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Abstract

In many areas of science one aims to estimate latent sub-population mean curves based

only on observations of aggregated population curves. By aggregated curves we mean linear

combination of functional data that cannot be observed individually. We assume that several

aggregated curves with linear independent coefficients are available. More specifically, we assume

each aggregated curve is an independent partial realization of a Gaussian process with mean

modeled through a weighted linear combination of the disaggregated curves. We model the

mean of the Gaussian processes as a smooth function approximated by a function belonging to

a finite dimensional space HK which is spanned by K B-splines basis functions. We explore

two different specifications of the covariance function of the Gaussian process: one that assumes
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a constant variance across the domain of the process, and a more general variance structure

which is itself modelled as a smooth function, providing a nonstationary covariance function.

Inference procedure is performed following the Bayesian paradigm allowing experts’ opinion to

be considered when estimating the disaggregated curves. Moreover, it naturally provides the

uncertainty associated with the parameters estimates and fitted values. Our model is suitable

for a wide range of applications. We concentrate on two different real examples: calibration

problem for NIR spectroscopy data and an analysis of distribution of energy among different

type of consumers.

Keywords: Bayes’ theorem; B-splines; Covariance function; Gaussian process.
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1 Introduction

The problem we address is the estimation of latent sub-population mean and covariance curves

when only populational aggregated data is available. By aggregated data we mean that each sample

consists of linear combinations of functional data that cannot be observed individually for each

sub-population.

Certainly, there are many methods of fitting curves to data. A collection of techniques known as

nonparametric regression, for example, allows great flexibility in the possible form of the regression

curve α. In particular, it assumes no parametric form for it. In fact, a nonparametric regression model

only makes the assumption that the regression curve belongs to some infinite collection of curves.

Consequently, in order to propose a nonparametric model one may just need to choose an appropriate

space of functions where he/she believes that the regression curve lies. This choice, usually, is

motivated by the degree of smoothness of α. Then, one uses the data to determine an element of

this function space that can represent the unknown regression curve. Consequently, nonparametric

techniques rely more heavily on the data for information about α than their parametric counterparts.

Also, this flexibility on the form of the curve allows one to incorporate prior information. The

literature on nonparametric regression is vast, for the interested reader we refer to the book of

Eubank (1999).

The set up for nonparametric regression assumes that an unknown function α of one or more

variables and a set of measurements y1, . . . , yn are such that:

yi = Liα+ εi,

where L1, . . . ,Ln are linear functionals defined on some linear space H containing α, and ε1, . . . , εn

are measurement errors usually assumed to be independent, with common, zero mean normal dis-

tributions with unknown variance σ2. Typically, the Li will be point evaluations of the function α.

That is, Lig = g(xi) and yi = y(xi), where xi are the explanatory variables for i = 1, . . . , n.

The problem we address here is more general. We have several unknown functions αc, c = 1, . . . , C

of one or more variables and the set of measurements are given by

yi =
C
∑

c=1

Licαc + εi (1.1)
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where Lic, i = 1, . . . , I, c = 1, . . . , C are the linear functionals. The problem is to estimate the

functions αc, c = 1, . . . , C based on the measurements yi, i = 1, . . . , I.

More specifically, in our model we assume each aggregated curve yi is an independent partial

realization of a Gaussian process with mean modeled through a weighted linear combination of the

disaggregated curves αcs. Following Dias, Garcia and Martarelli (2009) we model the mean of the

Gaussian process as a smooth function approximated by a function belonging to a finite dimensional

space HK which is spanned by K B-splines basis functions. This is not the only choice, other basis

could be used such as Fourier expansion, wavelets, natural splines. See, for example, Silverman

(1986), Kooperberg and Stone (1991), Vidakovic (n.d.), Dias (1998) and Dias (2000).

In this work, differently from Dias et al. (2009), we consider two different structures for the

covariance function of the Gaussian process postulating models that impose positive definiteness

condition on the function. The first one assumes a uniform structure across the domain of the process,

the second one models the covariance itself as a smooth function providing a nonstationary behaviour.

Our model is going to be applied for two practical situations. In both of them it is reasonable to

consider that the experts in the field have prior information on the disaggregated curves. Therefore,

in order to incorporate this opinion, inference procedure will be performed following the Bayesian

paradigm. As a by-product, we naturally obtain the uncertainty associated with the parameters

estimates, and fitted values.

