual rate of drift is unknown in advance, the run time of the

algorithm may grow indefinitely.

Widmer and Kubat [32] describe a family of purely incremental algorithms for

learning in the presence of drift. These algorithms use a simple representational

Intelligent Data Analysis

Mark Last 4

framework, called FLORA, which stores descriptions of positive, negative, and noisy

examples in separate description sets. One of the incremental algorithms, FLORA2,

maintains a dynamically adjustable window of the latest training examples. Whenever a

concept drift is suspected, due to a drop in predictive accuracy or an explosion in the

number of descriptions, the window size is decreased, by discarding the oldest examples.

If the concept appears to be stable, the window size is left unchanged. As long as the

presence of drift is uncertain, no examples are forgotten, thus incrementally increasing

the window size. According to [32], this window adjustment strategy may efficiently

detect radical changes in the underlying concept, subject to a relatively low rate of

change. The FLORA algorithms also assume a limited rate of data arrival, since they

process one example at a time.

A recent paper by Domingos and Hulten [6] deals directly with the problem of

mining high-speed streams of data. Their data mining system, called VFDT, builds

decision trees from symbolic attributes by using sub-sampling of the entire data stream

generated by a stationary process. A similar assumption of stationary concepts is used by

the incremental method of Fan et al. [7]. The sample size is determined in VFDT from

distribution-free Hoeffding bounds. A new version of the VFDT system, called CVFDT

[16], learns decision trees from continuously changing data streams by repeatedly

applying the VFDT algorithm to a sliding window of fixed size. CVFDT is aimed at

detecting only one type of concept drift at the node level of the tree: namely, the

importance of the current input attribute vs. other attributes. The algorithm grows an

alternative subtree for each attribute having a relatively high information gain and

replaces the old subtree when a new one becomes more accurate.

Intelligent Data Analysis

Mark Last 5

Harries and Sammut [11] have developed an off-line meta-learning system (based

on C4.5) for partitioning the data stream into a set of time-dependent "conceptual

clusters." The off-line approach is aimed at analyzing concept drifts in historic data

rather than at the online detection of evolving changes. A strategy for dynamically

updating a linear regression classifier by using a linear model of dynamic behavior is

presented in [17]. The linear approach of [17] is computationally efficient, but it

obviously restricts the search space by eliminating nonlinear concepts and nonlinear

(especially, abrupt) patterns of concept drift.

Time-dependent changes in the class distributions of rules induced from data can

be detected by the CD3 algorithm of Black and Hickey [3] [13]. CD3 treats the time-

stamp as an additional input attribute in a decision tree. Consequently, paths where the

value of the time-stamp attribute refers to the old period(s) represent rules, which are out

of date. When the process is stable for a long period of time, the time-stamp attribute

should not appear in any path of the tree.

Closely associated with the problem of change detection is the task of discovering

the robust knowledge, which is unlikely to be affected by database changes. A Bayesian

Network model for evaluating robustness of database rules is described in [14]. The

network probabilities are estimated by an off-line procedure, which assumes stationarity

of the database transactions.

Another related area is change detection, including an increasingly important

problem of intrusion detection in computers and computer networks. Lane and Brodley

[18] suggest a compromise between purely batch and purely incremental learning for the

task of detecting abnormal (possibly hostile) behavior of a computer user: their algorithm

Intelligent Data Analysis

Mark Last 6

is trained on a batch of the most recent user transactions. However, the minimum batch

size (80 examples) makes the system vulnerable to short-term cyber attacks. According

to Fawcett and Provost [8], the most efficient method for detecting an intruder is the

profiling approach, where a model of normal (stationary) activity is built and then used to

alarm on significant deviations from the normal.

This paper proposes an online classification system, which uses an info-fuzzy

network [23], or IFN, as a base classifier. As shown in [19] [23], the IFN method is able

to produce much more compact models than other decision-tree methods, like CART and

C4.5, while preserving nearly the same level of predictive accuracy. Moreover, it can also

be used as an efficient feature selection method [20]. The proposed system, called OLIN

for On-Line Information Network, adapts itself automatically to the rate of concept drift

in a non-stationary data stream by dynamically adjusting the size of the training window

and the rate of model update. The system does not impose any limitations on the rate, the

extent, or the type of change in the underlying concept. Like the batch version of the IFN

method, it can handle both discrete and continuous attributes. OLIN saves computer

resources by increasing the update cycle when the concept appears to be stable and it

shrinks the size of the training window, whenever a concept drift is detected. Thus,

OLIN can be applied to a time-changing data stream of arbitrary duration. The

cumulative accuracy of the models produced by OLIN tends to be higher than the

accuracy obtained with a fixed-size sliding window though it may be slightly lower than

the accuracy of an incremental system that does not “forget” any past examples.

This paper is organized as follows. In the next section, we provide a brief

overview of the IFN method and its features. The OLIN system is described in the

Intelligent Data Analysis

Mark Last 7

following section. We then present the empirical results of applying OLIN to real-world

streams of non-stationary data coming from two different domains: semiconductor

manufacturing and stock market. The paper concludes with a discussion of results and

future work.

2. Information Networks

2.1. Network Structure

IFN, or info-fuzzy network [23] is a tree-like classification model, which is

designed to minimize the total number of predicting attributes. Beyond classification,

this model can be used for the tasks of discretization [23], feature selection [20], rule

induction [19], and evaluation of data reliability [24]. An info-fuzzy network has the

following components:

1) I - a subset of input (predicting) attributes used by the model. Input attributes are

selected from the set C of candidate input attributes (available features).

2) |I| - total number of hidden layers (levels) in a network. Unlike the standard decision

tree structure used in CART [4], ID3 [28], and C4.5 [29], where the nodes of the same

tree level are independent of each other, all nodes of a given network layer are labeled

by the same input attribute associated with that layer. This is why the number of

network layers is equal to the number of input attributes. In layers associated with

continuous attributes, an information network uses multiple splits, which are identical

at all nodes of the corresponding layer. Most other decision-tree methods apply only

binary splits in each layer. The first layer in the network (Layer 0) includes only the

root node and is not associated with any input attribute.

