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We propose robust estimators of the generalized log-gamma distribution and, more generally, of location-
shape-scale families of distributions. A (weighted) Qτ estimator minimizes a τ scale of the differences
between empirical and theoretical quantiles. It is n1/2 consistent; unfortunately, it is not asymptotically
normal and, therefore, inconvenient for inference. However, it is a convenient starting point for a one-step
weighted likelihood estimator, where the weights are based on a disparity measure between the model
density and a kernel density estimate. The one-step weighted likelihood estimator is asymptotically normal
and fully efficient under the model. It is also highly robust under outlier contamination. Supplementary
materials are available online.
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1. INTRODUCTION

Generalized log-gamma distributions are used to model
highly skewed positive data on a logarithmic scale. This very
flexible three-parameter family was introduced by Stacy (1962)
and further studied by Prentice (1974) and Lawless (1980). This
family includes the widely used log-exponential, log Weibull,
and log-gamma distributions and even the normal distribution
as special cases. Applications include modeling of reliability
data (Meeker and Escobar 1998), speech processing data (Shin,
Chang, and Kim 2005; Almpanidis and Kotropoulos 2008),
chemical data (Barkauskas et al. 2009), drought data (Nadara-
jaha and Gupta 2007), and health expenditures (Manning,
Basu, and Mullahy 2005). Applications in different branches
of electrical engineering are described in Nadarajah (2008).

Usually, the parameters are estimated by means of the max-
imum likelihood (ML) principle, which provides fully efficient
estimators when the observations follow the model. Unfortu-
nately, the ML estimator is extremely sensitive to the presence
of outliers in the sample and, therefore, it is not robust. There
are several proposals of robust estimators for models involving
a shape parameter (Field and Smith 1994; Cowell and Victoria-
Feser 1996; Dupuis and Mills 1998; Marazzi and Ruffieux 1999;
Dornheim and Brazauskas, 2007; Clarke, McKinnon, and Riley
2012; Ruckdeschel and Horbenko 2012). However, there are no
specific proposals of robust estimators for three-parameter dis-
tribution families where the parameters are location, scale, and
shape.

This article proposes two families of robust estimators: the
(weighted) Qτ estimators and the one-step weighted likelihood

(1SWL) estimators. A Qτ estimator minimizes a τ scale (Yohai
and Zamar 1988) of the differences between empirical and the-
oretical quantiles. A one-step weighted likelihood (1SWL) es-
timator approximately solves a weighted likelihood equation,
where the weights are based on a disparity measure between the
model density and a kernel density estimate.

A (weighted) Qτ estimator is a version of quantile distance
estimator (La Riccia 1982). A similar robust estimator based on
regressing empirical and theoretical quantiles has been proposed
by Boudt, Caliskan, and Croux (2011) for the two parameters of
the gamma distribution. The Qτ estimator is highly robust (its
breakdown point is 50%) and n1/2 consistent. Unfortunately it is
not asymptotically normal and it is, therefore, inconvenient for
inference. It is, however, a convenient starting point of a 1SWL
estimator, which maintains the high degree of robustness of the
Qτ estimator, while improving its efficiency under the model.
Moreover, the 1SWL estimator is asymptotically normal.

The estimation procedures proposed here for the generalized
log-gamma family can be applied to other families of distribu-
tions with three parameters characterizing location, scale, and
shape, such as the three-parameter log Weibull family. Other
examples can be found in Lawless (2003, Section 1.3.6).

Section 2 introduces the generalized log-gamma family of
distributions and the corresponding ML estimator. Section 3
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describes the family of Qτ and weighted Qτ estimators and
Section 4 the family of weighted likelihood estimators includ-
ing the 1SWL estimators. Section 5 reports the results of a
Monte Carlo study on the robustness and efficiency of the stud-
ied estimators. Section 6 describes an example with real data.
Conclusions are provided in Section 7.

A separate document of supplemental materials (referred as
supplementary materials in the following) provides the math-
ematical justifications of the proposed methods and additional
results of the simulation experiments.