This paper is organized as follows. Section 2 presents two motivating examples: calibration

problem for NIR spectroscopy data and an analysis of distribution of energy among different types

of consumers. Section 3 describes our proposed hierarchical model to estimate latent disaggregate

curves when only aggregated population observations are available. Therein we also propose a non-

stationary covariance function allowing the variance of the underlying process to smoothly change

across the domain of the function. Next section analyzes different sets of artificial data. The aim is to

check the ability of the model in recovering the true disaggregated functions under different scenarios.

Then Section 5 discusses the analysis for the two motivating examples described in subsections 2.1

and 2.2. Finally, Section 6 concludes.
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2 Motivating examples

2.1 Near-infrared (NIR) spectroscopy data: a calibration problem

Analyzing materials to determine their chemical composition is a basic tool of science. It is used in

many applications such as food safety testing, protein detection, pharmaceutical purposes, forensics,

to mention just a few. This analysis can be done directly in the laboratory by usually expensive and

time-consuming techniques. An alternative is to determine the chemical composition through NIR

spectroscopy which is a low cost technique, relatively simple to use and provides adequate accuracy

in many practical situations. Some references with practical applications of NIR spectroscopy are

Candolfi, De Maesschalck, Massart, Hailey and Harrington (1999); Rodriguez-Saona, Khambaty, Fry

and Calvey (2001); Maraboli, Cattaneo and Giangiacomo (2002); Tewari, Mehrotra and Irudayaraj

(2003); Cozzolino, Flood, Bellon, Gishen and De Barros Lopes (2006); Schönbrodt, S., Winter and

G. (2006); Saranwong and Kawano (2008a, 2008b); Woodcock, O’Donnell and Downey (2008);

Botonjic-Sehic, Brown, Lamontagne and Tsaparikos (2009); and Romı́a and Bernárdez (2010). For

introductory material on the subject see Shenk and Westerhaus (1991), Brereton (2003), and Burns

and Ciurczac (2007).

When atoms or molecules absorb light, the energy input excites a quantized structure to a higher

energy level. The type of excitation depends on the wavelength of the light. NIR spectroscopy

technology is based on the fact that each of the major chemical components of a sample has near

infrared red absorption properties in the region 700-2500 nm. An absorption spectrum is the ab-

sorption of light as a function of wavelength. The NIR spectrum of a sample is the summation of

these absorption properties for each chemical sample resulting in a continuous curve measured by

modern scanning instruments at hundreds of equally spaced wavelengths. The information contained

in this curve can be used to predict the chemical composition of the sample. The problem lies in

extracting the relevant information from possibly thousands of overlapping peaks. This can be ac-

complished by applying the Beer-Lambert Law. The Beer-Lambert law is the linear relationship

between absorbance and concentration of absorbing species.

Analysing a training set of different samples with distinct compositions allow us to calibrate the

analysis. Osborne, Fearn, and Hindle (1993) described applications in food analysis and reviewed

some of the standard approaches to the calibration problem. Multivariate calibration techniques
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are widely used in the literature for this kind of problem. We propose a different approach by

treating this problem in the framework of functional data analysis. We regard the response of

interest as an aggregated continuous curve observed only at a set of discrete points. Therefore,

having measurements of the NIR spectrum for several chemical samples, with distinct compositions,

will allow us to estimate the typical curve for each constituint of the sample. Figure 2.1 shows

the absorbance curves measured for a dataset of 10 polyaromatic hydrocarbons (PAH) obtained

by Electronic Absorption Spectroscopy. The sample consists of 25 chemical samples, each sample

composed of varying compositions of 10 different constituents (pyrene, acenaphthene, anthracene,

acenaphthylene, chrysene, benzanthracene, uoranthene, uorene, naphthalene, phenanthracene). Each

sample was submitted to 27 wavelengths (220nm–350nm). This dataset was presented by Brereton

(2003) to illustrate multivariate calibration techniques.
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Figure 2.1: Polyaromatic hydrocarbons spectra

2.2 Electric load

The distribution of electric energy is done in several stages: first substations provide energy for

regions in the city. This energy arrives at power transformers (trafo, an usual acronym for trans-

former) that redistributes it to micro-regions. Each micro-region is composed of different types of

consumers, residential, commercial, industrial, among others. For each type of consumer, there are
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peaks of consumption at certain hours of the day. In Brazil, for example, it is empirically known that

residential consumers have a peak on energy consumption between 6–8pm (due partially to the use

of electric showers) and commercial and industrial consumers have their peak between 8am–6pm. To

avoid overload, trafos have to be designed to deal with the maximum load of the day. Ideally, the

distribution of electric energy should be done in such a way that there is a constant load during the

whole day, all days of the week, all over the year for all power plants, substations and transformers.