Intelligent Data Analysis

Mark Last 8

3) Ll - a subset of nodes z in a hidden layer l. Each node represents an attribute-based

test, similarly to a standard decision tree. If a hidden layer l is associated with a

nominal input attribute, each outgoing edge of a non-terminal node corresponds to a

distinct value of an attribute. For continuous features, the outgoing edges represent

consecutive intervals obtained from the discretization process. If a node has no

outgoing edges, it is called a terminal node.

4) K - a subset of target nodes representing distinct values of the target (classification)

attribute. For continuous target attributes, the target nodes represent disjoint intervals

in the attribute range. A target layer is missing in the standard decision-tree

structure. The connections between terminal nodes and the nodes of the target layer

may be used for extracting information-theoretic rules from a network [19].

In Figure 1, a structure of a two-layered info-fuzzy network (based on two

selected input attributes) is shown. The first input attribute has three values, represented

by nodes no. 1,2, and 3 in the first layer, but only nodes no. 1 and 3 are split by the

network construction procedure described in sub-section 2.2 below. The second layer has

four nodes standing for the combinations of two values of the second input attribute with

two split nodes of the first layer. The target attribute has three values, represented by

three nodes in the target layer. New examples can be classified by an info-fuzzy network

in a similar way to standard decision trees: we start at the root node, test the attribute

associated with the first layer, then move along the network path corresponding to the

value of the first input attribute. The process continues until a terminal node is

encountered (nodes 1,1; 1,2; 2; 3,1; and 3,2 in the network of Figure 1), at which time an

Intelligent Data Analysis

Mark Last 9

example is labeled with a single predicted class having the maximum probability at the

node or with the probability distribution of classes.

Layer No. 0
(the root node)

0

1

2

3

Connection
Weights

Target
Layer

1

2

3

Layer No. 1
(First input
attribute)

1,1

1,2

3,1

3,2

Layer No. 2
(Second input
attribute)

Figure 1 Info-Fuzzy Network - Two-Layered Structure

The connectionist nature of the info-fuzzy network (each terminal node is

connected to every target node) resembles the topological structure of multi-layer neural

networks (see [27]), which also have input and output nodes and a variable number of

hidden layers. Consequently, we define our model as a network and not as a tree.

2.2. Network Construction Procedure

The network construction algorithm (called here IN for Information Network)

starts with defining the target layer and the “root” node representing an empty set of input

attributes. Unlike CART [4] and C4.5 [29], IFN is built only in one direction (top-down).

After the construction is stopped, there is no bottom-up post-pruning of the network

branches. As explained below, the network is pre-pruned by applying statistical

significance testing.

A node z can be split on an input attribute Ai’ only if the split provides a

statistically significant increase in the mutual information of z and the target attribute Ai.

Mutual information (see [5]) is an information-theoretic measure of association between

Intelligent Data Analysis

Mark Last 10

two random variables X and Y, which is defined as a decrease in the entropy of Y as a

result of knowing X (and vice versa). An increase in mutual information, also called

conditional mutual information [5] or information gain [28], of a candidate input attribute

Ai’ and the target attribute Ai, given a node z, is calculated by the following expression

(based on [5]):

)/()/(
)/(

log);;()/;(
''

''
''

1

0

1

0'
'

'

zVPzVP
zVP

zVVPzAAMI
ijji

ij
ji

jiij

M

j

M

j
ii

i i

•
•= ∑ ∑

−

=

−

=

(1)

where

Mi / Mi’ - number of distinct values of the target attribute i /candidate input

attribute i’.

P (Vi’j’/ z) - an estimated conditional (a posteriori) probability of a value j’ of a

candidate input attribute i’ given a node z

P (Vij/ z) - an estimated conditional (a posteriori) probability of a value j of the

target attribute i given a node z.

P (Vi’j’
ij/ z) - an estimated conditional (a posteriori) probability of a value j’ of a

candidate input attribute i’ and a value j of the target attribute i given a node z.

P (Vij; Vi’j’; z) - an estimated joint probability of a value j of the target attribute i, a

value j’ of a candidate input attribute i’ and a node z.

Conditional mutual information measures the benefit of adding an input attribute

to the information network. If the input and the target attributes are conditionally

independent given a node z, their conditional joint probability should be equal to the

product of their individual conditional probabilities. This makes the logarithmic terms in

Equation (1) equal to zero. On the other hand, if the knowledge of an input value either

Intelligent Data Analysis

Mark Last 11

increases, or decreases the conditional probability of a target value, the corresponding

summation term in (1) becomes either positive, or negative respectively.

If a tested attribute is continuous, its values in Equation (1) correspond to

thresholds, which maximize an increase in mutual information. Prior to adding a new

layer, the algorithm re-computes the best threshold splits of each continuous attribute that

is not in the network. More details on discretizing and selecting continuous attributes are

provided in [20] and [23].

The statistical significance of the estimated conditional mutual information, is

evaluated by using the likelihood-ratio statistic (based on [1]):

G2 (Ai’ ; Ai / z) = 2•(ln2)• E*(z) • MI (Ai’ ; Ai / z) (2)
Where E*(z) is the number of records associated with the node z

The Likelihood-Ratio Test [30] is a general-purpose method for testing the null

hypothesis H0 that two discrete random variables are statistically independent. As can be

seen from Equation (1), independence of two attributes implies that their expected mutual

information is zero. If H0 holds, then the likelihood-ratio test statistic G2 (Ai’; Ai / z) is

distributed as chi-square with (NIi’ (z) - 1)•(NTi (z) - 1) degrees of freedom, where

NIi’(z) is the number of values of a candidate input attribute i’ at node z and NT i (z) is the

number of values of the target attribute i at node z (based on [30]). Thus, MI (Ai’ ; Ai / z)

is considered statistically significant if H0 can be rejected at the significance level α:

G2 (Ai’ ; Ai / z) ≥ χ2
α ((NIi’ (z) - 1)•(NTi (z) - 1)) (3)

The default value of α used by the IN algorithm is 0.1%. We have found

empirically that in most datasets, higher values of α tend to decrease the generalization

performance of the model.

