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Abstract

Samples of curves, or functional data, usually present phase variability in addition to am-

plitude variability. Existing functional regression methods do not handle phase variability

in an efficient way. In this paper we propose a functional regression method that incor-

porates phase synchronization as an intrinsic part of the model, and then attains better

predictive power than ordinary linear regression in a simple and parsimonious way. The

finite-sample properties of the estimators are studied by simulation. As an example of

application, we analyze neuromotor data arising from a study of human lip movement.

Key Words:Curve Registration; Functional Data Analysis; Hermite Splines; Spline

Smoothing; Time Warping.



1 Introduction

Many statistical applications today involve modeling curves as functions of other curves.

For example, the trajectories of CD4 cell counts over time inHIV patients can be mod-

eled as functions of viral load trajectories (Liang et al. 2003, Wu and Liang 2004, Wu

and Müller 2010); gene expression profiles of insects at thepupal stage can be modeled

as functions of gene expression profiles at the embryonic stage (Müller et al. 2008); tra-

jectories of systolic blood pressure over the years can be predicted to some extent from

trajectories of body mass index (Yao et al. 2005). All of these examples fall into the

relatively new area of functional regression, or regression methods for functional data.

Functional linear regression, in particular, is a more or less straightforward extension

of multivariate linear regression to the functional-data framework (Ramsay and Silverman

2005, ch. 16). Recent developments in functional linear regression have focused on theo-

retical aspects such as rates of convergence (Cai and Hall 2006, Hall and Horowitz 2007,

Crambes et al. 2009), sparse longitudinal data (Yao et al. 2005), and interpretability of the

estimators (James et al. 2009). But a problem inherent to functional data that has received

little attention in the regression context is the problem ofphase variability.

As a motivating example, consider the data in Malfait and Ramsay (2003). The au-

thors want to predict lip acceleration using electromyography (EMG) curves that measure

neural activity in the primary muscle that depresses the lower lip, the depressor labii in-

ferior. A person was asked to repeat the phrase “say Bob again” a few times, and the lip

movement and associated EMG curve corresponding to the word“Bob” were recorded.

Lip acceleration curves were obtained by differentiating the smoothed lip trajectories. The

sample curves, time-standardized to 700 msec, are shown in Figure 1(a,b). Both samples

follow regular patterns, but they show considerable variability in amplitude and timing of

the main features. In fact, phase variability overwhelms amplitude variability in Figure

1(a), to the point that it is hard to tell how many systematic peaks a typical EMG curve has

in the range .3–.7. A pair-by-pair analysis of the curves shows that the EMG spikes are
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Figure 1: Lip Movement Example. (a) EMG curves; (b) lip acceleration curves; (c) syn-
chronized EMG curves; (d) synchronized lip acceleration curves.

aligned with certain features of the acceleration curves; therefore, thetiming of the EMG

spikes (not just their amplitude) is likely to provide valuable information for predicting lip

acceleration.

Ordinary functional linear regression does not model phasevariability explicitly. This

creates some problems, because phase variability tends to spread the features of predictor

and response curves over wide time ranges and as a result the regression function becomes

very irregular and hard to interpret. On the other hand, if the curve features are synchro-

nized, a simpler regression function will provide a good fit to the data.

Several methods of curve synchronization have been proposed over the years. We

can mention Gervini and Gasser (2004, 2005), James (2007), Kneip et al. (2000), Kneip

and Ramsay (2008), Liu and Müller (2004), Ramsay and Li (1998), Tang and Müller

(2008, 2009), and Wang and Gasser (1999), among others. But in a regression context,

if covariate and response curves are synchronized independently it becomes impossible to

predict new (un-warped) response curves from given (un-warped) covariate curves, since
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the associated warping functions cannot be predicted.

To address this problem, in this paper we propose a regression method that incorporates

time warping as an intrinsic part of the model. Since we are going to apply this method to

the lip movement data, we will focus on the retrospective regression model, or “historical”

regression model as Malfait and Ramsay (2003) call it, wherex andy are functions of time

and for eacht we model the response valuey(t) as a function of “past” covariate values

x(s) with s ≤ t. In addition, we assume that the sample curves are smooth, asin Figure 1.

Extending this model to sparse and irregular curves is something that will be addressed in

other papers.

