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Abstract

Samples of curves, or functional data, usually presentebasability in addition to am-
plitude variability. Existing functional regression metts do not handle phase variability
in an efficient way. In this paper we propose a functionalesgion method that incor-
porates phase synchronization as an intrinsic part of thdemand then attains better
predictive power than ordinary linear regression in a sevgid parsimonious way. The
finite-sample properties of the estimators are studied lsition. As an example of
application, we analyze neuromotor data arising from aystiidhuman lip movement.
Key Words: Curve Registration; Functional Data Analysis; Hermiteilsgd; Spline

Smoothing; Time Warping.



1 Introduction

Many statistical applications today involve modeling @s\as functions of other curves.
For example, the trajectories of CD4 cell counts over timeliX patients can be mod-
eled as functions of viral load trajectories (Liang et al020Wu and Liang 2004, Wu
and Miller 2010); gene expression profiles of insects aptipgal stage can be modeled
as functions of gene expression profiles at the embryongegisliller et al. 2008); tra-
jectories of systolic blood pressure over the years can éeigied to some extent from
trajectories of body mass index (Yao et al. 2005). All of thexamples fall into the
relatively new area of functional regression, or regrassi@thods for functional data.

Functional linear regression, in particular, is a more eslstraightforward extension
of multivariate linear regression to the functional-datariework (Ramsay and Silverman
2005, ch. 16). Recent developments in functional linearaggjon have focused on theo-
retical aspects such as rates of convergence (Cai and H8| 2{all and Horowitz 2007,
Crambes et al. 2009), sparse longitudinal data (Yao et 8bY@nd interpretability of the
estimators (James et al. 2009). But a problem inherent ttifumal data that has received
little attention in the regression context is the problerplodise variability.

As a motivating example, consider the data in Malfait and Bayn(2003). The au-
thors want to predict lip acceleration using electromypgsa(EMG) curves that measure
neural activity in the primary muscle that depresses thestdip, the depressor labii in-
ferior. A person was asked to repeat the phrase “say Bob agdéw times, and the lip
movement and associated EMG curve corresponding to the tBariol’ were recorded.
Lip acceleration curves were obtained by differentiatimgsmoothed lip trajectories. The
sample curves, time-standardized to 700 msec, are showiguneEl (a,b). Both samples
follow regular patterns, but they show considerable valitglin amplitude and timing of
the main features. In fact, phase variability overwhelmgl#ode variability in Figure
[d(a), to the point that it is hard to tell how many systematiaks a typical EMG curve has

in the range .3—.7. A pair-by-pair analysis of the curvesashthat the EMG spikes are
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Figure 1: Lip Movement Example. (a) EMG curves; (b) lip aecation curves; (c) syn-
chronized EMG curves; (d) synchronized lip acceleratiowves.

aligned with certain features of the acceleration cuniesieffore, theiming of the EMG
spikes (not just their amplitude) is likely to provide vablainformation for predicting lip
acceleration.

Ordinary functional linear regression does not model pkasability explicitly. This
creates some problems, because phase variability tengsaadsthe features of predictor
and response curves over wide time ranges and as a resudgtiession function becomes
very irregular and hard to interpret. On the other hand,ef¢brve features are synchro-
nized, a simpler regression function will provide a gooddithe data.

Several methods of curve synchronization have been prdpoger the years. We
can mention Gervini and Gasser (2004, 2005), James (200igipket al. (2000), Kneip
and Ramsay (2008), Liu and Miuller (2004), Ramsay and Li 899ang and Miuller
(2008, 2009), and Wang and Gasser (1999), among others.nButagression context,
if covariate and response curves are synchronized indepdgdt becomes impossible to

predict new (un-warped) response curves from given (urp&drcovariate curves, since
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the associated warping functions cannot be predicted.

To address this problem, in this paper we propose a regressthod that incorporates
time warping as an intrinsic part of the model. Since we aiag@to apply this method to
the lip movement data, we will focus on the retrospectiveasgion model, or “historical”
regression model as Malfait and Ramsay (2003) call it, whenedy are functions of time
and for eacht we model the response valyé) as a function of “past” covariate values
z(s) with s < ¢. In addition, we assume that the sample curves are smodthFagurel 1.
Extending this model to sparse and irregular curves is dangethat will be addressed in

other papers.