Intelligent Data Analysis

Mark Last 12

At each iteration, the algorithm builds a new hidden layer by choosing an input

attribute (either discrete, or continuous), which provides the maximum significant

increase in mutual information relative to the previous layer. The nodes of a new layer

are defined for a Cartesian product of split nodes of the previous layer and the values of a

new input attribute. The chain rule of the information theory (see [5]) implies that the

mutual information between an info-fuzzy network and the target attribute is equal to the

sum of drops in conditional entropy (information gains) across all hidden layers. If

there is no candidate input attribute significantly increasing the mutual information, the

network construction is stopped and the algorithm outputs the final network structure.

3. The OLIN System

3.1. Algorithm Description

The OLIN (On-Line Information Network) system is a wrapper for the

Information Network (IN) algorithm presented in the previous section. OLIN is receiving

a continuous stream of data examples. The system repeatedly applies the IN algorithm to

a sliding window of training examples and it dynamically adapts the size of the training

window and the frequency of model re-construction to the current rate of concept drift.

The OLIN system is limited neither by the overall duration of a data stream, nor by the

cumulative number of examples arrived. At each point in time, the purpose of the system

is to predict a correct class for the next arriving example by using a current classification

model. We assume that immediately afterwards the correct classification becomes

available to the wrapper. This assumption, used by many incremental learning methods

Intelligent Data Analysis

Mark Last 13

[32], is reasonable as long as the delay between receiving an example and receiving its

class is negligible with respect to the time between the arrivals of successive examples.

The general architecture of the OLIN system is presented in Figure 2. The system

has three modules: the Learning Module, which implements the IN algorithm to produce

an info-fuzzy network; the Classification Module, which uses the current network to

classify the incoming examples; and the Meta-Learning Module, which controls the

operation of the Learning Module. In the sample data stream of Figure 2, each one of V0

examples in the validation interval [t2, t3] is classified by a model induced from T0

examples of the training interval [t0, t2]. The number of examples in the training and the

validation intervals do not have to be equal. At the time t3 the network is re-constructed

by the Learning Module using T1 examples from the training interval [t1, t3] and

subsequently applied to V1 examples in the validation interval [t3, t4]. We assume here

that the first example in the interval [t3, t4] arrives after the network construction has been

completed. In massive data streams, examples that arrive in the process of network

construction may be classified by a partially constructed model using the anytime nature

of the IN algorithm (see [23]).

The Meta-Learning Module obtains as input the training and the validation

accuracy rates of the model, measured on the training and the validation intervals

respectively. It also gets the description of the model itself (selected attributes, entropy

information, etc.). Using the OLIN algorithm (see below), the module re-calculates the

size of the next training window (interval) and the number of validation examples to be

classified with the new model. The last validation example of the current window is

always the last training example of the next window. To classify every example in the

Intelligent Data Analysis

Mark Last 14

data stream exactly one time, the validation intervals ([t2, t3], [t3, t4], etc.) have to be

disjoint and consecutive. However, the training windows may overlap with each other

(but not with their respective validation intervals).

Data Stream
Current Window (T0 examples)

Next Window (T1 examples)

Learning
Module

Classification
Module

Training
Data

Validation
Data

Meta-learning
Module

Window size

Update cycle Training
accuracy

Validation
accuracy

Classification
Model (IN)

t0 t1 t2 t3 t4

V0 examples
V1 examples

Data Stream
Current Window (T0 examples)

Next Window (T1 examples)

Learning
Module

Classification
Module

Training
Data

Validation
Data

Meta-learning
Module

Window size

Update cycle Training
accuracy

Validation
accuracy

Classification
Model (IN)

t0 t1 t2 t3 t4

V0 examples
V1 examples

Figure 2 OLIN System Architecture

The basic intuition behind the OLIN algorithm resembles the FLORA2

framework [32]: a narrow training window may be too small to identify any stable

concept with a high degree of confidence; on the other hand, a wide training window may

completely miss short-term changes in the underlying concept. Since the timing, the rate,

and the extent of concept drift in a data stream are not known in advance, the window

size should be adjusted dynamically in the process of data arrival. A good heuristic is to

shrink the training window to a minimum size, when a drift seems to occur, and increase

the window (up to a certain limit dictated by the data size and the available computer

resources) if stability is observed. OLIN uses the statistical significance of the difference

Intelligent Data Analysis

Mark Last 15

between the training and the validation accuracy of the current model as an indicator of

concept stability.

The purely incremental approach of FLORA2 does not seem appropriate for

massive data streams, where the concepts are not expected to change drastically between

the arrivals of consecutive instances. For this reason, the CVFDT algorithm of Hulten et

al. [16] checks for drift only once in a fixed number of examples (20,000). The OLIN

approach is to adjust dynamically the number of examples between model re-

constructions by using the following heuristic: keep the current model for more examples

if the concept appears to be stable and reduce drastically the size of the validation

window, if a concept drift is detected.

Table 1 shows the pseudo-code outline of the OLIN algorithm. The algorithm

does some initializations and then processes a user-specified number of incoming

examples from a continuous data stream. If the user does not provide the number of the

last example to be classified by the system, the algorithm runs indefinitely. The

following parameters are calculated by OLIN: initial size of the training window, updated

window size, and the maximum difference between the training and the validation errors.

These calculations are described in the next sub-sections.

The IN algorithm, like other batch decision-tree methods, stores all the training

examples in the computer memory. Thus, applying IN to an indefinitely growing training

window is not feasible. Consequently, we have limited the maximum size of the training

window used by OLIN to Max_Win examples. This number can be adjusted to the

amount of available memory on a given computer. Another important parameter is the

training time required per each new example. As shown by us in [23], the computation

Intelligent Data Analysis

Mark Last 16

time of the IN algorithm is directly proportional to the number of training examples for

each discrete attribute and to the square of this number, if an attribute is continuous. This

imposes an additional limitation on the size of the training window, which can be handled

by a given computer system. Since the size of the training window is bounded by

Max_Win and the minimum number of examples in a validation interval is

Min_Add_Count, we can say that during the slowest periods of its operation, the training

time of OLIN per a discretely-valued new example can be proportional to Max_Win /

Min_Add_Count. With continuous attributes, this value increases to (Max_Win) 2 /

Min_Add_Count. However, when the concept appears to be stable, the algorithm training

time will go down to the order of Max_Win / Max_Add_Count or (Max_Win)2 /

Max_Add_Count, depending on the nature of the data stream attributes.