Therefore, to have a more efficient and uniform distribution of electricity, it is necessary to know the

profile of the consumption for each type of consumer. For each type of consumer, this typical curve

is called the typology. The empirical evidence described before might be used as prior information

when modeling the typology for each type of consumer.

From a practical point of view, it is very difficult and expensive to obtain samples from individual

consumers. Commonly, the data available are aggregated data from power transformers (trafos).

Typically each trafo comprises around 50 consumers. Notice that this data is the sum of all load

demanded by the market (the number of consumers of each type) of this trafo. Moreover, due to

billing issues, the market of each trafo is known. Therefore, having measurements of the electric

load for several different trafos, with distinct markets, provides us with the information to estimate

the individual curves for each type of consumer. Figure 2.2 shows the data from two trafos, that we

analyse in Section 2

Figure 2.2: Observed curves for two trafos.

Both problems described above can be viewed as examples of samples obtained from aggregated
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data; that is, the observed data might be described as a linear combination of individual functional

processes and the aim is to estimate their individual mean and covariance functions.

3 Proposed Model

Let Yij(t) be the j-th replication of curve i observed at point t, t ∈ [0, TF ]. We decompose Yij(·)

as the sum of two components. The first one is described as a weighted sum of C smooth curves,

each representing the mean curve of a category c (c = 1, · · · , C). For example, in the electric load

example, each disaggregated curve represents the typical curve of consumer type c. The second

component represents measurement error, described by a zero mean Gaussian process with some

covariance function. More specifically, we assume

Yij(t) =
C
∑

c=1

ricαc(t) +
C
∑

c=1

εijc(t), i = 1, . . . , I, j = 1, . . . , J, (3.1)

where α1(t), . . . , αC(t) are the mean curves related to category c = 1, 2, · · · , C, respectively. The

rics are assumed known and are related to the problem being investigated. These will be discussed

in detail in Section 5. We assume εijc(·) follows independent zero mean Gaussian processes with

covariance function given by Zic(t, s), for t, s ∈ [0, TF ].

In general, the required degree of smoothness depends on the problem under study. However,

it is common to require that the functions αc belong to the Sobolev space H2
2 = {f : [xa, xb] →

R,
∑2

j=0

∫

(f (j))2 < ∞}. To consider the class H2
2 as the set of possible mean curves is natural

and desirable for this particular situation since it can be well approximated by a finite-dimensional

approximating space generated by cubic B-splines, see de Boor (1978). Therefore, the second level

of hierarchy expands the mean curves, αc(·), as a linear combination of B-spline basis. We assume

there exists a positive integer K and a knot sequence ξ = (ξ1, · · · , ξK) such that

αc(t) =

K
∑

k=1

βckBk(t), (3.2)

where Bk(t), k = 1, . . . , K are cubic B-splines. Consider the function is evaluated at T points, with
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t1 < t2 < · · · < tT , following equation (3.2), we can write










αc(t1)
...

αc(tT )











=











B1(t1) · · · BK(t1)
...

...

B1(tT ) · · · BK(tT )





















βc1

...

βcK











(3.3)

for c = 1, 2, · · · , C.

Notice that the design matrix in equation (3.3) does not depend on the category c since we are

using the same number of basis and same knot allocation for all categories. Moreover, in this model

the coefficients do not depend on the sampled points and all N points of all aggregated curves can be

used to estimate the same C ×K coefficients. Therefore, following equation (3.1) and the discussion

above, we have the following linear model

Yij(t) =

C
∑

c=1

K
∑

k=1

ricβckBk(t) + εij(t), (3.4)

where εij(t) =
∑C

c=1 εijc(t), because of the independence assumption of ǫijc(·) for i = 1, · · · , I,

j = 1, · · · , J , and c = 1, · · · , C. We now discuss in detail the covariance structure among the ǫij(·)s.

3.1 Covariance structure of the measurement error

The measurement error captures any structure left after adjusting the data to the sum of the latent

disaggregated curves αc(.). As we are estimating functions we assume the errors are correlated across

the domain of Yij(·).