2 Dynamic retrospectiveregression

2.1 Moded and estimation

Let (x1,v1), ..., (x,, y,) be a sample of functions, whetg is the covariate curve ang
the response curve. We assumeandy; are square-integrable functions on a common

interval[a, b]. A linear predictor ofy;(¢) based on; has the form

L(t;x;, o, B) = aft /ﬁstxz (1)

where« is the intercept function and the slope function. However, (1) employs the
whole trajectory{z;(s) : s € [a, b]} to predicty;(t), including “future” observations;(s)
with s > t. In many applications this is not reasonable. For exampitght lip movement
data in Figurd 11 it is clear that future neural activity canhave an influence on past
lip movement; therefore, prediction 9f(¢t) must be based only on the partially observed

curves{z;(s) : s € [a,t]}. Then instead of (1) we will use

RL(t; x5, o0, B) = at /BstxZ (2)



which can be seen as a particular casé bf (1) under the conist(a,¢) = 0 for s > ¢.
This model is called “historical linear model” by Malfait@iRamsay (2003), although we
prefer the denomination “retrospective linear model”.

As explained in the Introduction, ordinary functional lareegression works best for
synchronized curves. Suppose, then, that for each(paiy;) we have a warping function
w; : [a,b] — [a,b], that is, a strictly monotone increasing function thatsSesw;(a) = a
andw;(b) = b. Letz; = x; o w; andy; = y; o w; be the warped curves; then we apply
@) to (z;, y;) rather than(z;, y;), and define thelynamic functional predictoof y;(¢) as
RL(w;*(t); @i, o, 3), obtaining

w; (1)
9i(t) Za(wi‘l(t)H/ Bs,w; ' (1))i(wi(s))ds. 3)

Note that the same warping functian is used forz; andy;; this is reasonable for the
type of applications we have in mind. Using a common warpungcfion preserves the
retrospective property of the model: the integrallih (3)yankolves values oft;(w;(s))
with s < w; '(t), or equivalentlyz;(s) with s < .

The estimators oft, 3, and thew;s can be obtained by functional least squares, mini-
mizing

S llgs o wi — RL(.; 0 wi, @, B (4)

=1
with respect tay, 3 and thew;s, wherg| f|| = {f f2(t)dt}'/? is the usual ?(]a, b])-norm.

Note that for giverns andw;s, thea that minimizes[(4) is

£ =7(t) /ﬁst (5)

S0 we can re-writd (4) as

ZZ:;/: [ﬂi(t) —y(t) - /:B(S,t){i",-(s) — Z(s)}ds 2dt, (6)



eliminating the intercept.

The estimation ofy has to be done with care in order to avoid identifiability ssu
To understand this problem, consider again the generalrimedictor[(ll). For any func-
tion v such thatffv(s,t)xi(s)ds = 0 for all t and alli, it is clear thatL(¢; z;, o, ) =
L(t; z;, o, f + ) for all ¢ and alli, so [1) cannot distinguish betwegrand s + ~. Since
the space spanned by tha has dimension at mosf there is always going to be an infinite
number ofys for which this occurs. The usual way to deal with this ididdility issue is
to reduce the space of possibils, so that the only that satisfiesﬁ’v(s, t)z;(s)ds = 0
for all t and alli in the reduced space ts= 0. An efficient way to do this is to use the
tensor-product space of the principal components ofritkeand they;s (e.g. as in Muller
et al,, 2008), which is the functional equivalent of principalkgogonent regression.

We briefly remind the reader what the functional principahponents are. A contin-
uous covariance functiop(s,t) = cov{z(s),x(t)} admits the decomposition(s,t) =
S oL et (s)9(t), where theg,s are orthogonal functions ih?([a, b]) and the),s are
non-increasing positive scalars (the sequence may be @init&inite, but in either case
> x Ak < 00). This is known as Mercer's Theorem (Gohbetgal, 2003). Theyp,s are
eigenfunctions op, i.e. they satisfyfab p(s,t)pp(s)ds = Ao (t) for all t. The¢,s are
called the principal components of thespace, since they are the functional equivalents
of the multivariate principal components. In a similar wayeabtains the principal com-
ponents of the-space, sayv,}. To estimate the regression functiGnone chooses the

leading principal components of each space,{gay. .., ¢,} and{v, ... v}, and sets

Bs,t) =Y > budy(s)ih(t). (7)

k=1 l=1

The coefficient$,, of 5 are estimated by least squares. This procedure can be ddapte
the retrospective linear predictdr (2) in a straightforvasay, since the estimation of the

principal components does not change.



Going back to the problem of minimizinigl(6), we proceed alofes$. First note that the
¢,s and the);s are now the principal components of the warped functians and{y;},
respectively, so we cannot estimate them separately inlangmary step because they
depend on the warping functioks; }, which are themselves estimated in the process. So

we minimize [[6) with respect tB = [b,] and thew;s, subject to the conditions|(7) and

/ a0 = Ny(D), k=1, ®)

/abpg(s,t)wk(s)ds — ), k=1,....q, ©)
where

pz(s,t) = —Z{xz (s)Hz(t) — 2(1)},

py(s,t) = —Z{yz (s)Hzi(t) — 9(t)}-

In addition, we assume that tlgs and they;s are orthonormal and that the sequences
{\x} and{¢, } are positive and non-increasing. For identifiability of therping functions,
we also add the constraint(t) = t.

