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represents the best of current industry practice. Carry
out a “natural experiment” by observing the degree
to which professionals adopt the advice and evaluate
potential correlations with measures of their effectiveness
in using experimentation to improve an engineering
system.

4. Develop a set of experimental scenarios that invite and en-
able repeated cycles of problem reframing and experimen-
tation. Have subjects work to accomplish the objectives of
system improvement and system modeling while “talking
aloud” about the similarities they are able to discover in an
effort to reduce the dimensionality and promote scalability
of their results. Based on what such experiments reveal,
bring statisticians and cognitive psychologists together to
devise methods that make learning from data more effec-
tive despite the difficulties typically present in authentic
experimentation contexts.

Many of these proposed research projects would require a
mix of statistical and social science methods. I think this would
be a natural and welcome development. As Box (1999) noted,
“In the context of iterative learning, optimizations of separate
designs will necessarily be sub-optimizations. It is the investi-
gation itself, involving many designs and analyses, that must
be regarded as the unit, and the success of the investigation
must be regarded as the objective” (p. 21). To realize this vi-
sion, researchers will have to explore the influence of our sta-
tistical tools, methods, and theories on the fundamentally hu-
man and social process of learning through experimentation.

I submit that, under the right conditions, the article “Experi-
mental Design for Engineering Dimensional Analysis” could
be a key, early step in novel program of research.
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First I want to congratulate the authors for producing this im-
portant article. It directly addresses problems that engineers and
scientists often experience in collaborating with statisticians.
That is, statisticians’ general preference for empirical models.
In the physical sciences and many engineering fields, there is
substantial theory that supports models with terms having direct
meaning relating to cause and effect.

Much of the literature in design of experiments either im-
plicitly or explicitly assumes that the model to be fit will be
a lower-order polynomial approximation of the underlying sys-

tem or process behavior. Such models are often quite useful over
the range of experimentation but they do not allow for extrap-
olation and they may not provide much insight into the actual
mechanism controlling the system or process.

© 2013 American Statistical Association and
the American Society for Quality
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Understanding this mechanism may be as important to an en-
gineer or scientist as precise predictions, so an empirical model-
ing approach is often unsatisfying. The unfortunate outcome of
a statistician’s stubborn insistence on the use of designs devel-
oped for fitting simple empirical models may be the rejection of
DOE in its entirety.

Of course, models that make use of dimensional analysis
(DA) still have an empirical flavor. Still, the fact that both sides
of the model equation are either dimensionless or have the same
units gives these models face validity. Providing a recipe that a
statistician can use in collaboration to create such a model is a
clear contribution of this article.

The authors note that design for DA involves factors that are
all quantitative. Certainly, the method requires a quantitative
response and quantitative factors with the appropriate units.
It seems to me that such studies can also consider sources of
noise, which are often categorical such as machines or suppliers.
Similarly, blocking may also be useful to separate the variability
due to day-to-day or lot-to-lot variation.

My favorite feature of this article is the multiobjective design
approach that hedges one’s bets on the DA approach. As the
authors point out, it is certainly possible to leave out a critical
variable in any particular application of DA. If this happens, the
design and analysis based solely on the DA may have limited
utility. At the possible cost of a few extra runs, the authors
provide a compromise design that allows for efficient fits of
both an empirical model in the raw factors and the DA model.

The authors consider a continuum of designs going from one
that is optimal for the DA model to one that is optimal for fitting
a specified empirical model in the raw factors. The design that
is optimal for the DA model has an efficiency of 100% for that
model and a much lower efficiency for the empirical model.
Conversely, the design that is optimal for the empirical model
is 100% efficient for that model but far less efficient for the DA
model. Creating an objective function that is a weighted average
of the two efficiencies allows for the discovery of acceptable
compromise designs. While such designs are not optimal by
either criterion, they may perform well with respect to both
criteria.

The authors find a design for a specific weighted average of
efficiencies using the coordinate exchange algorithm. This algo-
rithm uses a greedy hill climbing approach. So, while individual
designs found using coordinate exchange are usually quite effi-
cient, there is no guarantee that the algorithm will not get stuck
in some local optimum. So, most applications of coordinate ex-
change employ multiple random starts in an effort to find or at
least get closer to the global optimum. The authors advocate
creating a “w-trace” showing the efficiency by each criterion
for 31 pairs of weights where each weight pair sums to 1. For
example, the weight for the DA efficiency might be 0.9 while the
weight for the empirical design would then be 0.1. For each of
these 31 pairs of weights, they run coordinate exchange for 100
random starts and choose the design having the best efficiency
compromise for each of the 31 pairs. The w-trace then plots the
efficiency value for each criterion for every weight pair. Ideally,
the w-trace is monotone increasing for one criterion and mono-
tone decreasing for the other. However, because 100 random
starts are not sufficient to find the best compromise design for
each weight pair, the w-traces in the article are jagged. The au-

thors point out that this problem could be handled by employing
more random starts but they choose to bound the computational
work. For each problem, they compute 3100 designs in all and
plot the efficiencies of the most efficient design for each of the
31 weight pairs.