2. THE GENERALIZED LOG-GAMMA FAMILY
OF DISTRIBUTIONS

The generalized log-gamma family of distributions depends
on three parameters μ, σ, and λ. We consider the parame-
terization given by Prentice (1974) and denote the family by
LG(μ, σ, λ), μ ∈ R, σ > 0, λ ∈ R. We say that a random vari-
able y has log-gamma distribution LG(μ, σ, λ) if

y = μ + σu (1)

and u has density

fλ(u) =

⎧⎪⎪⎨
⎪⎪⎩

|λ|
�(λ−2)

(λ−2)λ
−2

exp((λ−2)(λu−eλu)) if λ �= 0,

1√
2π

exp

(
−u2

2

)
if λ = 0,

(2)

where � denotes the Gamma function. This family includes
many common models, such as the normal model (λ = 0), the
log Weibull model (λ = 1), the log-exponential model (λ =
1 and σ = 1), and the log-gamma model (σ = λ). Naturally, the
family of distributions of t = exp(y) is called the generalized
gamma family. The density of y is

fθ (y) = 1

σ
fλ

(
y − μ

σ

)
,

where θ = (μ, σ, λ). The score functions are

− d

dμ
log fθ (y) = 1

σ
ξλ(u),

− d

dσ
log fθ (y) = 1

σ
(ξλ(u)u + 1),

− d

dλ
log fθ (y) = ψλ(u),

where u = (y − μ)/σ ,

ξλ(u) = f ′
λ(u)

fλ(u)
= (1 − eλu)

λ
,

ψλ(u) = −∂ log fλ(u)

∂λ

= 1

λ3
(2ζ (λ) − λ2 + λu − exp(λu)(2 − λu)),

ζ (λ) = −2 log(λ) − �̇(λ−2) + 1 and �̇ denotes the Digamma
function, that is, the derivative of the log of the Gamma function.
Then, the ML estimate of θ is given by the following system of

equations

1

n

n∑
j=1

z(yj , θ ) = 0, (3)

where z(y, θ ) = (ξλ(u), ξλ(u)u + 1, ψλ(u))T is the score func-
tion vector.

If we are interested to fit a generalized gamma distribution to
positive data, such as durations t, then an important parameter
of interest is

η = E(t) = δ�(α + 1/γ )/�(α),

where α = λ−2, γ = λ/σ , δ = exp(μ + 2 log(λ)σ/λ). Note that
η depends on μ , σ , and λ, and therefore, no parameter will be
treated as a nuisance parameter.

3. THE Qτ ESTIMATORS

The Qτ estimators proposed here are robust estimators of
θ = (μ, σ, λ) based on the τ scale introduced by Yohai and
Zamar (1988). In this section, we define some robust scales,
the associated robust regression estimators, and the new robust
estimators.

3.1 Scale Measures

We start this section defining a scale function. Let u =
(u1, . . . , un) be a sample of size n. A function s(u) is a
scale if: (i) s(u) ≥ 0; ( ii) for any scalar γ , s(γ u) = |γ |s(u);
(iii) s(u1, . . . , un) = s(|u1|, . . . , |un|); (iv) if |ui | ≤ |vi |, 1 ≤
i ≤ n, then s(u1, . . . , un) ≤ s(v1, . . . , vn). It is easy to show that
properties (i)–(iv) imply (v) s(0, . . . , 0) = 0 and that, (vi) given
ε > 0, there exists δ such that |ui | ≤ δ for 1 ≤ i ≤ n imply
s(u1, .., un) < δ. Properties (i)–(vi) clearly show that s(u) can
be used as a measure of the absolute largeness of the elements of
u. Suppose now that y = (y1, . . . , yn) are observed values and
z = (z1, . . . , zn) are the corresponding fitted values using some
statistical model. Then we can evaluate the goodness of the fit
by s(y − z).

The most common scale is the one based on the quadratic
function and is given by s1(u) = (

∑n
j=1 u2

j /n)1/2. This scale is
clearly nonrobust. Huber (1981) defines a general class of robust
scales, called M scales, as follows.