2 Dynamic retrospective regression

2.1 Model and estimation

Let (x1, y1), . . . , (xn, yn) be a sample of functions, wherexi is the covariate curve andyi

the response curve. We assumexi andyi are square-integrable functions on a common

interval[a, b]. A linear predictor ofyi(t) based onxi has the form

L(t; xi, α, β) = α(t) +

∫ b

a

β(s, t)xi(s)ds, (1)

whereα is the intercept function andβ the slope function. However, (1) employs the

whole trajectory{xi(s) : s ∈ [a, b]} to predictyi(t), including “future” observationsxi(s)

with s > t. In many applications this is not reasonable. For example, for the lip movement

data in Figure 1 it is clear that future neural activity cannot have an influence on past

lip movement; therefore, prediction ofyi(t) must be based only on the partially observed

curves{xi(s) : s ∈ [a, t]}. Then instead of (1) we will use

RL(t; xi, α, β) = α(t) +

∫ t

a

β(s, t)xi(s)ds, (2)
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which can be seen as a particular case of (1) under the constraint β(s, t) = 0 for s > t.

This model is called “historical linear model” by Malfait and Ramsay (2003), although we

prefer the denomination “retrospective linear model”.

As explained in the Introduction, ordinary functional linear regression works best for

synchronized curves. Suppose, then, that for each pair(xi, yi) we have a warping function

wi : [a, b] → [a, b], that is, a strictly monotone increasing function that satisfieswi(a) = a

andwi(b) = b. Let x̃i = xi ◦ wi and ỹi = yi ◦ wi be the warped curves; then we apply

(2) to (x̃i, ỹi) rather than(xi, yi), and define thedynamic functional predictorof yi(t) as

RL(w−1
i (t); x̃i, α, β), obtaining

ŷi(t) = α(w−1
i (t)) +

∫ w−1

i
(t)

a

β(s, w−1
i (t))xi(wi(s))ds. (3)

Note that the same warping functionwi is used forxi andyi; this is reasonable for the

type of applications we have in mind. Using a common warping function preserves the

retrospective property of the model: the integral in (3) only involves values ofxi(wi(s))

with s ≤ w−1
i (t), or equivalently,xi(s) with s ≤ t.

The estimators ofα, β, and thewis can be obtained by functional least squares, mini-

mizing
n∑

i=1

‖yi ◦ wi − RL(·; xi ◦ wi, α, β)‖
2 (4)

with respect toα, β and thewis, where‖f‖ = {
∫ b

a
f 2(t)dt}1/2 is the usualL2([a, b])-norm.

Note that for givenβ andwis, theα that minimizes (4) is

α̂(t) = ỹ(t)−

∫ t

a

β(s, t)x̃(s)ds, (5)

so we can re-write (4) as

n∑

i=1

∫ b

a

[
ỹi(t)− ỹ(t)−

∫ t

a

β(s, t){x̃i(s)− x̃(s)}ds

]2
dt, (6)
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eliminating the interceptα.

The estimation ofβ has to be done with care in order to avoid identifiability issues.

To understand this problem, consider again the general linear predictor (1). For any func-

tion γ such that
∫ b

a
γ(s, t)xi(s)ds = 0 for all t and all i, it is clear thatL(t; xi, α, β) =

L(t; xi, α, β + γ) for all t and alli, so (1) cannot distinguish betweenβ andβ + γ. Since

the space spanned by thexis has dimension at mostn, there is always going to be an infinite

number ofγs for which this occurs. The usual way to deal with this identifiability issue is

to reduce the space of possibleβs, so that the onlyγ that satisfies
∫ b

a
γ(s, t)xi(s)ds = 0

for all t and alli in the reduced space isγ ≡ 0. An efficient way to do this is to use the

tensor-product space of the principal components of thexis and theyis (e.g. as in Müller

et al., 2008), which is the functional equivalent of principal-component regression.