We expect the correlation between points Yij(t) and Yij(s) to decay exponentially, as |t − s|

increases. For each category c, we assign an exponential correlation function with decay parame-

ter φc > 0 for the Gaussian process associated to each ǫijc(·). Our main contribution lies on the

specification of the variance structure. For the i-th curve, let Zi(t, s) = Cov(εij(t), εij(s)), be the

covariance between points t and s. Notice that we assume the same covariance structure across

replicates j = 1, · · · , J . We propose the following general structure for Zi(t, s),

Zi(t, s) =

C
∑

c=1

Cicηc(t) ηc(s) exp(−φc|t− s|), (3.5)

where Cic, c = 1, · · · , C, i = 1, · · · , I are known constants. Like the constants ric in equation (3.4),

the Cics assume values related to the problem being studied. For every i, we allow the variances to
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change with t, such that Zi(t, t) =
∑C

c=1Cicηc(t)
2. More generally, the covariance function is allowed

to change along the domain of the function. Because of the product ηc(t) ηc(s) in equation (3.5)

we do not need to impose any particular restriction on the ηc(·)s to guarantee that we have a valid

covariance function. It is worth noting that this covariance function might assume negative values,

depending solely on the function ηc(·).

We consider three different models for the components ηc(·)s:

(a) Uniformly homogeneous case: In this case we assume

ηc(t) = σ, ∀ t and φc = φ,

implying that Zi(t, s) = (
∑C

c=1Cic)σ
2 exp(−φ|t− s|), for all c = 1, . . . , C.

(b) Homogeneous case: Here we relax the assumption of common σ2 and φ by assuming

ηc(t) = σc, ∀ t,

which leads to Zi(t, s) =
∑C

c=1Cicσ
2
c exp(−φc|t− s|), i.e.

(c) Heterogenous case: The more general case expands ηc(·) in B-splines basis functions, such

that

ηc(t) =
L
∑

ℓ=1

θcℓBℓ(t), (3.6)

where Bℓ(t), ℓ = 1, · · · , L are cubic B-splines with (possibly) a different knot sequence from that

for αc(·), say ξη, and the covariance function follows the general structure shown in Equation

(3.5).

3.2 Likelihood function and Prior specification

Assume y represents the IJT -dimensional vector of observations, with components y = (y11(t1), · · · ,

y1J(t1), · · · , y11(tT ), · · · , y1J(tT ), · · · , yIJ(tT )). Considering the more general case, denote by Θ the

parameter vector for the model. We will specify this vector for the three covariance structures

considered. Notice that for each i = 1, · · · , I, and j = 1, · · · , J , conditioned on the parameter

vector, Yij = (Yij(t1), · · · , Yij(tT ))
′ follows independent normal distributions such that

Yij ∼ NT (Xiβ, Zi), (3.7)
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where Xi are T × CK matrices given by

Xi =











ri1B1(t1) . . . ri1BK(t1) . . . riCB1(t1) . . . riCBK(t1)
... . . .

... . . .
... . . .

...

ri1B1(tT ) . . . ri1BK(tT ) . . . riCB1(tT ) . . . riCBK(tT )











,

β = (β1, · · · ,βC)
′, with βc = (βc1, · · · , βcK)

′, is the CK dimensional vector of coefficients, and

Zi = Zi(Θ) are covariance matrices of order T with elements given by Equation (3.5). Therefore,

based on the observed vector y, the likelihood function for Θ can be written as

L(Θ;y) ∝

I
∏

i=1

J
∏

j=1

|Zi|
−1/2 exp

{

−
1

2
(yij −Xiβ)

′Z−1
i (yij −Xiβ)

}

. (3.8)

As our inference procedure follows the Bayesian paradigm, we now specify the prior distribution of

the parameter vector Θ depending on the covariance structure.

Prior specification We assume prior independence among the components of the parameter vector

Θ. In particular, for the coefficients βc we assign K-dimensional multivariate normal distributions

with known mean vector bc and covariance matrice Ωc, c = 1, 2, · · · , C. In Section 5 we assume a

zero mean prior for βc. However, experts in the field of interest might provide useful information

about the shape of each function, and this can be induced through the mean of the prior distributions

of the respective βcs. For the covariance matrices Ωc we assume diagonal matrices, with the diagonal

elements fixed at some large value to let the observed data drive the inference procedure. The prior

specification of the parameters in the covariance function is related to the choice of the covariance

structure proposed in Section 3.1.