Let ρ be a function satisfying the following properties:
A: (i) ρ(0) = 0; (ii) ρ is even; (iii) if |x1| < |x2|, then ρ(x1) ≤

ρ(x2); (iv) ρ is bounded; (v) ρ is continuous.
Then, an M scale s3(u) based on ρ is defined by the value s

satisfying

1

n

n∑
j=1

ρ
(uj

s

)
= b, (4)

where b is a given scalar and 0 < b < a = sup ρ.
Yohai and Zamar (1988) introduce the family of τ scales. A

τ scale is based on two functions ρ1 and ρ2 satisfying conditions
A such that ρ2 ≤ ρ1. To define a τ scale, one considers an M
scale s3(u) defined by (4) with ρ1 in place of ρ; then, the τ scale
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is given by

τ 2(u) = s2
3 (u)

1

n

n∑
j=1

ρ2

(
uj

s3(u)

)
. (5)

In the next section we will discuss the advantages of the τ scale
with respect to the M scale to define regression estimates.

3.2 τ Estimators for Linear Regression

Let us consider the regression model

yj = βTxj + ej , 1 ≤ j ≤ n, (6)

where β = (β1, . . . , βp)T and xj = (xj1, . . . , xjp). For a given
β, let rj (β) = yj − βTxj be the corresponding residuals. The
scale τ 2(r1(β), . . . , rn(β)) may be considered as a measure of
goodness of fit. Based on this remark, Yohai and Zamar (1988)
define robust estimators of the coefficients of a regression model
by

β̂ = arg min
β

τ (r1(β), . . . , rn(β)). (7)

These estimators are called τ regression estimators. If a/b =
0.5, the τ estimators have breakdown point (bdp) close to
50% (Yohai and Zamar 1988). Moreover, we note that, if
ρ2(u) = u2, τ 2(u1, . . . , un) = ave(u2

j ) and then the regression
τ estimator coincides with the least squares estimator. There-
fore, taking as ρ2 a bounded function close to the quadratic
function, the regression τ estimators can be made arbitrarily
efficient for normal errors. We should remark that a robust re-
gression estimator could be defined in a similar way using an
M scale. However, Hössjer (1992) showed that this estimator
cannot simultaneously have high bdp and high efficiency.

If the errors ej in (6) are heteroscedastic with variances pro-
portional to σ 2

j , the efficiency of β̂ can be improved by means
of a weighted procedure. A regression weighted τ estimator is
given by

β̂ = arg min
β

τ (r∗
1 (β), . . . , r∗

n (β)),

where r∗
j (β) = rj (β)/σj .

Usually, one chooses ρ1 and ρ2 in the Tukey biweight family

ρT (u, c) =
{

3(u/c)2 − 3(u/c)4 + (u/c)6 if |u| ≤ c,

1 if |u| > c,
(8)

using two values c1 and c2 of the “tuning parameter” c. For
example, one can take c1 = 1.548 and c2 = 6.08. With b = 0.5,
these values yield regression estimators with breakdown point
0.5 and normal efficiency of 95%.

3.3 Qτ and Weighted Qτ Estimators

Consider a three-parameter family Fθ (y) = F ∗((y − μ)/σ,

λ) with θ = (μ, σ, λ), such as the LG(μ, σ, λ) family. We are
now ready to define the Qτ estimators for this family.

For 0 < u < 1 we define Q(u, θ ) as the u-quantile of
Fθ (y). Then, Q(u, θ ) = σQ∗(u, λ) + μ, where Q∗(u, λ) =
Q(u, (0, 1, λ)). Let y(1), . . . , y(n) be the order statistics of a ran-
dom sample of size n from Fθ0 (y), where θ0 = (μ0, σ0, λ0) is the
parameter vector to be estimated. Since, y(j ) can be considered

the quantile un,j = (j − 0.5)/n of the empirical distribution, it
should be close to σ0Q

∗(un,j , λ0) + μ0. More precisely, we con-
sider the differences between the empirical and the theoretical
quantiles as a function of θ which are given by

rn,j (θ ) = y(j ) − μ − σQ∗(un,j , λ).