We briefly remind the reader what the functional principal components are. A contin-

uous covariance functionρ(s, t) = cov{x(s), x(t)} admits the decompositionρ(s, t) =

∑
k λkφk(s)φk(t), where theφks are orthogonal functions inL2([a, b]) and theλks are

non-increasing positive scalars (the sequence may be finiteor infinite, but in either case
∑

k λk < ∞). This is known as Mercer’s Theorem (Gohberget al., 2003). Theφks are

eigenfunctions ofρ, i.e. they satisfy
∫ b

a
ρ(s, t)φk(s)ds = λkφk(t) for all t. Theφks are

called the principal components of thex-space, since they are the functional equivalents

of the multivariate principal components. In a similar way one obtains the principal com-

ponents of they-space, say{ψl}. To estimate the regression functionβ, one chooses the

leading principal components of each space, say{φ1, . . . , φp} and{ψ1, . . . , ψq}, and sets

β(s, t) =

p∑

k=1

q∑

l=1

bklφk(s)ψl(t). (7)

The coefficientsbkl of β are estimated by least squares. This procedure can be adapted for

the retrospective linear predictor (2) in a straightforward way, since the estimation of the

principal components does not change.
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Going back to the problem of minimizing (6), we proceed as follows. First note that the

φks and theψls are now the principal components of the warped functions{x̃i} and{ỹi},

respectively, so we cannot estimate them separately in a preliminary step because they

depend on the warping functions{wi}, which are themselves estimated in the process. So

we minimize (6) with respect toB = [bkl] and thewis, subject to the conditions (7) and

∫ b

a

ρx̃(s, t)φk(s)ds = λkφk(t), k = 1, . . . , p, (8)

∫ b

a

ρỹ(s, t)ψk(s)ds = ξkψk(t), k = 1, . . . , q, (9)

where

ρx̃(s, t) =
1

n

n∑

i=1

{x̃i(s)− x̃(s)}{x̃i(t)− x̃(t)},

ρỹ(s, t) =
1

n

n∑

i=1

{ỹi(s)− ỹ(s)}{ỹi(t)− ỹ(t)}.

In addition, we assume that theφks and theψls are orthonormal and that the sequences

{λk} and{ξk} are positive and non-increasing. For identifiability of thewarping functions,

we also add the constraint̄w(t) ≡ t.

It is convenient to model the functional parameters{φk}, {ψl} and{wi} using splines

or similar basis functions, because this reduces the functional minimization problem to

a more familiar multivariate minimization problem. Letγ(t) = (γ1(t), . . . , γν(t)) be a

spline basis (or some other system) inL2([a, b]); then we assumeφk(t) =
∑ν

j=1 ckjγj(t)

andψl(t) =
∑ν

j=1 dljγj(t) for coefficient vectorsck anddl. The regression slope can then

be expressed as

β(s, t) = γ(s)TCT
BDγ(t)I{s ≤ t}
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and the functional constraints (8) and (9) turn into parametric constraints

Ωx̃C = J0CΛ, (10)

ΩỹD = J0DΞ, (11)

whereΩx̃ =
∫∫

ρx̃(s, t)γ(s)γ(t)
T ds dt,Ωỹ =

∫∫
ρỹ(s, t)γ(s)γ(t)

T ds dt,J0 =
∫
γ(t)γ(t)Tdt,

C = [c1, . . . , cp], D = [d1, . . . ,dq], Λ = diag(λ1, . . . , λp) andΞ = diag(ξ1, . . . , ξq).

Note thatΩx̃ andΩỹ are functions of thewis viaρx̃ andρỹ, but we omit this in the no-

tation for simplicity. In addition, we also have the orthogonality conditionsCT
J0C = Ip

andDT
J0D = Iq.

Parameterizing the warping functions is more complicated due to their monotonicity.

One possibility is to model thewis as B-spline functions with monotone increasing coeffi-

cients, which guarantees that thewis are monotone increasing (Brumback and Lindstrom,

2004); the boundary conditionswi(a) = a andwi(b) = b and the identifiability condition

w̄(t) ≡ t can be expressed as linear constraints on the coefficients. Another possibility

is to use the family of smooth monotone transformations (Ramsay and Li, 1998), where

log{w′
i(t)} is modeled as an unconstrained B-spline function andwi(t) is computed by

integration; ifθi ∈ R
r are the spline coefficients oflog{w′

i(t)}, a convenient identifia-

bility condition is the restriction̄θ = 0, which approximately implies̄w(t) ≡ t. A third

possibility, which is the one we prefer in this paper, is to model thewis as monotone in-

terpolating cubic Hermite splines (Fritsch and Carlson, 1980). This family is specified by

a vector of knotsτ 0 ∈ R
r in (a, b) and eachwi is determined by a corresponding vector