Intelligent Data Analysis

Mark Last 17

Table 1 The OLIN Algorithm

Inputs: S - A continuous stream of examples
 n min The number of the first example to be classified by the system (nmin – 1

examples have already arrived)
 n max The number of the last example to be classified by the system (if

unspecified, the system will run indefinitely)
 C A set of candidate input attributes (discrete and continuous)
 Sign A user-specified significance level
 Pe Maximum allowable prediction error of the model
 Init_Add_Count The number of new examples to be classified by the first model
 Inc_Add_Count Amount (percentage) to increase the number of examples between model

re-constructions
 Max_Add_Count Maximum number of examples between model re-constructions
 Red_Add_Count Amount (percentage) to reduce the number of examples between model re-

constructions
 Min_Add_Count Minimum number of examples between model re-constructions
 Max_Win Maximum number of examples in a training window
Output: IFN Info-fuzzy network
Procedure OLIN
Calculate the initial size of the training window Winit (using Equation 7)
Let the training window size W = Winit
Initialize the index i of the first training example to n min - W
Initialize the index j of the last training example to W
Initialize the number of validation examples Add_Count to Init_Add_Count
While j < n max Do

Obtain a model (IFN) by applying the IN algorithm to W latest training examples
Calculate the training error rate E tr of the obtained model on W training examples
Calculate the index of the last validation example k = j + Add_Count;
Calculate the validation error rate E Val of the obtained model on Add_Count validation
examples
Update the index of the last training example j = k
Find the maximum difference between the training and the validation errors Max_Diff
(using Equation 10)
If (E Val - E tr) < Max_Diff // concept is stable
 Add_Count =Min(Add_Count * (1+

(Inc_Add_Count/100)), Max_Add_Count)
 W = Min (W + Add_Count, Max_Win)
Else //concept drift detected
 Re-calculate the size of the training window W (using

Equation 8)
 Update the index of the first training record i = j - W
 Add_Count = Max (Add_Count * (1-

(Red_Add_Count/100)), Min_Add_Count)
Return the current model (IFN)

End Do

Intelligent Data Analysis

Mark Last 18

3.2. Calculating the Number of Training Examples

We assume that the OLIN system can be applied to a continuous data stream at its

beginning or after any number of incoming examples. If the data stream has just started,

the question is, how many examples need to arrive before the algorithm can induce an

initial model at a given significance level? If, on the other hand, we have an indefinite

number of past examples, what is a minimum number of latest examples that we need to

store in the computer memory? Since the IN algorithm uses an information-theoretic

heuristic in constructing the information network, the minimum number of examples

E*(z) required to confirm the statistical significance α of an attribute Ai’ at a node z can be

found by combining Equations 2 and 3:

)/;(2ln2
))1)(()1)((()(

'

'
2

*

zAAMI
zNTzNTzE

ii

ii −⋅−≥ αχ (4)

Equation 4 is less conservative than the distribution-independent Hoeffding bound

 [6], since it is based on the assumption that the split heuristic (conditional mutual

information) is distributed as chi-square with a specific number of degrees of freedom.

However, before we apply OLIN to a new data stream, we do not know the conditional

mutual information MI (Ai’; Ai / z) for any of the network nodes. In fact, we do not even

know the network structure in terms of the total number of nodes and the selected

attributes to be associated with each layer. To estimate the minimum number of

examples, we first assume, without loss of generality, that the network has one layer only.

This is a good approximation, since empirical results [23] show that most nodes of the

first layer are usually terminal nodes and only a small portion of examples is associated

with subsequent layers. In general, the minimum number of examples in the training

Intelligent Data Analysis

Mark Last 19

window can always be derived from the number of examples required to split every node

in the network. We also assume that the first input attribute selected by the algorithm has

only two values: NTi’ (z) = 2. This number can be adjusted to the actual domain size of

candidate input attributes in a given dataset.

Since we consider only the attribute that is used to split the root node, the

conditional mutual information MI (Ai’; Ai / z= 0) is equal to the mutual information MI

(Ai’; Ai), which can be expressed as [5]):

MI (Ai’; Ai) = H(Ai) – H (Ai / Ai’) (5)

Where H(Ai) is the unconditional entropy of the target attribute Ai and H (Ai / Ai’)

is the conditional entropy of Ai given an input attribute Ai’. The unconditional entropy

H(Ai) can only be estimated by processing some training examples. However, it can be

approximated by its maximum value of log2 (NTi), where NTi is the number of classes [5].

If a dataset is very unbalanced, NTi may include only the most common classes. The

upper bound for the conditional entropy can be found from Fano’s inequality [5]:

H (Ai / Ai’) ≤ H (Pe) + Pe log2 (NTi -1) (6)
Where Pe is the error rate of the information network having conditional entropy

of H (Ai / Ai’). Since the right-hand expression is a non-decreasing function of Pe, we can

assume that Pe represents the maximum allowable error rate of the model. The

assumption of NTi’ (z) = 2 and Equations 4 – 6 lead to the following expression for the

initial size of the training window:

))1(log)()((log2ln2
)1(

22

2

−−−
−=

ieei

i
init NTPPHNT

NTW αχ (7)

Intuitively, the expression for Winit can be interpreted as follows. A higher

significance level α requires more examples, since it increases the corresponding value of

Intelligent Data Analysis

Mark Last 20

chi-square. More examples are needed to distinguish between a larger number of target

classes. Given that other factors remain unchanged, the error rate Pe is also proportional

to the number of required examples, since the algorithm needs more examples to confirm

the significance of a less accurate model. It is important to note that a high statistical

significance of the likelihood-ratio test does not necessarily imply a high predictive

accuracy of the resulting model. A significance level just represents the probability that

the model is not random, i.e., it is more accurate than the default (majority) prediction

rule.