To measure how large are these residuals, we can use a robust
scale. We can use an M or a τ scale; however, our preliminary
experiments showed that the τ scale performs better than the M
scale. This is not new according to what is known for regression
(Yohai and Zamar 1988; see also the comment after (7)). There-
fore, we will take the scale τ 2(rn,1(θ), . . . , rn,n(θ )) as a measure
of goodness of fit of a distribution Fθ with respect to the data.
Hence, it is natural to define the Qτ estimators by

θ̃n = arg min
θ

τ (rn,1(θ), . . . , rn,n(θ)). (9)

We note that, fixing λ, the value of μ and σ minimizing
the τ scale are obtained by a simple regression τ estimate for
the responses y(j ) and the regressors Q∗(un,j , λ). We also note
(Serfling 1980) that n1/2rn,j (θ0) is approximately distributed
according to N (0, v2(θ0, un,j )), where

v2(θ0, u) = σ 2
0 u(1 − u)

f 2
λ0

(Q∗(u, λ0))
. (10)

Then, since we are dealing with a regression with heteroscedas-
tic errors, it is natural to estimate the variances of the errors
by

σ̂ 2
j = v2(θ̃n, un,j ) (11)

and to improve the basic estimator by means of a weighted
procedure. We finally define the weighted Qτ (WQτ ) estimators
of θ0 by

θ̃w
n = arg min

θ
τ

(
rn,1(θ)

σ̂1
, . . . ,

rn,n(θ )

σ̂n

)
. (12)

3.4 Computation

We briefly discuss how to optimize the τ scales in (9) and (12).
For a given λ0 the values μ(λ) and σ (λ) minimizing the τ scale
can be computed using the algorithm described in Salibian-
Barrera, Willems, and Zamar (2008) for τ regression estimates.
Therefore, we take a grid λ1, . . . , λk of values of λ and, for
each value λl in the grid, we compute the corresponding values
μ(λl) and σ (λl) using the algorithm mentioned above. Then, an
initial value for λ is obtained by minimizing the τ scales over
the triplets (μ(λl), σ (λl), λl) for 1 ≤ l ≤ k. This procedure can
be iterated taking local grids around the current approximation
until the desired accuracy is obtained.

3.5 Asymptotic and Robustness Properties

Under regularity conditions on the parameter space, the fam-
ily Fθ , and the functions ρ1 and ρ2, we can prove that, for
n → ∞, the Qτ and the WQτ estimators converge almost surely
to θ0 and that the rate of convergence is n1/2 (supplementary ma-
terials, Theorem 1 and Theorem 2). We can also show that these
estimators have maximal breakdown point (bdp) of 50% (see
however Section 3.6). Moreover, the empirical results reported
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below show that the WQτ estimators are quite efficient when the
data are distributed according to the model. Unfortunately, we
cannot prove that they are asymptotically normal, and empirical
results suggest that they are not. Therefore, they are not conve-
nient for inference. However, a WQτ estimator is a convenient
starting point of a combined procedure, where it provides the
basis to down weight the outliers. The final estimator is a 1SWL
estimator described in Section 4.

3.6 The Finite Sample Distribution Breakdown Point

According to the traditional definitions (Donoho and
Huber 1983; Hampel et al. 1986) the bdp of an estimator θ̂n is,
roughly speaking, the largest proportion ε of atypical observa-
tions that the data may contain such that θ̂n remains bounded.
In the case of the generalized log-gamma distribution, this def-
inition is however inadequate for the following reason: we can
find a sequence of parameters θ (k) = (μ(k), σ (k), λ(k)) such that
||θ (k)|| → ∞, but Fθ (k) → F0, where F0 is a proper distribution.
One example where this occurs is θ (k) = (0, 1/k,−k); in this
case F0(y) = 1 − exp(−y). Suppose now that y(k) (k ≥ 1) is a
sequence of contaminated samples with a proportion of outliers
smaller or equal than ε and that θ̂n(y(k)) = (0, 1/k,−k). Ac-
cording to the usual definition, we would say that the bdp of
θ̂n is smaller or equal than ε. However, since the sequence of
distribution Fθ̂ (k) remains bounded, this contradicts our intuitive
notion of bdp. To overcome this contradiction we propose the
following new definition of bdp.

Definition. Assume that we have a fixed sample x =
(x1, . . . , xn) with nominal distribution belonging to a family
Fθ with domain R and let

Mm =
{

y = (y1, . . . , yn)

∣∣∣∣∣
n∑

i=1

I (yi �= xi) ≤ m

}

be the set of all contaminated samples with a number of out-
liers smaller or equal than m. The finite sample distribution
breakdown point (fsdbdp) of an estimator θ̂n at the sample x is
defined as the supremum of all ε such that, if m < nε, for any
δ > 0 there exists K such that, for any sample y ∈ Mm, we have
that Fθ̂n(y)(K) − Fθ̂n(y)(−K) > 1 − δ.

