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We first congratulate Drs. Jiang and Serban on their interesting and important contribution

to the literature of clustering functional data. The paper provides a comprehensive

framework of clustering spatially dependent curves, namely the functional-spatial clustering

models (FSCM), by nicely integrating important techniques, including the EM algorithm,

Monte-Carlo approximation, dimension reduction, and model selection. The authors relaxed

a common independence assumption, that is, curves are assumed to be independent in space.

The authors demonstrate that when clustering a collection of curves distributed over space,

releasing such an independence assumption represents a big improvement over existing

clustering methods for functional data in the literature. We appreciate the opportunity to

comment on several aspects of this nice work.

The motivating application for the authors is clustering service accessibility within a

geographically distributed service network. Our discussions, however, are motivated by the

analysis of massive functional imaging data, such as functional magnetic resonance imaging

(fMRI), which are commonly observed over both time and space. There are some common

features between the two contexts, such as spatial-temporal dependent functions, but

significant structural differences still exist. Such differences form the basis for our specific

comments reported in Sections 2 to 4, regarding (i) spatial dependence and neighborhood,

(ii) spatial and temporal smoothing, and (iii) computational efficiency.

We first give some brief background on fMRI data. fMRI experiments record images of

brain activities over time. An fMRI dataset is four-dimensional, consisting of a three-

dimensional spatial image being observed over time. Each 3D fMRI image contains a

certain number of two-dimensional slices, and each slice is made up of individual cuboid

elements called voxels. The time series at each voxel can be viewed as a temporal function,

which is distributed spatially across the voxels on the brain. For example, Figure 1(a) shows

a particular 2D fMRI image slice, where the red and blue regions are either activated or

deactivated by certain experimental stimuli; the goals of fMRI analysis are usually to detect

the activation/deactivation regions. More details on fMRI data and related statistical
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techniques can be found in, for example, Yue et al. (2009), Wang et al. (2011), and Lee et

al. (2011).

1 Spatial Dependence and Neighborhood

Many existing functional clustering methods ignore dependence in spatial data. Specifically,

as is often the case in many studies of spatial data, one may observe spatially contiguous

regions with similar effects, as seen in the red and blue areas of Figure 1(a). From this point

of view, the authors made a big contribution by using neighboring information at each pixel

(or voxel) to account for spatial dependence. A challenging issue of using neighboring

information is to determine an “appropriate” neighborhood size at each pixel (or voxel). For

example, as shown in Figure 1(b), the pixels A and B belong to two different homogeneous

regions or clusters, which are separated by sharp and irregular boundaries.

FSCM uses the K-nearest neighbors (KNN) method to incorporate the neighborhood

information. However, this nearest neighbor component of FSCM will easily blur the

boundary between jumping surfaces, a drawback common to several spatial smoothing

methods in the current literature as discussed in Yue et al. (2010), including the standard

Gaussian spatial smoothing (i.e., kernel smoothing with a Gaussian kernel). An example is

provided in our simulation study to be reported in Section 5, and illustrated in Figure 2(d),

where we applied the standard Gaussian spatial smoothing to the whole region and the

results showed the blurred boundary. KNN has a similar boundary-blurring problem as the

Gaussian smoothing, which leads to the unsatisfactory clustering results depicted in Figure

2(e).

More intuitively, we consider the pixel (or voxel) A in Figure 1(b) and a “+” shaped local

neighborhood centered around it, which includes four nearest neighbors: A1, A2, A3, and

A4. Suppose the four nearest pixels in this neighborhood structure are correctly clustered,

that is, three of the four pixels are in the yellow cluster and the other one is in the blue

cluster. Then the probability that the pixel A belongs to the yellow cluster, based on the

Gibbs distribution in FSCM, will be larger than the probability that it belongs to the blue

cluster. As a result, it can be easily clustered into the wrong region as there are more yellow

pixels around it, although it is in the blue region. The same problem will occur for the pixel

B; furthermore, many other symmetric neighborhood structures, such as circles or squares,

would have similar problems. Furthermore, the probability mass function for the Gibbs

distribution will not be consistent. If the neighborhood size, denoted as K by the authors,

becomes larger, then the possibility of clustering A into the wrong region also becomes

larger. Hence, the choice of the neighborhood size K can be a critical issue as a large value

of K makes the boundaries between the distinct classes less distinct.