τ i such thatwi(τ 0) = τ i. Theτ is then become the parameters that determinewi. The

strategy, when using Hermite splines, is to place the knotsτ 0 at locations of interest, such

as the (approximate) average location of peaks and valleys.For example, for the lip move-

ment data in Figure 1 a reasonable choice would beτ 0 = (.1, .2, .4, .5), corresponding

to the approximate average location of the peaks of thexis. This way we obtain warping
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flexibility at the features of interest with a low-dimensional family of warping functions,

since theτ is can take any value as long asa < τ i1 < · · · < τ ir < b. One technicality:

due to this monotonicity restriction, it is computationally more convenient to use the Jupp

transforms (Jupp, 1978) of theτ is,

θij = log{(τ i,j+1 − τ ij)/(τ ij − τ i,j−1)}, j = 1, . . . , r,

as parameters, because theθis are unconstrained vectors. The identifiability condition

θ̄ = θ0 approximately implies that̄τ = τ 0 and thereforēw(t) ≡ t. More details about

monotone Hermite splines are given in the Technical Supplement.

The minimization of (6) has thus become a multivariate constrained minimization

problem on the parametersB, C, D, Λ, Ξ, andθ1,. . . , θn, which can be solved via

standard optimization methods (see e.g. Nocedal and Wright, 2006, ch. 15). In our Matlab

programs we use the interior-point algorithm as implemented in Matlab’s function “fmin-

con”. This type of algorithms converge only to a local minimum, so it is important to

select a good starting point to increase the chances of actually finding the global mini-

mum, or at least a “good” local solution. One approach we havefound successful is to

do a quick (separate) synchronization of thexis and theyis and use the resulting principal

components as initial estimators of theφks and theψls, and the warping parameters of

either sample as initialθis. Another alternative is to try several random starting points, but

this is much more time consuming.

Once the estimatorŝα, β̂ andŵ1, . . . , ŵn have been obtained, it is possible to use to

predict a response functionyn+1 for a given covariate functionxn+1. The natural predictor

of yn+1 givenxn+1 is ŷn+1(t) = RL(ŵ−1
n+1(t); x̃n+1, α̂, β̂), butŵn+1 cannot be obtained by

minimizing the integrated squared residual because that involves the unobserved response

yn+1. Instead,ŵn+1 can be obtained fromxn+1 alone by synchronizingxn+1 to the mean
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of the warpedxis:

ŵn+1 = argmin
w

∥∥xn+1 ◦ w − x̃
∥∥2
. (12)

Note thatx̃ here is fixed, so the “pinching” or “overwarping” problem associated with

least-squares registration [discussed in Ramsay and Silverman (2005, ch. 7.6) and Kneip

and Ramsay (2008)] will not be a serious issue.

2.2 Selection of meta-parameters

In addition to the parameters estimated by least squares, there are some meta-parameters

that also need to be specified. For example, the number and placement of knots of the

spline bases used for theφks, theψls and thewis, and most importantlyp and q, the

number of principal components to be included in (7). The simplest approach would be

to minimize computationally simple criteria such as the “generalized cross validation”

criterion

GCV(p, q) = MSE(p, q)/(1− pq/n)2

(Wahba, 1990) or the “corrected Akaike criterion”

AICC(p, q) = MSE(p, q) exp{1 + 2(pq + 1)/(n− pq − 2)}

(Hurvitz et al., 1998), whereMSE = n−1
∑n

i=1 ‖ỹ
∗
i − ̂̃y∗i ‖2 and ỹ∗i (t) = ỹi(t) − ỹ(t).

Unfortunately these criteria did not perform well in our simulations, so a more computa-

tionally complex approach such ask-fold cross-validation (Hastieet al., 2009) needs to be

explored.