According to this definition, the fsdbdp occurs when the es-
timated distribution corresponding to contaminated samples as-
signs a positive mass to the complement of any compact set. It
can be shown that the fsdbdp of the Qτ and WQτ estimators of
the log-gamma model is larger than or equal 0.5 (the details are
provided in Section 4 of the supplementary materials).

4. THE WEIGHTED LIKELIHOOD ESTIMATORS

Let us assume that an initial highly robust and consistent
but not necessarily efficient estimate θ̃ (0)

n of θ0—for example, a
WQτ estimate θ̃w

n defined above—is available. Then we can de-
fine a one-step weighted likelihood estimator with starting value
θ̃ (0)

n . This family of estimators was introduced by Agostinelli
and Markatou (1998) as a one-step version of the weighted like-
lihood (WL) estimators proposed by Lindsay (1994) and also
studied by Markatou, Basu, and Lindsay (1997, 1998) and Basu,
Shioya, and Park (2011). Under very general conditions, the one-
step weighted likelihood estimators are asymptotically normal

with asymptotic covariance matrix equal to the inverse of the
information matrix, that is, they are fully efficient. Moreover,
they inherit the highly robust behavior of θ̃ (0)

n .
The basic WL equation is

1

n

n∑
j=1

w(yj , θ )z(yj , θ ) = 0, (13)

where z(y, θ ) is the score function vector. The weight function
w(y, θ ) is defined by

w(y, θ ) = min

(
1,

[A(δ(y, θ )) + 1]+

δ(y, θ ) + 1

)
,

where δ(y, θ ) is the Pearson residual, measuring the agree-
ment between the data and the assumed model. It is de-
fined as δ(y, θ ) = [f ∗(y) − f ∗

θ (y)]/f ∗
θ (y), where f ∗(y) =∫

k(y, t, h)dFn(t) is a kernel density estimate of fθ with
bandwidth h, f ∗

θ (y) = ∫
k(y, t, h)fθ (t)dt is the correspond-

ing smoothed model density, Fn is the empirical cumulative
distribution function, and [x]+ = max(0, x). Comments on the
choice of the bandwidth can be found in Section 6 of the supple-
mentary materials. The function A(.) is called residual adjust-
ment function (RAF). When A(δ(yj , θ )) = δ(yj , θ ) the weights
w(yj , θ ) = 1 and (13) coincides with (3). Generally, the weight
function w uses functions A that correspond to minimum dis-
parity problems. In particular, the function

A(δ) = 2 − (2 + δ) exp(−δ) (14)

corresponds to the negative exponential (NE) disparity measure
and will be used in all our numerical experiments. Equation (13)
can be solved using an iterative algorithm. We call the solution
of ( 13) the fully iterated weighted likelihood (FIWL) estimator.
We also consider a simpler one-step weighted likelihood (1SWL)
estimator defined by

θ̂n = θ̃ (0)
n − J−1

n∑
j=1

w
(
yj , θ̃

(0)
n

)
z
(
yj , θ̃

(0)
n

)
, (15)

where J = ∑n
j=1 w(yj , θ̃

(0)
n )∇z(yj , θ̃

(0)
n ) and ∇ denotes differ-

entiation with respect to θ . This definition is similar to a one-step
Taylor expansion of (13) in the neighborhood of θ̃ (0)

n . The Taylor
expansion contains an extra term which is obtained by differen-
tiating the weight with respect to θ . This term, when evaluated
at the model, is equal to zero. We note that the estimate of
σ0 provided by (15) can be negative and to avoid this incident
we reparameterize the model using γ = σ 0.5.

The numerical experiments reported in the next section, indi-
cate that, for finite sample sizes, θ̂n is almost as efficient as the
fully iterated estimator, but provides a better resistance to outlier
contamination. Under regularity conditions we can prove that,
for n → ∞,

√
n(θ̂n − θ0)

L→ N (0, I(θ0)−1),

where I(θ0) is the Fisher information matrix (supplementary
materials, Theorem 3). In addition, the influence function IF
of the 1SWL estimator at the model is exactly that of the ML
estimator (supplementary materials, Section 4). As such, the
1SWL estimator is fully first order efficient. The IF clearly
depends on the score function and it is unbounded whenever
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the score is unbounded. Despite this fact, the 1SWL estima-
tor of the generalized log-gamma model is robust and has the
same fsdbdp as the starting estimator (supplementary materials,
Theorem 5).