The expression for the size of an updated window is also based on Equations 4 –

6, but it uses information, which is available from the latest window of the training

examples:

))1(log)()((2ln2
))1()1((

2

'
2

−−−
−⋅−=

itrtri

ii

NTEEHAH
NTNTW αχ (8)

Where NTi’ is the number of values (or discretized intervals) for the first attribute

Ai’ in the info-fuzzy network, H (Ai) is the entropy of the target, and Etr is the training

error of the current model. The resulting number of examples W should be sufficient to

confirm the significance of the first layer in the latest trained model. We assume that a

new concept, which is still unknown, can be learned from at least the same number of

examples. If a new concept pertains for fewer examples than W, the algorithm cannot

detect it at all.

3.3. Comparing the Training and the Validation Error Rates

If a concept is stable, the examples in the training window and in the subsequent

validation interval should conform to the same distribution. Consequently, there should

Intelligent Data Analysis

Mark Last 21

not be a statistically significant difference between the training and the validation error

rates of the IFN model, as we have seen in our previous studies of static datasets [23].

On the other hand, a sharp increase in the error rate may indicate a possible concept drift

[32]. Using a Normal approximation to the Binomial distribution, we calculate the

variance of the difference between error rates by the following formula (based on [27]):

CountAdd
EE

W
EEDiffVar valvaltrtr

_
)1()1(_ −+−= (9)

If the concept is stable, the maximum difference between the error rates, at the

99% confidence level, is:

DiffVarDiffVarzDiffMax _2.326__ 99.0 == (10)

If the difference between the error rates exceeds Max_Diff, a concept drift is

detected and the size of the next training window is re-calculated by using the Equation 8.

Also, the number of examples in the next validation interval is reduced by

Red_Add_Count percent. Otherwise, the concept is considered stable and both the

training window and the validation interval are increased up to their maximum sizes.

4. Empirical Results

4.1. Manufacturing Data

We have applied OLIN to a sample of yield data recorded at a semiconductor

plant. In semiconductor industry, the yield is defined as the ratio between the number of

good parts (microelectronic chips) in a completed batch and the maximum number of

parts, which can be obtained from the same batch, if no chips are scraped at one of the

fabrication steps. Due to high complexity and variability of modern microelectronics

industry, the yield is anything but a stationary process. It is affected daily by hundreds of

Intelligent Data Analysis

Mark Last 22

material-related, equipment-related, and human-related factors. Maintaining current

models for yield prediction, as well as timely detection of changes in yield behavior,

usually called “yield excursions”, constitute the primary tasks of process engineers.

A semiconductor company has provided us with the records of 1,378

manufacturing batches that completed their production during a four months period. Due

to the confidentiality of the original data, we omit here the name of the company, the

description of the products, and many other details, which are irrelevant to the evaluation

of our method. The records include seven candidate input attributes, which represent the

main properties of a given batch (chip size, production priority, etc.). The target

(dependent) attribute is the percentage of outgoing yield, discretized to three intervals of

approximately equal frequency. These intervals can be characterized as a low yield, a

normal yield, and a high yield.

In our experiments, we have assumed, for the sake of convenience, that the online

learning starts after the completion of the first 378 batches, which leaves us with exactly

1,000 records for validating the performance of the constructed models. Table 2 shows

the settings used by OLIN in this dataset. The parameter values have been chosen

experimentally to provide the best classification performance of the system. All runs were

carried out on a Pentium III processor with 128 MB of RAM.

Intelligent Data Analysis

Mark Last 23

Table 2 OLIN Parameter Values (Manufacturing Data)

Parameter Meaning Value
n min The number of the first example to be classified by the system 378
n max The number of the last example to be classified by the system 1377
Sign A user-specified significance level 0.1%
Pe Maximum allowable prediction error of the model 0.50
Init_Add_Count Initial number of examples to be classified by the first model 10
Inc_Add_Count Amount to increase the number of examples between model re-

constructions (if the model is stable)
50%

Max_Add_Count Maximum number of examples between model re-constructions 100
Red_Add_Count Amount to reduce the number of examples between model re-

constructions (if a concept drift is detected)
75%

Min_Add_Count Minimum number of examples between model re-constructions 1
Max_Win Maximum number of examples in a training window 1,000

In Table 3, we compare the overall performance of OLIN to other methods of

online learning. The “laziest” approach, implemented in Run 0, is to build a model from

all the examples available at the beginning of the run (378) and to subsequently apply it

to all the validation examples (1,000) without ever re-training the IN algorithm. The “no

re-training” approach is based on the assumption that the data stream is stationary.

Another extreme approach (“no-forgetting”) is to repeatedly re-construct the

model from all the past instances after the arrival of every new example. The “no-

forgetting” learning requires longer training times as more examples arrive, and,

eventually, its training time may exceed the time between arrivals of successive examples

or surpass the limits of the computer memory. Runs no. 1 and 2 in Table 3 show the

results of this method for initial training windows of 50 and 100 examples respectively.

The next three runs (3–5) show the experiments, which apply static windowing by

adding and removing the same number examples from the training window at each

iteration. Finally, Run no. 6 presents the results of OLIN, which uses dynamic

Intelligent Data Analysis

Mark Last 24

windowing. The columns of the table present the total number of training windows in the

process of classifying 1,000 examples, the average number of examples in a training

window, the total run time of the system on the stream of 378 training and 1,000

validation examples, the aggregated error rate on the validation records (including its

variance), and the probability that the error rate in a given run is significantly different

from the error rate of OLIN. One and two asterisks designate 5% and 1% significance

levels respectively.

Table 3 Manufacturing Data: Summary of Experiments

Run
No.

Initial
Window

Add
Count

Remove
Count

Number
of
Windows

Av.
Window
Size

Run
Time
(sec.)

Error
Rate Variance p-value

0 378 1000 0 1 1000 0.14 0.558 0.2466 0.027 *
1 50 1 0 1000 550 32.57 0.507 0.2500 0.360
2 100 1 0 1000 600 35.81 0.512 0.2499 0.447
3 50 1 1 1000 50 5.16 0.563 0.2460 0.016 *
4 50 10 10 100 50 0.60 0.598 0.2404 0.000 **
5 100 50 50 20 100 0.28 0.556 0.2469 0.033 *
6 117 Dynamic Dynamic 23 348.2 0.66 0.515 0.2498

The high error rate of the “no re-training” approach (Run 0) indicates that even

during a relatively short period of several months, the yield does not preserve a stationary

pattern. It is also clear that OLIN (Run 6) is significantly more accurate on this data than

the static windowing (Runs 3-5). The no-forgetting approach (Runs 1-2) appears slightly

more accurate than OLIN, but the differences are not statistically significant. In terms of

system resources, OLIN with its average window size of 348.2 examples requires more

memory than the static windowing. On the other hand, the no-forgetting method requires

an indefinite amount of memory to store its ever-growing window. In terms of run time,

Intelligent Data Analysis

Mark Last 25

OLIN is comparable with the static windowing and it is considerably faster than the no-

forgetting approach even for a limited stream of 1,000 records.