Regarding the spline bases for theφks and theψls, we note that since the method

“borrows strength” across curves to estimate the coefficients {ck} and{dk}, the spline

dimensionν can be relatively large and the resultingφks and theψls will still be reasonably

regular. Thus we simply take a fairly large number of equallyspaced points in(a, b) as
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knots. If necessary, roughness penalty terms can be added tocontrol the regularity of the

φks and theψls. In our implementation, we do that by adding the penalty to the constraints

(as in Silverman, 1996), substitutingJ0 in (10), (11) and in the orthogonality constraints

by J0 + ηJ2, whereJ2 =
∫
γ ′′(t)γ ′′(t)Tdt andη is a roughness-penalty parameter, that in

practice is chosen subjectively.

Regarding the warping functions, the approach to follow will depend on the warping

family. If interpolating Hermite splines are used, a small number of knotsr placed nearby

the salient landmarks usually provide ample warping flexibility, and r can be chosen by

cross-validation along withp andq within a small range of triplets(p, q, r). If smooth

monotone transformations are used, for which spline knots are not identified with mean-

ingful landmarks, a better approach is to use several equally-spaced knots and add the

roughness-penalty termη
∑n

i=1

∫
{(logw′

i)
′}2 to the objective function, as in Ramsay and

Li (1998); in that case the smoothing parameterη must be chosen with care, because it

determines the effective dimension of the warping space andtherefore there is going to be

an interplay betweenp, q andη.

3 Simulations

We ran two sets of simulations to assess the performance of the proposed method. The first

set was designed to compare the dynamic regression estimator with the ordinary functional

least squares estimator, to determine to what extent the estimators are able to reconstruct

the true regression functionβ. The data was generated as follows. We generatedx̃is

following the shape-invariant modelx̃i(s) = zie
−30(s−.4)2 with zi i.i.d. N(1, .22), which

is a one-component model withµx̃(s) = e−30(s−.4)2 andφ1 = µx̃/‖µx̃‖. The ỹis were

generated as

ỹi(t) =

∫ t

0

β(s, t)x̃i(s)ds+ εi(t) (13)

10



with β(s, t) = 5e−50{(s−.4)2+(t−.6)2}, andεi(t) = ui sin(6πt) with ui i.i.d. N(0, σ2). We

considered two possibilities: a model without random error, whereσ = 0, and a model

with σ = .10. The effect of the regression functionβ is, basically, to shift the peak from

.4 to .6. Note that (13) induces a one-component model for theỹis in theσ = 0 case, with

µỹ(t) =
∫ t

0
β(s, t)µx̃(s)ds andψ1 = µỹ/‖µỹ‖; whereas it induces a two-component model

in theσ = .10 case.

Regarding the warping functions, we also considered two situations: data without

warping, where(xi, yi) = (x̃i, ỹi), and warped data(xi, yi) = (x̃i ◦ w
−1
i , ỹi ◦ w

−1
i ), with

warping functionswi(t) = (eait − 1)/(eai − 1) where theais are uniformly distributed in

[−1, 1]. Ten random pairs(xi, yi) of the latter case are shown in Figure 2(a,b) for illustra-

tion. Two sample sizes were considered:n = 50 andn = 100. We will refer to this model

as “Model 1”.

For this set of simulations we implemented the dynamic functional regression estima-

tor with Hermite splines, using a single knot atτ 0 = .5. Theφks andψls were modeled

as cubic B-splines with equally spaced knots; two cases wereconsidered: four and nine

knots, givingν = 8 andν = 13 respectively. The same spline bases were used for the

φks andψls of the ordinary least squares estimator. Regarding the choice of dimensions

(p, q), we considered four combinations:(1, 1), (1, 2), (2, 1), and(2, 2). Given that the

true x̃is are one-dimensional and the trueỹis are either one-dimensional (whenσ = 0)

or two-dimensional (whenσ = .10), we expect the optimal estimators to correspond to

models(1, 1) and(1, 2), respectively.