5. MONTE CARLO EXPERIMENTS

Several numerical simulations were performed to compare the
following estimators: the maximum likelihood estimator (ML);
the Qτ estimator (Qτ ) given by (9); the weighted Qτ estimator
(WQτ ) given by (12); the FIWL estimator defined by (13),
and the 1SWL estimator defined by (15). To compute the WL
estimators, we used a normal kernel with fixed bandwidth h =
0.3 in all experiments. FIWL and 1SWL started with WQτ and
used (14). For Qτ and WQτ we took ρ1 and ρ2 in the bisquare
family with c1 = 1.548, c2 = 6.08, and b = 0.5.

To compare the performances of the different estimators, we
computed the mean absolute error (MAE) of the single param-
eter estimates with respect to the true values λ0, μ0, σ0, and η0.
In addition, for each set of parameter estimates θ̄ we computed

the total variation distance (TVD)

TVD(fθ̄ , fθ0 ) =
∫

|fθ̄ (y) − fθ0 (y)|dy

between the estimated density fθ̄ and the true underlying density
fθ0 . TVD clearly measures the quality of the estimated density
over the entire range of y values. We also simulated asymp-
totic confidence intervals for the parameters and compared their
empirical and nominal coverages.

5.1 Monte Carlo Experiments at the Nominal Model

In a first experiment, we generated n observations yj accord-
ing to (1) with μ = 0 and σ = 1, five values of λ, namely 0, 0.5,
1, 1.5, and 2, and four values of n, namely n = 50, 100, 400, and
1000. Note that, since all the estimates are location and scale
equivariant, this choice of μ and σ is without loss of generality.
The number of replications was 1000. The MAE of the single
parameter estimates as well as the mean TVD of the estimated
densities are reported in the supplementary materials. Figure 1
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Figure 1. Relative efficiency with respect to the ML estimator for n = 50, 100, 400, 1000.
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Figure 2. Mean total variation distance under 10% point contamination at different values of the abscissa. Vertical lines indicate the 1%, 5%,
10%, 50%, 90%, 95%, and 99% quantiles of the model.

graphically shows (for λ = 0, 0.5, 1, 1.5) the mean TVD of the
ML estimate divided by the mean TVD of the robust estimate
as a function of the sample size. This ratio can be interpreted
as a measure of relative efficiency. We note that WQτ provides
a noticeable increase of efficiency with respect to Qτ and that
FIWL and 1SWL substantially improve the behavior of WQτ .
FIWL is the best performing robust estimator. However, the
performance of 1SWL is not significantly inferior.

5.2 Monte Carlo Experiments Under
Point Contamination

In a second experiment, we compared ML, WQτ , FIWL, and
1SWL with a simulation under point contamination. We gener-
ated n − n0 “good” observations yj according to a log-gamma
model (1)–(2) with μ = 0, σ = 1 , λ = 1, and n0 “outliers” at
the point u for u ranging from −6 to 12, n = 50, 100, and 400.
This kind of point contamination is clearly unrealistic; however,
it is generally the least favorable one and allows evaluation of the

maximal bias an estimator can incur. The fraction ε = n0/n of
outliers was 10%, a very high contamination level in real data
applications. For each value of u the number of replications
was 1000. Figure 2 reports the mean TVD of the estimated
densities as a function of u. The MAE of the single parameter
estimates as a function of u can be found in the supplemen-
tary materials. The results show that the mean TVD (and the
MAE) of the WQτ density estimate is remarkably stable. Thus,
WQτ is a good starting point for the 1SWL. The maximal TVD
of 1SWL is smaller than the maximal TVD of FIWL, indicating
that 1SWL provides a better resistance to point contamination.
Finally, 1SWL improves the performance of the initial WQτ es-
timate and provides reliable results for all values of u.