Figure 3 shows how OLIN adjusts the window size to the rate of concept drift. To

remove short-term effects, the error rate is averaged over past 100 validation examples.

During the first segment of the run, approximately up to Example no. 500, the error rate

keeps going up until the system recognizes a concept drift and the window size is

drastically decreased. As a result of this window adjustment, the error rate goes down

rapidly from 70% to less than 40%. However, between Examples no. 660 and 760 there

is again a sharp increase in the average error rate, followed by a very slow decline in the

error. The second peak in the error rate is not high enough to be identified as a concept

drift, and, hence, the training window continues to grow until the end of the run, where it

approaches the maximum size of 1,000 examples.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

350 550 750 950 1150 1350

Cumulative Number of Examples

 E
rr

or
 R

at
e

0

200

400

600

800

1000

1200

N
um

be
r o

f T
ra

in
in

g
Ex

am
pl

es

Error Rate Window Size

Figure 3 Manufacturing Data: Adjusting to Drift

Intelligent Data Analysis

Mark Last 26

Figure 4 compares the performance of four methods for online learning: no re-

training, no-forgetting (initial size = 100), static windowing (size = 100, increment = 50),

and dynamic windowing (OLIN). The error rates of all methods are calculated as moving

averages of the past 100 validation examples. The no re-training approach is leading in

the beginning of the run, but eventually its error goes up and it becomes inferior to other

methods most of the time, probably due to changes in the yield behavior. The no-

forgetting method is consistently providing the most accurate predictions for nearly the

entire length of the data stream. The static windowing is doing better than OLIN in the

first part of the stream, up to approximately Example no. 900. Afterwards, there is a

sharp increase in the error rate of the static windowing, while OLIN and the no-forgetting

provide the lowest error. In other words, by the end of the run, the large windows of

OLIN and the no-forgetting method are more accurate than the small, fixed-size windows

of the static method.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

350 550 750 950 1150 1350

Cumulative Number of Examples

Er
ro

r R
at

e

OLIN Static Window No-forgetting No re-training

Figure 4 Manufacturing Data: Comparison of On-line Learners

Intelligent Data Analysis

Mark Last 27

4.2. Stock Market Data

The second set of experiments has been performed on a stock market dataset,

initially used by us in [19] for evaluation of a batch learning algorithm (IFN). The raw

data represents the daily stock prices of 373 companies from the Standard & Poor’s 500

index [33] over a 5-year period (from 8/29/94 to 8/27/99) and it has been obtained from

the Microsoft MoneyCentral web site [34]. In [19], we have applied signal-processing

techniques to partition each series of daily stock values into a sequence of intervals

having distinct slopes (trends). An average of 15.64 intervals per company have been

identified. The classification problem has been defined as predicting the correct length of

the current interval based on the known characteristics of the current and the preceding

intervals. Consequently, we have converted every sequence of m intervals related to a

specific stock into m-1 interval-pairs each containing information about two consecutive

intervals. This resulted in a total of 5,462 records of interval-pairs. The candidate input

attributes include the duration, the slope, and the fluctuation measured in each interval, as

well as the major sector of the corresponding stock (a static attribute). The target

attribute, which is the duration of the second interval in a pair, has been discretized to

five sub-intervals of nearly equal frequency. These sub-intervals have been labeled as

very short, short, medium, etc.

To restore the original order of data arrival, we have sorted the records by the

dates of change points between the adjacent intervals. The online classification task is to

predict the timing of the next change point. To make the calculations more convenient,

we have started the online learning after the arrival of the first 462 records, which has left

us with exactly 5,000 records for validation. The parameters of OLIN were kept as

Intelligent Data Analysis

Mark Last 28

similar as possible to the settings of the experiment with semiconductor data in sub-

section 4.1. Due to a larger size of this dataset, the initial number of validation examples

was set to 100 and it was allowed to vary between 10 and 400 examples. The number of

the last example to be classified is 5,461. The values of other parameters remained

unchanged and the runs were performed on the same computer that was used for the first

experiment.

Table 4 compares the performance of OLIN to other methods of online learning.

Run 0 represents the “no re-training” learner. Runs 1 –3 were performed with the no-

forgetting learner for a varying number of new examples accumulated before each model

re-construction. We could not reduce this number below 100 due to extremely long

training times (more than 24 hours for Add_Count = 10). Runs 4 – 6 show the results for

a static window size, while Run 7 represents dynamic windowing with OLIN. Like in

Table 3, one and two asterisks denote 5% and 1% significance levels respectively vs.

dynamic windowing.

Table 4 Stock Data: Summary of Experiments

Run
No.

Initial
Window

Add
Count

Remove
Count

Number of
Windows

Av.
Window
Size

Run Time
(sec.)

Error
Rate Variance p-value

0 462 5000 0 1 5000 1.26 0.450 0.2475 0.000 **
1 100 100 0 50 2600.0 0.384 0.2365 0.001 **
2 400 100 0 50 2900.0 18691.09 0.392 0.2383 0.010 **
3 400 200 0 25 2900.0 0.398 0.2396 0.042 *
4 100 100 100 50 100 3.02 0.423 0.2441 0.209
5 400 100 100 50 400 28.73 0.412 0.2423 0.380
6 400 200 200 25 400 15.27 0.424 0.2442 0.181
7 41 Dynamic Dynamic 41 274.0 76.90 0.415 0.2428

Intelligent Data Analysis

Mark Last 29

The non-stationary nature of the stock data is confirmed by the “no re-training”

approach having the highest error rate in Table 4 (see Run 0). The no-forgetting method

(Runs 1-3) is significantly more accurate on this data than OLIN, though the difference

between the error rates of the two methods is about 2-3% only. Table 4 also

demonstrates how fast is an increase in the computation time, if no examples are removed

from the training window: after the arrival of 5,000 records, it takes more than five hours

to get an overall accuracy, which is just by 2% higher than the accuracy, which could be

obtained within a little more than a minute! The static windowing (Runs 4-6), which

appears to be the fastest method, is not significantly worse on this dataset than OLIN,

though its error rates tend to be slightly higher. One should also note that the static

windowing provides the best result with a fixed window of 400 examples, while OLIN’s

dynamic windows contain an average of 274 examples only. As indicated above, the

training window size is directly related to the memory requirements of the learning

system.