(a) Uniformly homogeneous case: in this case the parameter vector is defined asΘU = (β, σ2, φ).

For σ2 we assume an inverse gamma distribution with shape parameter d and rate parameter

l. For φ, we assign a gamma prior distribution with shape parameter p and rate parameter q

fixed at some reasonable value. For example, we can use the idea of practical range. The mean

of the prior, p/q can be fixed such that at a reasonable distance, the correlation is close to

zero, say 0.05. More specifically, we fix the mean at the value that solves 0.05 = exp(−φ∗dist),

where φ∗ is the prior mean guess we need, and dist is a fixed distance.
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(b) Homogeneous case: for the homogenous covariance structure we define the parameter vector

as ΘH = (β, σ2
1, σ

2
2, · · · , σ

2
C , φ1, φ2, · · · , φC). We suggest independent inverse gamma prior

distributions, each with parameters (dc, lc), for each σ2
c . We also assume prior independence

among the decay parameters φc of the exponential correlation function; and each one is assumed

to follow a gamma prior distribution with parameters pc and qc, c = 1, · · · , C, with pc and qc

fixed at some reasonable values. The same idea of practical range discussed in the uniformly

homogenous case can be used here.

(c) Heterogeneous case: the parameter vector to be estimated is ΘNH = (β, θ1, · · · , θC , φ1, · · · , φC).

We assume independent K-dimensional multivariate normal prior distributions for the coeffi-

cients θc, each with known mean vector dc, and covariance matrix Λc. Like in the mean values

of β, the dcs can be obtained by experts in the field. However, it might be more challenging to

elicitate these values as they are in the covariance structure of the process. For the covariance

matrices Λc we assume diagonal matrices, with the diagonal elements fixed at some reasonably

large value to let the observed data drive the inference procedure.

Posterior distribution and inference procedure Following the Bayesian paradigm, the poste-

rior distribution, p(Θ | y), is proportional to the likelihood function times the prior distribution of

Θ.

The resultant posterior distributions under all different covariance functions do not have closed

forms. We use Markov chain Monte Carlo (MCMC) methods, specifically, the Gibbs sampler with

some steps of the Metropolis-Hastings (M-H) algorithm to obtain samples from the target posterior

distribution (see e.g. Gamerman and Lopes (2006)). In particular, the full conditional posterior dis-

tributions of βc are normal distributions, which are easy to sample from. Independent of the assumed

covariance function, the full conditional posterior distributions of each of the parameters involved in

it do not result in known distributions. For these parameters we make use of the Metropolis-Hastings

algorithm with log-normal proposals based on the current value of the chain, and some fixed vari-

ance, tuned to give reasonable acceptance rates. The MCMC algorithm was implemented in R (R

Development Core Team, 2010), and the codes are available from the authors upon request.
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3.3 Predictive inference

From a Bayesian point of view, one can obtain the posterior predictive distribution of the function

Yi(·) at unobserved values of the domain of the function, Y∗

i = (Yi(t
∗

1), · · · , Yi(t
∗

L)), for t
∗

l ∈ [0, TF ], l =

1, · · · , L, through

p(y∗

i | y) =

∫

Θ

p(y∗

i | y,Θ)p(Θ | y)dΘ. (3.9)

The model assumes that samples Yi(·) are being generated from the multivariate normal distri-

bution, N(Xiβ, Zi). From the theory on the multivariate normal distribution (Anderson, 1984), it

follows that the joint distribution of Y and Y∗

i , conditioned on Θ, is given by





Y∗

i

Y

∣

∣

∣

∣

Θ



 ∼ N









X∗

i β

Xiβ



 ;





Z∗

i Z ′

i12

Zi12 Zi







 , (3.10)

where X∗

i is a L-dimensional vector with elements equal to the cubic B-splines at point t∗l ; Xi is a

vector comprising the cubic B-splines at the observed points tt; Z
∗

i is a covariance matrix of dimension

L and each of its element is the covariance of the process between unobserved points. Each line of the

matrix Zi12 , T ×L, represents the covariance between the ith observed point and the jth unobserved

one, i = 1, · · · , T and j = 1, · · · , L. From the theory of the multivariate normal distribution we have

that

Y∗

i |yi,Θ ∼ NL

(

X∗

i β + Z ′

i12
Zi

−1 (yi −Xiβ) ;Z
∗

i − Z ′

i12
Z−1

i Zi12

)