We would also expect the GCV or the AICC criteria to choose these models as optimal,

if they were useful for model selection. Tables 1 and 2 reportmean integrated absolute er-

rors,MIAE(β̂) = E{
∫∫

|β̂(s, t)− β(s, t)| ds dt}, based on 300 Monte Carlo replications,

for σ = 0 andσ = .10 respectively. TheMIAEs of the models selected by AICC and

GCV were very similar, so we only report the results for AICC.We see that in the absence

of warping the dynamic regression estimator is comparable to ordinary least squares, so

11



Figure 2: Simulated data. Ten illustrative sample curves(xi, yi) for Model 1 [(a) covari-
ates, (b) responses] and Model 2 [(c) covariates, (d) responses].
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Model without warping
4 knots 9 knots

n = 50 n = 100 n = 50 n = 100
(p, q) D L D L D L D L
(1, 1) .074 .066 .072 .066 .142 .062 .115 .062
(1, 2) .078 .066 .079 .066 .129 .063 .120 .063
(2, 1) .070 .103 .070 .101 .130 .219 .149 .222
(2, 2) .069 .138 .092 .131 .123 .240 .128 .231
AICC .071 .131 .069 .129 .121 .238 .103 .236

Model with warping
4 knots 9 knots

n = 50 n = 100 n = 50 n = 100
(p, q) D L D L D L D L
(1, 1) .085 .650 .082 .656 .134 .593 .132 .598
(1, 2) .082 .647 .080 .653 .144 .595 .143 .600
(2, 1) .148 .669 .175 .672 .136 .612 .177 .614
(2, 2) .158 .522 .317 .522 .209 .506 .287 .505
AICC .203 .522 .349 .522 .207 .506 .295 .505

Table 1: Simulation results for Model 1, caseσ = 0 (no error term). Mean integrated
absolute errors of the slope estimatorsβ̂ are given, for dynamic regression (D) and ordinary
linear regression (L).
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Model without warping
4 knots 9 knots

n = 50 n = 100 n = 50 n = 100
(p, q) D L D L D L D L
(1, 1) .112 .124 .110 .115 .171 .140 .165 .127
(1, 2) .094 .076 .090 .072 .145 .074 .152 .070
(2, 1) .105 .271 .132 .236 .180 .513 .198 .561
(2, 2) .373 .193 .342 .172 .296 .256 .310 .245
AICC .333 .083 .337 .072 .276 .076 .317 .069

Model with warping
4 knots 9 knots

n = 50 n = 100 n = 50 n = 100
(p, q) D L D L D L D L
(1, 1) .118 .647 .114 .650 .161 .589 .156 .596
(1, 2) .100 .643 .097 .646 .143 .591 .174 .597
(2, 1) .172 .668 .228 .671 .165 .608 .205 .610
(2, 2) .480 .529 .516 .526 .399 .518 .378 .514
AICC .343 .529 .531 .526 .325 .518 .375 .514

Table 2: Simulation results for Model 1, caseσ = .10. Mean integrated absolute errors of
the slope estimatorŝβ are given, for dynamic regression (D) and ordinary linear regression
(L).
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nothing is lost by using a more complex estimator. But in presence of warping the dy-

namic estimator is clearly better. We know that warping distorts the principal component

estimators and, as a consequence, the ordinary least squares estimator cannot produce a

good estimator ofβ unless too many components are used, and in that case overfitting is

a problem. On the other hand, the dynamic estimator successfully recovers the principal

componentsφk andψl of the x̃is andỹis, and therefore it provides an accurate estimator

of β, especially for the optimal models(p, q) = (1, 1) and(p, q) = (1, 2). Unfortunately

GCV and AICC do not provide very useful guidance for model selection, judging from

their MIAEs, so alternative procedures likek-fold cross-validation should be explored.

We did not study the performance ofk-fold cross-validation by simulation but it did prove

useful for the Lip Movement data analysis in Section 4.

We also ran a second set of simulations where we varied the dimension of the warping

spaces used for estimation. The data was generated from a more complex model that

we will call “Model 2”. The warped covariates{x̃i} followed a two-component model

x̃i(s) = µx̃(s) +
∑2

k=1 zikφk(s) with µx̃(s) = e−100(s−.3)2 + e−100(s−.6)2 and eachφk

proportional to a peak (more specifically, ifg1(s) = e−100(s−.3)2 andg2(s) = e−100(s−.6)2 ,

we tookφ1 = g1/‖g1‖ andφ2 = c(g2−〈φ1, g2〉φ1) with c a normalizing constant). Theziks

were i.i.d.N(0, .072) andN(0, .052), respectively. As regression slope we tookβ(s, t) =

{φ1(s)ψ1(t) + φ2(s)ψ2(t)}I{s ≤ t}, with ψ1 = φ1 andψ2 = −φ2; the mean of the

warped responses{ỹi} was set asµỹ(t) = e−100(t−.3)2 − e−100(t−.6)2 . So theỹis have a

peak and a valley; the height of the peak is proportional to the height of the first peak

of x̃i, and the depth of the valley is proportional to the height of the second peak of̃xi.