5.3 Coverage of the Asymptotic Confidence Intervals

In a third experiment, we evaluated by Monte Carlo simula-
tion the coverage of the asymptotic confidence intervals of the
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Figure 3. Monte Carlo coverages in the absence of contamination for n = 25, 50, 100, 400.

parameters for finite sample size. We considered five values of
λ (0, 0.5, 1, 1.5, and 2), four values of n (25, 50, 100, and 400),
and three nominal coverage levels (0.9, 0.95, and 0.99). The
complete numerical results are available in the supplementary
materials. In Figure 3 we graphically report the empirical cover-
ages for λ = 0, 0.5, 1, and 1.5. We consider that the coverages
are satisfactory for practical purposes for all sample sizes, with
the exception of n = 25. Note that, in this case, all the con-
sidered estimators, including ML, yield asymptotic confidence
intervals with coverage very different from the nominal level.
Even bootstrap experiments with n = 25 (not reported here)
provided very large and practically noninformative intervals. We
believe that —as a popular rule of thumb suggests—the sample
size should be somewhat larger than 10 times the number of
parameters.

6. EXAMPLE

Clarke, McKinnon, and Riley (2012) describe a simple dataset
taken from a large measurement quality assurance (QA) data

base of ALCOA aluminium refineries in Western Australia. Un-
der ALCOA’s QA program, several thousand bauxite ore sam-
ples are routinely submitted to Fourier transform infrared spec-
troscopy (Eyer and Riley 1999). Part of the quality assurance is
the need to automatically highlight unusual spectra and this is
obtained with the help of special statistical diagnostics—called
representation indicators—derived from the Fourier transform.
Three samples of a particular indicator are displayed in Figure 4,
both on the original and the logarithmic scales. Sample 3 con-
tains two outliers, which are so far away in the original scale
that fall out of the graph limits. However, they are still clearly
visible on the logarithmic scale. Modeling the sample distribu-
tion of this indicator is potentially an important step of the QA
procedure and the two-parameter gamma family of distributions
has been used for this purpose in Clarke, McKinnon, and Riley
(2012). Due to the presence of sporadic “out of control” spectra
in training data (e.g., sample 3) robust estimation has to be used
to summarize the samples.

Four estimated models are shown in Figure 4: the ML es-
timates of the two-parameter gamma and log-gamma models
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Figure 4. Three samples of a bauxite ore quality indicator and density estimates.

(ml), the ML estimates of the generalized gamma and log-
gamma models (ML), the WL estimates of the gamma and
log-gamma models as implemented in the R package wle
(Agostinelli 2001) (wl), and the 1SWL estimate of the gen-
eralized gamma and log-gamma models.

The parameter estimates of the corresponding log-gamma
models are provided in Table 1 (note that σ = λ in the two-
parameter models). In this table, two additional estimates are re-
ported from Clarke, McKinnon, and Riley (2012)—the method
of moments estimate (mo) and a robust Cramér von Mises esti-
mate (cm). The FIWL estimate is also shown in Table 1.

We immediately see that the classical and robust estimates
are very similar for sample 1 and sample 2, whereas the shapes
of the classical estimates (ml, mo, and ML) are heavily distorted
by the outliers in sample 3. In fact, both FIWL and 1SWL have

weights approximately equal to 1 for all the observations in the
first two samples, while the two extreme observations on the
right tail are heavily downweighted in the third sample. Thus,
the weights can be used to identify the outliers. If we remove the
two outliers, the ML estimates of μ, σ , and λ become −5.78,
0.21, and −0.59, respectively. These values are very close to
those provided by FIWL and 1SWL.

We also note that in the three-parameter models all the
95% confidence intervals for λ include λ = 0, with the excep-
tion of the nonrobust interval based on ML in sample 3. Thus,
the lognormal model may be a possible model for these data. Is
the two-parameter gamma family another acceptable model? To
answer this question, we tested the hypothesis λ = σ with the
help of a weighted version of the log-likelihood ratio test pro-
posed in Agostinelli and Markatou (2001). We used the weights
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Table 1. Parameter estimates and standard errors (italic) of models fitted to three samples of a bauxite ore quality indicator

Sample 1 Sample 2 Sample 3
n = 297 n = 297 n = 76

μ σ λ η μ σ λ η μ σ λ η

ML −0.21 0.55 −0.19 1.00 −0.14 0.50 −0.06 1.00 −5.47 0.19 −1.78 0.004
0.05 0.02 0.14 0.04 0.05 0.02 0.14 0.03 0.05 0.03 0.44 0.000