. (3.11)

The integration in (3.9) does not have an analytical solution, however approximations can be easily

obtained through Monte Carlo methods (Gamerman and Lopes, 2006). For each sample s, s =

1, · · · , Q, obtained from the MCMC algorithm, we can obtain an approximation for (3.9), by sampling

from the distribution in (3.11) and computing

p(y∗

i |y) ≈
1

Q

Q
∑

s=1

p(y∗

i |Θ
s). (3.12)

Once samples from the posterior distribution of Θ are available, realizations from the posterior

predictive distribution can be obtained by sampling from the distribution of Y∗

i | y,Θs, with Θs

representing the sth sampled parameter vector Θ.
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4 Analyzing artificial data sets

Here we analyze six artificial sets of data to check the ability of the model in estimating the disag-

gregated curves of interest when the truth is known. All datasets assume C = 2 population curves.

We consider data are generated from

Yij(t) = ri1α1(t) + ri2α2(t) + ǫij(t), i = 1, 2, 3, j = 1, · · · , J, (4.1)

where the true curves are given by

α1(t) = 5 exp{−t} sin(π t/2) cos(π t)

α2(t) = 5 exp{−(t− 0.2)} cos(π t/2) sin(π t),

with r11 = 1, r12 = 4, r21 = 4, r22 = 1, r31 = 2.5 and r32 = 2.5. These curves were chosen because

they have interesting features to be captured by the model. We explore 6 different scenarios by

assuming different specifications for the covariance structures of ǫij(·):

Case 1: Uniformly homogeneous case In this case we assume all Cic = 1, σ2 = 1 and φ = 0.5.

We concetrated on the case where there are no replicates for the aggregated curves, such that J = 1

and we obtained samples for I = 10 and I = 30.

Case 2: Homogeneous case Here we assume

Zi(t, s) = Ci1σ
2
1 exp(−φ1|t− s|) + Ci2σ

2
2 exp(−φ2|t− s|), (4.2)

and we fix the parameters at the following values: σ2
1 = σ2

2 = 1, φ1 = φ2 = 4 and C11 = 1, C12 = 1.3,

C21 = 1.4, C22 = 1.3, C31 = 1.5 and C32 = 1.5. Here we consider only the case J = 15.

Case 3: Heterogeneous case Here we assume

Zi(t, s) = Ci1η1(t)η1(s) exp(−φ1|t− s|) + Ci2η2(t)η2(s) exp(−φ2|t− s|) (4.3)

with η1 and η2 curves generated as linear combinations of B-splines, φ1 = φ2 = 4 and C11 = 1,

C12 = 1.3, C21 = 1.4, C22 = 1.3, C31 = 1.5 and C32 = 1.5. For the heterogeneous covariance

structure we fit the model considering J = 15, J = 50 and J = 150. This is to investigate the
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effect of the number of replicates on the estimates of the parameters when a more flexible covariance

structure is assumed.

For all datasets we assumed 14 B-splines basis with K = 10 internal knots. In the heterogeneous

case, we assumed this same set of knots to estimate η1(.) and η2(.). We let the MCMC algorithm

run for 100,000 iterations, considered the first 5,000 as burn-in and kept every 95-th sample to avoid

autocorrelation between the sampled values. Convergence of the chains was checked through the use

of two chains starting from very different values.

For the uniformly homogeneous case we notice that inspite of the value of I the posterior distri-

bution of σ2 and φ seem to recover the true values used to generated the data. On the other hand,

the value of I seems to have influence on the magnitude of the ranges of the 95% posterior credible

intervals of the disaggregated curves αc(·) (Figures 4.1 and 4.2).

For the homogeneous case, even with only J = 15 replicates, the model is able to recover the

true structure of the disaggregated functions α1(.) and α2(.). The posterior mean of both curves are

very close to their respective true values and the range of the 95% posterior credible intervals are

relatively narrow. The parameters in the covariance structure are also well estimated (Figure 4.3).