No random errorεi(t) was used for Model 2, since the results for Model 1 were similar

for models with or without random error. The pair(x̃i, ỹi) was then warped with awi (t)

that had two independent warping knots, one at each peak. Specifically, we generated

τ i1 ∼ U(.2, .4) and τ i2 ∼ U(.5, .7) independently and constructed a piecewise linear

wi(t) such thatwi(0) = 0, wi(.3) = τ i1, wi(.6) = τ i2 andwi(1) = 1. A sample of
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MIAE(β̂) MIAE(ŵ)× 10
(p, q, r) H MS H MS
(1, 1, 1) .637 .226 .171 .108
(1, 1, 2) .220 .215 .068 .081
(2, 2, 2) .150 .138 .066 .079
(2, 2, 3) .215 .171 .081 .084
(3, 3, 3) .231 .184 .081 .084

Table 3: Simulation results for Model 2. Mean integrated absolute errors of the slope
estimatorŝβ and the warping functions are given, for dynamic regressionestimators using
Hermite splines (H) or monotone smooth transformations (MS) as warping functions.

ten pairs(xi, yi) is shown in Figure 2(c,d) for illustration. We generated samples of size

n = 50 and 300 replications were run.

We compared the performance of dynamic functional regression estimators with two

different families of warping functions: Hermite splines and smooth monotone functions

(Ramsay and Li, 1998). We considered three knot sequencesτ 0 of increasing dimensions:

.50, (.33, .66), and(.25, .50, .75). For Hermite splines we did not penalized the rough-

ness of thewis, but for smooth monotone functions we did, since the algorithm tended

to produce degenerate warping functions otherwise (the smoothing parameter was chosen

subjectively and the same value was used in all cases). Theφks andψls were modeled

as cubic B-splines with nine equally spaced knots, as before. Overall, we considered five

combinations(p, q, r): (1, 1, 1), (1, 1, 2), (2, 2, 2), (2, 2, 3), and(3, 3, 3); the model closest

to the truth is(2, 2, 2).

In addition to the mean integrated absolute errors of theβ̂s we wanted to assess the

warping quality, so we also computedMIAE(ŵ) = E{n−1
∑n

i=1

∫
|ŵi(t) − wi(t)|dt}.

They are shown in Table 3. We see that the optimal model is(2, 2, 2) as expected, and that

monotone smooth transformations generally produce smaller estimation errors forβ than

Hermite splines, although the latter produce smaller warping errors, probably because the

true warping functions were also splines. Monotone smooth transformations seem to be

more robust to misspecification of the warping knots, although this comes at the price of

having to select a smoothing parameter.
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(p, q) D L
(1, 1) .244 .293
(2, 2) .223 .275
(3, 3) .222 .257
(4, 4) .236 .238
(5, 5) .220 .231
(6, 6) — .232
(7, 7) — .232

Table 4: Lip Movement Example. Cross-validated mean prediction errors for several mod-
els of dynamic functional regression (D) and ordinary linear regression (L).

4 Application: Lip Movement Data

In this section we apply the new estimation method to the dataof Malfait and Ramsay

(2003). As explained in the Introduction, the goal is to predict lip acceleration (Figure

1(b)) using lip neural activity (Figure 1(a)). This data is hard to analyze for a number of

reasons: the curves have sharp peaks and valleys, the first EMG spike occurs very close to

the origin, there is substantial phase variability, and there are only 29 sample curves left

after removing 3 obvious outliers. We computed dynamic and ordinary retrospective re-

gression estimators with different numbers of components(p, q) and chose the best model

by five-fold cross-validation (see Table 4). The principal components were modeled as

cubic B-splines with knots at{.05, .10, . . . , .65}. As warping functions we used Hermite

splines with knotsτ 0 = (.08, .2, .4, .5), which approximately correspond to the average

location of the EMG peaks.