The above example suggests that we should be careful to choose K along with the right

neighborhood structure. It is also critical to choose an appropriate distance measure for

clustering as shown in this example: the Euclidian distance in KNN can’t determine an

appropriate neighborhood structure. Instead, suppose we can define some alternative

distance measure that can remove the yellow pixels from the neighborhood structure around

A, then KNN can cluster A into the right region based on the remaining pixels in the
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neighborhood. As one example, Hall et al (2010) discussed how to choose K and its

neighborhood structure by first assuming some local distribution (Poisson or Binomial), and

then determining the distance measure based on the distribution. However, they did not

consider the spatial-temporal nature of functional imaging data. According to our extensive

experience, the neighborhood size K should depend on the spatial location of each pixel.

That is, K should vary across pixels or voxels, and thus it should be determined spatially

across the whole region. See Li et al. (2011) for more discussions.

2 Spatial and Temporal Smoothing

As most existing works in the literature, FSCM uses a B-spline or P-spline smoothing

method in the temporal domain to smooth the random curves. The suitable models are

selected by either the Akaike information criterion (AIC) or the Bayesian information

criterion (BIC). Spatial smoothing structure is also important when the authors assume

spatial dependence. The authors smooth the random curves by involving the neighborhood

random curves, which may increase the accuracy of the estimation and subsequently the

clustering performance.

One also has to be careful with the model selection procedure for the following two reasons.

First, Bayes factors depend on prior beliefs about the expected distribution of the parameter

values, and there is no guarantee that the Bayes factor implied by BIC will be close to the

one calculated from a prior distribution that an observer would actually regard as

appropriate. Secondly, to obtain the Bayes factors that follow from BIC, investigators would

have to vary their prior distributions according to the marginal distributions of the variables

and the nature of the hypothesis. One potential consequence of this is that some of the

random curves can be smoothed inappropriately. For example, Figure 2(b) plots the true

temporal functions used in the three spatial regions of our simulation study (Section 5). As

one can see, the differences among these three curves are very small, and there are also

some jumping signals. The B-spline or P-spline with AIC/BIC can easily ignore their

differences due to the wrong model selection, which then increases both false positive and

negative rates. One alternative approach to resolve this problem is to simultaneously

incorporate spatial and temporal smoothing, and then use some adaptive procedure to

determine the related parameters, as proposed in Li et al.(2011).

3 Computational Efficiency

The authors explicitly model spatial dependence among spatially connected locations via

Markov random fields (MRF) (Besag, 1986). However, as discussed in Zhu et al. (2007),

calculating the normalizing factor of a MRF and estimating spatial correlation for a

moderate number of spatial locations in a 2D space or 3D volume can be very

computationally intensive. Moreover, it can be restrictive to assume a specific type of

correlation structure across the whole 2D space or 3D volume.

For example, a typical fMRI dataset has tens of thousands of voxels, i.e. spatial locations,

and hundreds of time points. Meanwhile, the assumption of the same correlation structure

across the whole brain is very unrealistic, as correlation structures vary across the whole

brain volume due to its physiology features. The large number of time points also
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dramatically increase computational time in the dimension reduction procedure. Eventually,

these problems will make it very challenging to directly apply the Monte-Carlo

approximation implemented in FSCM to fMRI data.

Alternatively, one may consider some frequency domain approach to use some

transformation, such as the Fourier transformation or the wavelet transformation, to

transform the time series into the frequency domain. Such transformation can reduce the

temporal correlation, and decrease the associated computation efforts, see the example in

Wang et al. (2011).

4 A Simulation Example

We illustrate the points discussed above through a simulation example. Specifically, we

compare the authors’ method with ours that is currently under development.

Our method consists of two primary steps: (i) smoothing and (ii) clustering. The smoothing

step implements a multiscale adaptive procedure to denoise the random curves adaptively

and hierarchically, by adaptively creating a sequence of nested ellipsoids at each spatial

location to capture the location-specific spatial dependence within its neighborhood. This

smoothing technique can capture the functional segregation and integration of different

spatial regions and prepare for the follow-up clustering. In the clustering step, we implement

an EM algorithm on the wavelet transformations of the smoothed random curves. Note that

the wavelet transform of stochastic time series is asymptotically Gaussian. The number of

the clusters is automatically determined using a technique similar to that of Chen and Khalili

(2009).

We consider toy-example fMRI simulation studies where the spatial domain only consists of

a single slice with 32 × 32 voxels, and the time domain includes 128 equally spaced time

points in [0, 1]. The true activation image is composed of three activated regions, where

each region consists of 4 contiguous circles, and each circle is of diameter 8 pixels, as

indicated using different colors in Figure 2(a). Denote the three activation regions from left

to right as R1, R2 and R3, respectively, and the inactive region as R4.