FIWL −0.21 0.55 −0.19 1.00 −0.14 0.50 −0.06 1.00 −5.78 0.20 −0.60 0.003
0.05 0.02 0.14 0.04 0.05 0.02 0.14 0.03 0.04 0.02 0.29 0.000

1SWL −0.21 0.55 −0.19 1.00 −0.14 0.49 −0.07 1.00 −5.79 0.20 −0.75 0.003
0.05 0.02 0.14 0.04 0.05 0.02 0.14 0.03 0.04 0.02 0.29 0.000

ml 0.00 0.55 0.55 1.00 0.00 0.49 0.49 1.00 −5.09 0.97 0.97 0.006
0.03 0.02 0.02 0.03 0.03 0.02 0.02 0.03 0.11 0.07 0.07 0.001

wl −0.05 0.51 0.51 0.95 −0.02 0.47 0.47 0.97 −5.69 0.22 0.22 0.003
0.03 0.02 0.02 0.03 0.03 0.02 0.02 0.03 0.03 0.02 0.02 0.001

mo −0.00 0.63 0.63 1.00 −0.01 0.54 0.54 100 −5.10 3.53 3.53 0.06
cm −0.06 0.51 0.51 0.94 −0.04 0.48 0.48 0.97 −5.53 0.22 0.22 0.003

NOTE: ML: ML of generalized log-gamma; FIWL: fully iterated WL of generalized log-gamma; 1SWL: one-step WL of the generalized log-gamma; ml: ML of two-parameter
log-gamma; wl: WL of two-parameter log-gamma; mo: method of moments of two-parameter log-gamma; cm: Cramér von Mises of two-parameter log-gamma.

provided by ML (all weights equal 1, which leads to the classical
log-likelihood ratio test), FIWL, and 1SWL, and obtained the
following values of the respective test statistics: 27.6, 27.6, and
27.6 in sample 1; 15.13, 15.10, and 14.90 in sample 2; 198.18,
12.7, and 11.6 in sample 3. Removing the two outliers, the clas-
sical test statistic becomes 5.96. The hypothesis is rejected in
all the cases (all the p-values are extremely small). We note the
huge effect of outliers on the classical statistic for sample 3.

7. DISCUSSION

Most literature about robust estimation deals with location-
scale models (and their extensions to regression and multivariate
scatter). In this article, we consider for the first time distri-
bution models with an additional shape parameter and for
these models—in particular, for the generalized log-gamma
model—we develop new robust procedures.

The Qτ estimate is a robust version of the well-known quan-
tile distance estimates described in La Riccia (1982). Our Monte
Carlo simulations show that this kind of estimate performs well
both in the case that the model is correct and under a corrupted
model. These empirical findings are corroborated by a theoret-
ical results showing that the Qτ estimate has a maximum 50%
bdp according to a new definition (the fsdbdp) which is par-
ticularly designed to asses the degree of global stability of a
distribution estimate.

Unfortunately, the Qτ estimate is not asymptotically normal
and, therefore, inconvenient for inference. Its rates of conver-
gence is, however, of order n1/2 and this makes it a good starting
point for a two-step procedure which is asymptotically normal
and improves the efficiency of the Qτ estimate while maintain-
ing the same fsdbdp. More precisely, we recommend a fully
efficient 1SWL estimate.

The Qτ estimate may be extended to the case of randomly
censored observations. For this purpose, the quantiles of the
empirical distribution can be replaced by the quantiles of the
Kaplan–Meier distribution corresponding to the noncensored
observations (some details are available in the supplementary

materials). A similar idea can be applied to the 1SWL estimate,
where a kernel density estimates for censored data (Liebscher
2002) can be used to compute the weights. Another idea is to
proceed in a similar way as in Locatelli, Marazzi, and Yohai
(2010), where a parametric consistent estimator of the underly-
ing distribution has been used. Extensions to accelerated failure
time regression with errors distributed according to the general-
ized log-gamma model are also possible. Both these extensions
are matter of further research.

SUPPLEMENTARY MATERIALS

This document provides the mathematical justifications of the
proposed methods, additional results of the simulation experi-
ments, and an introduction to the R package robustloggamma
(Agostinelli et al. 2013) containing code to compute the esti-
mators described in the article. The package also contains the
dataset used in the example of Section 6.
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