According to Table 4, the best dynamic regression estimatoris given by a three-

component model and the best ordinary linear regression estimator by a five-component

model. Figure 1(c,d) shows the warped sample curves. We see that dynamic regression

does a good job at synchronizing the curves. The features of both explanatory and response

curves emerge very clearly. In particular, the peaks of the EMG curves aroundt = .4 and

t = .5, which were barely discernible in Figure 1(a), are plain to see in Figure 1(c). These

peaks correspond to the agonistic and antagonistic actionsof the lower-lip muscle at the
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Figure 3: Lip Movement Example. (a) Response curves; (b) fitted curves obtained by
dynamic regression; (c) fitted curves obtained by ordinary linear regression.

beginning and the end of the second ‘b’ in ‘Bob’.

Figure 3 shows the lip acceleration curves{yi} together with the fitted curves{ŷi}. We

see that ordinary least squares produces a substantially worse fit; the mean prediction error

of dynamic regression is .0898 while the mean prediction error of ordinary regression is

.1648, almost twice as large. Even though ordinary regression uses two more principal

components than dynamic regression to estimateβ, it is clear that these extra components

cannot make up for the lack of a time-warping mechanism, and adding more components

actually makes prediction worse, as Table 4 shows. So this isa situation where the data

clearly calls for a model that includes a time-warping mechanism, and dynamic regression

then represents a substantial improvement over ordinary linear regression.

Interpretingβ̂(s, t) is harder but also interesting. To determine which featuresof theβ̂s

are actually statistically significant, we estimated the variance ofβ̂(s, t), v̂(s, t), by boot-

strap (using residual resampling). Contour plots of the filtered estimatorŝβ(s, t)I{|β̂(s, t)| ≥

2
√
v̂(s, t)} are shown in Figure 4. The dynamic regression estimator shows significant

features outside the diagonal, implying that lip acceleration can be predicted not only by

neural activity immediately preceding the event, but also by neural activity further in the

past. For example, consider predicting the sharp deceleration of theỹis att = .45, which

is given byµỹ(.45)+
∫ .45

0
β(s, .45){x̃i(s)−µx̃(s)}ds. In Figure 4(a) we see thatβ(s, .45)

not only has a peak near the diagonal, which is unsurprising because it corresponds to the
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Figure 4: Lip Movement Example. Contour plots of estimated slope functionŝβ(s, t) [(a)
dynamic regression estimator, (b) ordinary least squares estimator].

immediately preceding neural activity, but also ats = .1 (where the valley between the

first two peaks of thẽxis occur), and troughs before and after that peak (where the first

two peaks of thẽxis occur). This implies that if the first two spikes ofx̃i (related to the

first ‘b’) are sharper than the mean, the integral
∫ .45

0
β(s, .45){x̃i(s)− µx̃(s)}ds will tend

to be negative and theñyi(.45), the deceleration of the lips at thesecond‘b’, will tend to

be stronger than the mean. Off-diagonal features of the ordinary least squares estimator

can also be seen in Figure 4(b), and were also observed by Malfait and Ramsay (2003)

using a different approach to ordinary least squares (basedon a triangular-basis expansion

for β rather than on a tensor-product principal-component expansion), but they are harder

to interpret because they are applied to non-synchronized curves.

More information about the dynamics of the process can be extracted from the warping

functions themselves. The use of interpolating Hermite splines facilitates this, because the
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estimated parameterŝτ i roughly correspond to the locations of the landmarksτ 0 on the

respective sample curve. For our choice ofτ 0, the τ̂ is will roughly correspond to the

location of the four characteristic peaks of the EMG curves.Thusdi1 = τ̂ i2− τ̂ i1 indicates

the duration of the first ‘b’,di2 = τ̂ i3 − τ̂ i2 the duration of the ‘o’, anddi3 = τ̂ i4 − τ̂ i3 the

duration of the second ‘b’. The pairwise correlations of theds areρ12 = −.46, ρ13 = .66

andρ23 = −.24, indicating that there is a significant negative correlation between the

duration of the first ‘b’ and the ‘o’, and a significant positive correlation between the

durations of the two ‘b’s. More accurate information about the phonemes’ duration could

be obtained by estimating the exact peak locations curve by curve, but that would be

unfeasible for larger datasets. An advantage of Hermite-spline warping is that theτ is are

estimated automatically as a by-product of the procedure.
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