To simulate the toy fMRI data, we consider the following generative model for pixel d and

time t:

(1)

where Sj(d, t) is the true temporal signal at pixel d, and  is the

corresponding error, both of which depend on the region that pixel d belongs to, as described

in more details below. Within the activated region Rj, j = 1, 2, 3, the true temporal signal is

set to be the difference between two exponential functions, as in the following expression,

where
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(u11, T11) = (0.4, 0.008), (u21, T21) = (0.41, 0.01), (u31, T31) = (0.405, 0.01), (u12, T12) =

(0.41, 0.08), (u22, T22) = (0.42, 0.01), (u32, T32) = (0.415, 0.01).

The three functions are plotted in Figure 2(b). As one can see, the functions are very similar

with each other, and have sharp drops, which actually will cause problems for FSCM as we

show below. For the inactive region, we set the temporal signal to be S4(d, t) = 0.

In addition to the region-specific temporal mean signal, we also set up the error variances 

to depend on the region so that each region has a different signal to noise ratio (SNR). More

specifically, for each j, we consider any pixel d within Rj, treat the Sj(d, t) across time as the

data, and calculate their sample variance, denoted as Varj. Calculation shows that Var1 =

0.0066, Var2 = 0.0056, Var3 = 0.0045, and Var4 = 0. We then set σ2 = max{Varj: j = 1, 2, 3,

4} = 0.0066 and , where SNR1 = 0.7, SNR2 = 0.8, SNR3 = 0.7 and SNR4 =

0.8. The above setup suggests that the SNRs in the three activation regions are

approximately 0.7, 0.68, and 0.48 respectively, which are all very small.

We applied FSCM to our simulation by setting the number of clusters as 4 and K=5, i.e.

KNN uses five nearest neighbors. We repeated the simulations several times, and a typical

clustering result is provided in Figure 2(e). The corresponding clustering rates (number of

the locations in ith cluster/total number of locations) are 0.23, 0.20, 0.29, and 0.28 for the

four clusters, respectively. The true clustering rates are, respectively, 0.1836, 0.1836,

0.1836, and 0.4492 for the different regions. It is clear that FSCM does not work well in this

simulation study. A typical result from our method is given in Figure 2(f). We can see that

only a few locations are mis-clustered.

We speculate that the above simulation setup is challenging for FSCM due to the rather

small differences among the temporal signal functions and the sharp drops in their functional

forms, shown in Figure 2(b), as well as the rather small signal-to-noise ratios. To empirically

confirm our speculations, we considered another simulation setup with the same spatial

activation map, but the three temporal signal functions are very different from each other

and very smooth. Specifically, we assume that

where t ∈ {−1, −15/16, …, 0, …, 15/16, 1}, and S4(d, t) = 0. We then simulate the fMRI

data according to the generative model (1) with Zj(d, t) ~ N (0, 0.1). See Figure 3(a) for plots

of the true temporal signals Sj(d, t), j = 1, 2, 3. In this case, the temporal signal functions in

the four regions, especially in the three active ones, differ significantly from each other, and

the SNRs are larger: 1.81 in R1, 1.05 in R2, and 0.70 in R3. Again, we set the number of

clusters equal to 4 and K = 5, and apply FSCM to obtain the results shown in Figure 3(b),

which indicate that FSCM works very well in this case. The results for our method are not

shown here as they are very similar to those obtained by FSCM.
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5 Concluding Remarks

Jiang and Serban have developed a nice framework to cluster spatially dependent random

curves. However, the issues of spatial boundary, smoothing, and computational efficiency

suggest that the problem under investigation is challenging and deserves extra care.

Specifically, the neighborhood size should be carefully chosen; spatial smoothing should be

incorporated to increase the accuracy of the estimation by borrowing strength within a

neighborhood; finally, when the spatial and temporal sampling rates are high, computation

becomes very intensive for the MRF prior. Clustering of spatial-temporal functional data

with dependence is an interesting research problem that needs further investigations.
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Figure 1.
Spatial regions with sharp boundaries: (a) An fMRI slice example; (b) Illustration of spatial

neighborhood in a 2-D space. A and B are two locations that are close to the boundary of an

activated region. The online version of this figure is in color.
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Figure 2.
First Simulation Setup and Results: (a) A temporal cut of the true active pattern; (b) The true

temporal signal curves within the three different active spatial regions; (c) A temporal cut of

the simulated images; (d) Gaussian smoothing of the simulated images; (e) A typical

clustering result using FSCM; (f) A typical clustering result from our method (under

development).
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Figure 3.
Second Simulation Result: (a) The true temporal signal curves within the three different

active spatial regions; (b) A typical clustering result from FSCM. The online version of this

figure is in color.
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