My objective in this discussion is to contribute to the authors’
methodology by suggesting an alternative approach for creating
the w-trace with the same computational effort. My approach
is inspired by the method proposed by Sambo, Borrotti, and
Mylona (in press). Briefly, I consider 3100 weight pairs for a
specified design problem. For the first two starts, the algorithm
generates a design for the weight pairs [0, 1] and [1, 0], respec-
tively. The individual criterion values for these two end-point
designs are then used to construct the efficiency measures for
subsequent starts. For each such start, a random weight, w, is
chosen from the interval [0, 1]. The weight pair is [w, 1 − w].
Rather than a random starting design, the algorithm uses a ran-
domly chosen design from the set of previously generated de-
signs. The solution to a previous design problem is likely to be
much better than the objective function value from a random
starting design. But, because the weight pair changes from one
start to the next, a previously generated design is unlikely to
be optimal for the weight pair of new scenario. This makes use
of the variable neighborhood search idea that is current in the
optimization community.

The algorithm requires keeping a list of the previously gen-
erated designs as well as their efficiencies by each criterion and
the weights. The next task is to find the set of nondominated de-
signs. A design is in the set of nondominated designs if there is
no other design with higher efficiencies for both criteria. These
designs comprise a Pareto frontier. Lu, Anderson-Cook, and
Robinson (2011) introduced the idea of using Pareto frontiers
in the context of optimal designs for multiple objectives. A con-
sequence of producing the Pareto frontier is that the w-trace of

Figure 1. Pareto frontier of designs representing a trade-off of D-
optimality versus I-optimality. The point designated with a plus sign
represents the compromise design.
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280 BRADLEY JONES

Table 1. D-optimal, compromise, and I-optimal designs for the 12-run, three-factor example

D-optimal design Compromise design I-optimal design

Run # X1 X2 X3 X1 X2 X3 X1 X2 X3

1 1 1 1 1 1 −1 1 −1 −1
2 1 1 −1 −1 1 −1 −1 −1 −1
3 1 −1 1 −1 −1 −1 1 −1 1
4 1 −1 −1 1 −1 −1 1 1 −1
5 −1 1 −1 1 1 1 −1 −0.1684 1
6 −1 1 1 0.266 −1 1 −1 1 −0.1684
7 −1 −1 1 −1 0.266 1 0.1684 1 1
8 −1 −1 −1 −1 −1 0.152 1 0.31209 0.31209
9 −0.00235 −1 0.00235 −0.176 1 0.213 −0.31209 0.31209 −1

10 −0.00235 1 0.00235 1 −0.176 0.213 −0.31209 −1 0.31209
11 1 0 0.00186 −0.037 −0.037 −1 0.09255 −0.09255 −0.09255
12 −0.00186 0 −1 0.017 0.017 −0.097 0.09255 −0.09255 −0.09255

Note that the D-optimal design has all eight of the cube vertices while the I-optimal design has only four. The compromise design has five vertex points.

the designs on the frontier will be monotone decreasing for one
criterion and monotone increasing for the other.

As a demonstration of the efficacy of this approach, con-
sider the problem of finding a good compromise between D-
optimality and I-optimality for a three factor, 12 run, response
surface design (i.e., one for the estimation of a full quadratic
model). Let the design region for this problem be the cube
[−1, 1]3. There are 10 parameters in the model, so finding the
best 12-run design by each criterion requires the consideration
of all values on the interval [−1, 1]. Therefore, I also employ
the coordinate exchange algorithm, but I use a continuous opti-
mizer for the choice of each coordinate rather than discretizing
the interval or limiting my choices to the values −1, 0, and 1.

The w-trace of Pareto frontier of designs is shown in Figure 1.
The I-optimal design, associated with a weight, w, of zero,
is more than 87% D-efficient. By comparison, the D-optimal
design, with w = 1 is slightly more than 80% I-efficient. The
compromise design designated with a plus sign has w = 0.276,
which is slightly less than 95% D-efficient and nearly 97%
I-efficient. These three designs appear in Table 1.

Both traces are monotone as desired though there are substan-
tial gaps in the w-trace where no nondominated design is found.

SUMMARY

Scale invariance is an important feature in statistics as well as
science and engineering. The authors have provided a valuable
service to the discipline of DOE by showing how to apply DA
in problems where the raw factors are quantitative with units
and the measured response also has units. By matching units on
each side of a model, or better yet, making both sides without
dimension, the resulting model may sometimes have validity
outside the ranges of the experimental data.

Applications showing how to incorporate blocking and cate-
gorical factors in such settings would be welcome.

Finally, I believe the w-trace idea is useful but the authors’
implementation can be improved without additional computa-
tional effort.
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