For the heterogenous case it is clear that the number of replicates affect the range of the posterior

credible intervals both for αc(.) and ηc(.), c = 1, 2. Regardless of the value of J the true values are

recovered from the inference procedure, specially for the disaggregated functions αc(.) . The greater

the number of replicates the narrower the 95% posterior credible intervals (Figures 4.4 and 4.5). The

true values of the decay parameters φ1 and φ2 are also recovered from the inference procedure, and

similar to the results for αc(.) and ηc(.), the magnitude of J influences the range of the posterior

credible intervals (Figure 4.6).
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Figure 4.1: Summary of the posterior distribution of the parameters for the uniformly homogeneous

case with J = 1, I = 10 (first column) and I = 30 (second column). Posterior mean curves

(solid lines) and limits (shaded area) of the 95% posterior credible intervals. Dashed lines represent

respective true values.
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Figure 4.2: Summary of the posterior distribution of the parameters for the uniformly homogeneous

case with J = 1 and I = 10 (first row) and I = 30 (second row). Posterior distribution of σ2 and

and φ. Dashed lines represent respective true values.
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Figure 4.3: Summary of the posterior distribution of the parameters for the homogeneous case with

J = 15. Posterior mean curves (solid lines) and limits (shaded area) of the 95% posterior credible

intervals (1st row), posterior distribution of σ2
1 and σ2

2 (2nd row), and φ1 and φ2 (3rd row). Dashed

lines represent respective true values.
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Figure 4.4: Posterior mean curves (solid lines) and limits (shaded area) of the 95% posterior credible

intervals for (a) α1(.), J = 15, (b) α2(.), J = 15, (c) α1(.), J = 50, (d) α2(.), J = 50, (e) α1(.),

J = 150, (f) α2(.), J = 150. In all panels the dashed line is the respective true curve.
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Figure 4.5: Posterior mean (solid line) of the variance functions η1(.) and η2(.) (rows) and limits

(shaded area) of the 95% posterior credible intervals for the heterogeneous case with J = 15, J = 50

and J = 150 (columns). The dashed lines represent the true curves used to generate the data.
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Figure 4.6: Posterior summary (solid circle: posterior mean and lines represent the limits of the

95% posterior credible intervals) of the decay parameters φ1 and φ2 in equation (3.5). Dashed line

represents true value used to generate the data.

5 Applications

5.1 NIR Spectroscopy data - Polyaromatic hydrocarbons

The Beer-Lambert law for K constituents plus noise states that for the ith chemical sample the

measurement at wavelength t is given by

Yi(t) =

C
∑

ℓ=1

rℓ,iαℓ(t) +

C
∑

ℓ=1

eℓ,i(t), t ∈ [220, 350], i = 1, . . . , 25. (5.1)

where rℓ,i is the concentration of the ℓ constituent in the ith chemical sample , αℓ(t) is the absorbance

at wavelength t of the ℓth pure constituent and eℓ,i is a random noise.

Notice that the Beer-Lambert formula leads exactly to the functional model of aggregated data

given by Equation (1.1).
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In this example, we used 14 B-spline basis with 10 internal knots equally spaced in the interval

(220,350) to estimate the latent absorbance curves of each constituint, αc(·).

Since there are no replicates of the population curves available and we have C = 10 constituints,

we chose to fit the model considering a homogeneous covariance structure. In this case, we used a

gamma prior for φc, and an inverse gamma with parameters 2 and 0.2 for σ2
c , c = 1, . . . , 10. We let

the MCMC algorithm run for 100,000 iterations, considered the first 5,000 as burn-in and kept every

100-th sample to avoid autocorrelation between the sampled values.

Figure 5.1: Estimated absorbance curves for the constituints, for the PAH dataset under the uni-

formly homogeneous model.
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Figure 5.1 shows the estimated individual curves for each of the constituints. However, to see

how good these estimates are we should compare the aggregated observed curves with the weighted

sum of these estimates using the Beer-Lambert formula. These comparisons are made in Figures

5.2 and 5.3. The confidence bands for Figure 5.2 are the quantiles weighted sum of the estimates

whereas Figure 5.3 compares the data obtained in some chemical samples with the predictive 95%

confidence intervals. Both figures show that we have an excelent fit for the data.