Figure 5 shows how OLIN adjusts the window size to the rate of the concept drift.

It also shows the error rate averaged over the past 400 validation examples. Between the

beginning of the run and approximately Example no. 2,700, the concept appears to be

stable and there is even some decrease in the error rate vs. the initial part of the run. Due

to this apparent stability, OLIN keeps growing the window size. After Example 2700, we

observe a sharp increase in the error rate, which causes OLIN to reduce the size of the

training window. Subsequently, OLIN performs frequent updates of the window size,

trying to keep track of a rapidly changing concept. However, OLIN fails to decrease the

error rate for about the next 1,400 examples. The steep decline of the error rate in the last

Intelligent Data Analysis

Mark Last 30

500 examples, accompanied by an increase in OLIN’s window size, reveals the nature of

data pre-processing rather than a stock market phenomenon: the last interval of each

stock was truncated at the end of the period covered by the dataset (five years).

Consequently, the last intervals tend to be much shorter than the preceding intervals, and

their classification becomes almost deterministic.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

450 1450 2450 3450 4450 5450

Cumulative Number of Examples

Er
ro

r R
at

e

0

500

1000

1500

2000

2500

N
um

be
r o

f T
ra

in
in

g
Ex

am
pl

es

Error Rate Window Size

Figure 5 Stock Data: Adjusting to Drift

Figure 6 compares the performance of the “no re-training” approach, no-

forgetting (initial size = 100, increment = 100), static windowing (size = 400, increment =

200), and dynamic windowing (OLIN). The error rates of all methods are calculated as

moving averages of the past 400 validation examples. During the first 40% of the run,

while the concept appears to be stable, no method is consistently better or consistently

worse than the other two, which is quite reasonable. In the next segment, which is

characterized by a high rate of concept drift, the static windowing approach is less

Intelligent Data Analysis

Mark Last 31

successful than OLIN. However, OLIN itself performs worse in this segment than the

no-forgetting learner. This implies that in the second segment, retaining all the past

examples improves the classification accuracy, though it requires an increasing amount of

computer resources. A similar result has been obtained by Hulten et al. [16] in a

comparison between a static and a dynamic system. At the same time, one can see that

the gap between OLIN and the no-forgetting method remains nearly constant as more

examples arrive. It is also noteworthy that OLIN is better at adapting to a new, though

artificial concept in the last segment of the run: its error rate goes down much faster than

the error rates of the other methods, especially the no-forgetting learner. The “no re-

training” approach is close to static windowing most of the time, but it becomes

extremely inaccurate for the last 800 examples of the run, since it does not adjust itself to

an abrupt change in the underlying concept.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

Cumulative Number of Examples

Er
ro

r R
at

e

OLIN Static Window No-forgetting No re-training

Figure 6 Stock Data: Comparison of On-line Learners

Intelligent Data Analysis

Mark Last 32

5. Conclusions

This paper has presented OLIN, a new system for on-line classification of

continuous data streams. To sum-up, the system is based on the following principles.

The induced concept is represented in the form of an info-fuzzy network (IFN), a tree-

like classification model. The system is repeatedly constructing a new network from a

sliding window of latest examples. The latest model classifies the examples that arrive

before the subsequent network re-construction. A concept drift is detected by an

unexpected rise in the classification error rate. When a concept is stable, the system

increases the size of the training window, up to a pre-specified limit, and reduces the

frequency of model updates. With the detection of a concept drift, the system re-

calculates the size of the training window by using the principles of information theory

and statistics.

The efficiency of OLIN has been confirmed by experiments on two real-world

sets of online data. In the case of 1,000 records from a manufacturing dataset, it took

OLIN 50 times less computation time to obtain practically the same classification

accuracy like the “brute force” no-forgetting method. In the second experiment,

performed on 5,000 records of stock data, the ratio between the computation times of

“no-forgetting” and OLIN was even more dramatic: about 240. In terms of classification

accuracy, the no-forgetting approach has outperformed OLIN by 2% only.

Hulten and Domingos [15] present a number of criteria for designing an online

data mining system. These criteria include constant time and memory per incoming

record, single scan of data, availability of a usable model at any time, equivalence to an

Intelligent Data Analysis

Mark Last 33

ordinary data mining algorithm, and adaptability to time-changing concepts along with

the preservation of concepts from the past that are still relevant. With respect to these

criteria, we have seen that OLIN requires a limited amount of time and memory per

record, does not revisit old records after they are removed from the training window, uses

an anytime algorithm for constructing an info-fuzzy network (see [23]), is almost as

accurate as models induced from all the available instances and has a method for

adjusting the system parameters in response to a concept drift. The empirical results

presented in this paper show that when applied to nonstationary data, OLIN tends to be

more accurate than the static windowing methods. However, OLIN is usually less

accurate than the extremely inefficient “no-forgetting” approach due to apparent presence

of long-term concepts, which are eventually forgotten by OLIN, while being retained by

the no-forgetting learner.

The future work includes evaluating OLIN on more real-world datasets, as well as

on artificially built data streams. Considering the time dimension as an explicit input

attribute available to the system (similar to the approach of [3] [13]) is another promising

direction. Finding a better trade-off between the efficiency of OLIN and the accuracy of

the no-forgetting method should also be examined. Other topics to study include

incremental updating of information network structure and application of a similar

approach to other classification methods. A visual environment for running beta versions

of the batch algorithm (IN) and the online algorithm (OLIN) is available for download at

http://www.ise.bgu.ac.il/faculty/mlast/ifn.htm.