It is convenient to model the functional parametgps}, {1, } and{w;} using splines
or similar basis functions, because this reduces the fumatiminimization problem to
a more familiar multivariate minimization problem. Lett) = (v,(¢),...,7,(t)) be a
spline basis (or some other system)if([a, b]); then we assume, (t) = >_7_, cx;v;(t)
andy,(t) = > 7_, dijv,(t) for coefficient vectors, andd,. The regression slope can then
be expressed as

B(s.t) =~(s)" C"BDy(t)I{s < t}



and the functional constrain{s (8) afd (9) turn into paraimebnstraints

Q.C = J,CA, (10)

Q,D = J,DE, (11)

whereQ; = [ pi(s,t)y(s)v(t)" dsdt, Q5 = [[ py(s,t)y(s)y(t) dsdt, Jo = [~v(t)v(t)"dt,
C =lc,...,¢)), D = [dy,...,dg], A = diag(\y,...,\) andE = diag(¢,,...,&,).

Note that(2; and{2; are functions of theu;s via p; andp;, but we omit this in the no-
tation for simplicity. In addition, we also have the orthogtity conditionsC”J,C = 1,
andD”J,D =1,,.

Parameterizing the warping functions is more complicateel td their monotonicity.
One possibility is to model the;s as B-spline functions with monotone increasing coeffi-
cients, which guarantees that thigs are monotone increasing (Brumback and Lindstrom,
2004); the boundary conditions (a) = a andw;(b) = b and the identifiability condition
w(t) = t can be expressed as linear constraints on the coefficiemtsthér possibility
is to use the family of smooth monotone transformations (&amand Li, 1998), where
log{w;(t)} is modeled as an unconstrained B-spline function afd) is computed by
integration; if@; € R" are the spline coefficients afg{w;(t)}, a convenient identifia-
bility condition is the restrictio® = 0, which approximately implies(t) = ¢. A third
possibility, which is the one we prefer in this paper, is tod@lahew;s as monotone in-
terpolating cubic Hermite splines (Fritsch and Carlsor8)9 This family is specified by
a vector of knotgr, € R" in (a, b) and eachu; is determined by a corresponding vector
T; such thatw;(m9) = 7,. Ther;s then become the parameters that determinerhe
strategy, when using Hermite splines, is to place the kngtt locations of interest, such
as the (approximate) average location of peaks and valkeysxample, for the lip move-
ment data in Figurél1 a reasonable choice would-pe= (.1,.2, .4,.5), corresponding

to the approximate average location of the peaks ofrttee This way we obtain warping



flexibility at the features of interest with a low-dimensabfamily of warping functions,
since ther;s can take any value as longas< 7;,; < --- < 75 < b. One technicality:
due to this monotonicity restriction, it is computatioyathore convenient to use the Jupp

transforms (Jupp, 1978) of thes,

0ij = log{(7ijs1 — 7ij) /(Tij — Tij—1)}, J=1,...,m,

as parameters, because #hs are unconstrained vectors. The identifiability condition
0 = 0, approximately implies that = 7, and therefores(t) = ¢t. More details about
monotone Hermite splines are given in the Technical Suppfem

The minimization of [[6) has thus become a multivariate amirs¢éd minimization
problem on the parameteB3, C, D, A, E, and#,,..., 8, which can be solved via
standard optimization methods (see e.g. Nocedal and W66, ch. 15). In our Matlab
programs we use the interior-point algorithm as implemegiieMatlab’s function “fmin-
con”. This type of algorithms converge only to a local minimuso it is important to
select a good starting point to increase the chances oflpcfinaling the global mini-
mum, or at least a “good” local solution. One approach we Hauad successful is to
do a quick (separate) synchronization of ithe and the;s and use the resulting principal
components as initial estimators of thes and they,s, and the warping parameters of
either sample as initi#;s. Another alternative is to try several random startingnspibut
this is much more time consuming.

Once the estimators, 3 and1y, .. ., @, have been obtained, it is possible to use to
predict a response functiap ., for a given covariate functiomn, ;. The natural predictor
of y, 1 givenx,, 1 iSg,.1(t) = RL(u}gil(t); Tpit, @, B), butw,, .1 cannot be obtained by
minimizing the integrated squared residual because thahies the unobserved response

Yni1. INSteadsn, ., can be obtained from,,,; alone by synchronizing, ., to the mean



of the warped;s:

W11 = argmin ||z,1 0w — EHZ . (12)

Note thatz here is fixed, so the “pinching” or “overwarping” problem asisted with
least-squares registration [discussed in Ramsay andr®@iére(2005, ch. 7.6) and Kneip

and Ramsay (2008)] will not be a serious issue.