Figure 5.2: Estimated curves for chemical samples 6, 12 ,21 and 24

Figure 5.3: Predictive 95% confidence intervals for chemical samples 6, 12 ,21 and 24

23



5.2 Electric load data

Here we analyze electric load data as described in Section 2.2. In Brazil, for security reasons, houses

are loaded with energy tension either equal to 127V or 220V. For this reason, they are classified as

monophasic (single phase/ 127V) or biphasic (two phases/220V). Usually, more modest residencies

are monophasic suggesting that monophasic and biphasic consumers have different typologies. We

consider samples observed from I = 2 trafos which are denoted by TR07 and TR09. The market for

each trafo is small and variable, consisting only of single phase and two phase residential consumers.

The consumption of energy during weekends is different than from weekdays (Figure 2.2). Therefore,

we decide to analyse only the weekdays resulting that J = 5 replicates.

Measurements from trafos TR07 and TR09 were stored at every 15 minutes, during 5 days of a

particular week. It is known that the electric load of each trafo i is equal to the sum of Ni = Ni1+Ni2

curves, where Nic is the number of consumers of type c (monophasic or biphasic here), and (Ni1, Ni2)

is the market of trafo i. Table 5.1 presents the number of consumers (market) for each trafo.

Trafo Single Phase Two Phase Total

TR07 87 5 92

TR09 25 25 50

Table 5.1: Distribution of the number of consumers (market) for trafos TR07 and TR09 in the electric

load application.

Following the general structure in equation (3.1), we model the traffic load of trafo i, at day j,

observed at time t as

Yij(t) =
C
∑

c=1

Nic
∑

nc=1

Wcjnci(t), t ∈ [0, 24], i = 1, 2, j = 1, . . . , 5, (5.2)

where Wc,j,nc,i(t) = αc(t) + εc,j,nc,i(t). For this example the constants ric and Cic (in equations (3.4)

and (3.5)) coincide and are equal to Nic.

We fitted the model assuming 14 B-spline basis, with K = 10 internal knots located at the fol-

lowing points ξ = {4, 6, 8, 10, 12, 14, 16, 18, 19, 20}. We fitted the model considering a heterogeneous

covariance structure. The prior specification of φc uses the idea of practical range as discussed in
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Section 3.2. A priori, we assume the correlation between measurements in a day dies off, in average,

after 3/4 of an hour. We assume a gamma prior for φc with mean equals 3/0.75 = 4, and variance

1. Panels of figure 5.4 show the posterior mean with respective 95% posterior credible intervals for

the mean and variance curves for monophasic and biphasic consumers. As expected the single phase

houses have a smaller load than the two phase residencies. Both types have a peak around 8pm, as

this coincides with arriving home from work, taking showers, etc. The basic difference is that for two

phase residencies there is an increase in the electric load from 8am to 12pm which is not observed

for the single phase consumers.

Figure 5.4: Posterior mean (solid line) and 95% credible intervals (shaded area) for monophasic

(single phase) and biphasic (two phase) consumers based on trafos TR07 and TR09 for the tipologies

(first row) and variance (second row). The dotted lines in the first row show the estimate obtained

under the frequentist approach proposed by Dias et al (2009).
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Figure 5.5 compares the posterior predictive distribution with the observations. It is clear that

the proposed model is capturing quite well the structure of the data, as most of the observations are

within the limits of the 95% posterior predictive interval.

Figure 5.5: Summary of the posterior predictive distribution (solid lines) and limits of the 0.025 and

0.975 quantile curves (shaded area) compared with the respective observed values (hollow circles),

for trafos TR07 and TR09.

6 Concluding remarks

In this work our attention was focused on the Bayesian estimation of latent sub-population (disag-

gregated) mean and covariance curves when we only have available observations of the population

(aggregated) curves. Although our proposed models are an extension of the model initially proposed

by Dias et al. (2009), we propose more flexible nonstationary covariance structures for the Gaussian

process by allowing the variance of the process to change across the domain of the function. The

general non-parametric case naturally imposes the positive definiteness of the covariance function

and can be restricted to accomodate many different situations. We believe our proposed covariance

structure might also be applied in different areas, e.g. geostatistics.
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There are several advantages of using the Bayesian paradigm:

• It might naturally incorporate prior information that is available to experts in the field;

• Estimates are obtained under a single framework;

• and it naturally provides the uncertainties of the estimates of the latent sub-population curves,

not only of the mean curves but also of the covariance curves.

To show the strength of our method, we analyzed two examples from different areas in science:

environmetrics and chemometrics. In both examples it is clear, from comparing the observed aggre-

gated curves with the weighted sum of the estimated latent ones, that the proposed model provide

extremely reasonable estimates.
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