Acknowledgments. This work was partially supported by the National Institute for

Systems Test and Productivity at the University of South Florida, under SPAWAR

http://www.ise.bgu.ac.il/faculty/mlast/ifn.htm

Intelligent Data Analysis

Mark Last 34

Research Grant N00039-01-1-2248. My thanks to Prof. Eric Backer for his helpful

comments.

References

[1] F. Attneave, Applications of Information Theory to Psychology, Holt,
Rinehart and Winston, 1959.

[2] S.D. Bay, The UCI KDD Archive [http://kdd.ics.uci.edu], 1999.

[3] M. Black and R. J. Hickey, Maintaining the Performance of a Learned
Classifier under Concept Drift, Intelligent Data Analysis, No. 3, pp.
453-474, 1999.

[4] L. Breiman, J.H. Friedman, R.A. Olshen, & P.J. Stone, Classification
and Regression Trees, Wadsworth, 1984.

[5] T. M. Cover, Elements of Information Theory, Wiley, 1991.

[6] P. Domingos and G. Hulten, Mining High-Speed Data Streams, Proc.
of KDD 2000, pages 71-80, 2000.

[7] W. Fan, S.J. Stolfo, J. Zhang, The Application of AdaBoost for
Distributed, Scalable and On-line Learning, Proc. of KDD-99, pages
362-366, 1999.

[8] T. Fawcett and F. Provost, Activity Monitoring: Noticing interesting
changes in behavior, Proc. of KDD-99, 1999.

[9] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, From Data Mining to
Knowledge Discovery: An Overview, In U. Fayyad, G. Piatetsky-
Shapiro, P. Smyth, and R. Uthurusamy, editors, Advances in
Knowledge Discovery and Data Mining, pages 1-30, AAAI/MIT
Press, 1996.

[10] D. H. Fisher, Knowledge Acquisition Via Incremental Conceptual
Clustering, Machine Learning, No. 2, pp. 139-172, 1987.

[11] M.B. Harries, C. Sammut, Extracting Hidden Context, Machine
Learning, No. 32, pp. 101-126, 1998.

[12] D.P. Helmbold and P.M. Long, Tracking Drifting Concepts by
Minimizing Disagreements, Machine Learning, No. 14, pp. 27-45,
1994.

[13] R. J. Hickey and M. M. Black, Refined Time Stamps for Concept Drift
Detection during Mining for Classification Rules, Proc. of
TSDM2000, LNAI 2007, pages 20-30, 2000.

Intelligent Data Analysis

Mark Last 35

[14] C. -N. Hsu and C.A. Knoblock, Discovering Robust Knowledge from
Databases that Change, Data Mining and Knowledge Discovery, No.
2, pp. 1-28, 1998.

[15] G. Hulten and P. Domingos, Catching Up with the Data: Research
Issues in Mining Data Streams, Proc. of Workshop on Research Issues
in Data Mining and Knowledge Discovery, 2001.

[16] G. Hulten, L, Spencer, and P. Domingos, Mining Time-Changing Data
Streams, Proc. of KDD-2001, ACM Press, 2001.

[17] M.G. Kelly, D.J. Hand, and N.M. Adams, The Impact of Changing
Populations on Classifier Performance, Proc. of KDD-99, pages 367-
371, 1999.

[18] T. Lane and C.E. Brodley, Approaches to Online Learning and
Concept Drift for User Identification in Computer Security, Proc. of
KDD-98, pages 259-263, 1998.

[19] M. Last, Y. Klein, A. Kandel, Knowledge Discovery in Time Series
Databases, IEEE Transactions on Systems, Man, and Cybernetics, Vol.
31, Part B, No. 1, pp. 160-169, 2001.

[20] M. Last, A. Kandel, O. Maimon, Information-Theoretic Algorithm for
Feature Selection, Pattern Recognition Letters, Vol. 22, No. 6, pp. 799-
811, 2001.

[21] N. Littlestone, Learning Quickly When Irrelevant Attributes Abound:
A New Linear-threshold Algorithm, Machine Learning, No. 2, pp.
285-318, 1988.

[22] H. Liu and H. Motoda, Feature Selection for Knowledge Discovery
and Data Mining, Kluwer, 1998.

[23] O. Maimon and M. Last, Knowledge Discovery and Data Mining, The
Info-Fuzzy Network (IFN) Methodology, Kluwer Academic
Publishers, 2000.

[24] O. Maimon, A. Kandel, and M. Last, Information-Theoretic Fuzzy
Approach to Data Reliability and Data Mining, Fuzzy Sets and
Systems, Vol. 117, No. 2, pp. 183-194, 2001.

[25] U. Manber, A. Patel, and J. Robison, Experience with Personalization
on Yahoo!, Communications of the ACM, Vol. 43, No. 8, pp. 35-39,
2000.

[26] W. Mendenhall, J.E. Reinmuth, R.J. Beaver, Statistics for
Management and Economics, Duxbury Press, 1993.

[27] T.M. Mitchell, Machine Learning, McGraw-Hill, 1997.

Intelligent Data Analysis

Mark Last 36

[28] J.R. Quinlan, Induction of Decision Trees, Machine Learning, Vol. 1,
No. 1, pp. 81-106, 1986.

[29] J. R. Quinlan, C4.5: Programs for Machine Learning, Morgan
Kaufmann, 1993.

[30] C.R. Rao and H. Toutenburg, Linear Models: Least Squares and
Alternatives, Springer-Verlag, 1995.

[31] P.E. Utgoff, An Improved Algorithm for Incremental Induction of
Decision Trees, Proc. of the Eleventh International Conference on
Machine Learning, pages 318-325, 1994.

[32] G. Widmer and M. Kubat, Learning in the Presence of Concept Drift
and Hidden Contexts, Machine Learning, Vol. 23, No. 1, pp. 69-101,
1996.

[33] Standard & Poor’s Index at http://www.spglobal.com/

[34] The Microsoft MoneyCentral home page at
http://moneycentral.msn.com/

	Introduction
	Information Networks
	Network Structure
	Network Construction Procedure

	The OLIN System
	Algorithm Description
	Calculating the Number of Training Examples
	Comparing the Training and the Validation Error Rates

	Empirical Results
	Manufacturing Data
	Stock Market Data

	Conclusions
	References