2.2 Selection of meta-parameters

In addition to the parameters estimated by least squarei® #re some meta-parameters
that also need to be specified. For example, the number andrpént of knots of the
spline bases used for thgs, the;s and thew;s, and most importantly and ¢, the
number of principal components to be includedlh (7). Thepsast approach would be
to minimize computationally simple criteria such as thergealized cross validation”

criterion

GCV(p,q) = MSE(p, q)/(1 — pg/n)’

(Wahba, 1990) or the “corrected Akaike criterion”

AICC(p, q) = MSE(p, q) exp{1 +2(pg +1)/(n —pq —2)}

(Hurvitz et al, 1998), whereMSE = n~' 327 |57 — 47| and g (t) = () — G(t).
Unfortunately these criteria did not perform well in our silations, so a more computa-
tionally complex approach such adold cross-validation (Hastiet al., 2009) needs to be
explored.

Regarding the spline bases for thes and they,s, we note that since the method
“borrows strength” across curves to estimate the coeffisiée, } and {d;}, the spline
dimensiorv can be relatively large and the resulting and the),s will still be reasonably

regular. Thus we simply take a fairly large number of equapipced points irfa, b) as



knots. If necessary, roughness penalty terms can be addedtim| the regularity of the
¢S and the);s. In our implementation, we do that by adding the penalth¢ccbnstraints
(as in Silverman, 1996), substitutidg in (10), (11) and in the orthogonality constraints
by Jo +nJ2, whereJ, = [ ~"(t)y"(t)" dt andn is a roughness-penalty parameter, that in
practice is chosen subjectively.

Regarding the warping functions, the approach to follow dalpend on the warping
family. If interpolating Hermite splines are used, a smalinier of knots- placed nearby
the salient landmarks usually provide ample warping fléitybiand » can be chosen by
cross-validation along witlh and ¢ within a small range of tripletép, ¢, 7). If smooth
monotone transformations are used, for which spline knatsat identified with mean-
ingful landmarks, a better approach is to use several ggapficed knots and add the
roughness-penalty termy_;" | [{(logw})'}? to the objective function, as in Ramsay and
Li (1998); in that case the smoothing parameienust be chosen with care, because it
determines the effective dimension of the warping spacdtar@fore there is going to be

an interplay betweep, ¢ and.

3 Simulations

We ran two sets of simulations to assess the performance pftiposed method. The first
set was designed to compare the dynamic regression estwittidhe ordinary functional
least squares estimator, to determine to what extent tiraasts are able to reconstruct
the true regression functioffl. The data was generated as follows. We generajsd
following the shape-invariant modgl(s) = ze3°6=49* with z; i.i.d. N(1,.22), which

is a one-component model wifl,(s) = e 3°¢~9” and ¢, = . /||ps]l. The s were

generated as

gi(t) = /Otﬁ(s,t)ji(s)ds + () (13)
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with 8(s,t) = 5e=506=9*+(=6% "ande,(t) = w; sin(6xt) with , i.i.d. N(0,02). We
considered two possibilities: a model without random emdreres = 0, and a model
with ¢ = .10. The effect of the regression functighis, basically, to shift the peak from
.4 1t0.6. Note that[(IB) induces a one-component model forjteén theo = 0 case, with

fo s,t)pz(s)ds andyy = p; /|| 15]); whereas itinduces a two-component model
in theo = .10 case.

Regarding the warping functions, we also considered twaasdns: data without
warping, whergz;,y;) = (i, 7:), and warped datér;, y;) = (%; o w; ", §; o w; '), with
warping functionsu;(t) = (e%* — 1)/(e% — 1) where theu;s are uniformly distributed in
[—1, 1]. Ten random pairér;, y;) of the latter case are shown in Figlte 2(a,b) for illustra-
tion. Two sample sizes were considered= 50 andn = 100. We will refer to this model
as “Model 1”.

For this set of simulations we implemented the dynamic fionetl regression estima-
tor with Hermite splines, using a single knotat= .5. The¢,s andy,s were modeled
as cubic B-splines with equally spaced knots; two cases w@msidered: four and nine
knots, givingr = 8 andr = 13 respectively. The same spline bases were used for the
¢S andy,;s of the ordinary least squares estimator. Regarding thieelod dimensions
(p,q), we considered four combinationét, 1), (1,2), (2,1), and(2,2). Given that the
true z;s are one-dimensional and the trizge are either one-dimensional (when= 0)
or two-dimensional (whea = .10), we expect the optimal estimators to correspond to
models(1, 1) and(1,2), respectively.

We would also expect the GCV or the AICC criteria to choossdiraodels as optimal,
if they were useful for model selection. Tables 1 Bhd 2 rep@an integrated absolute er-
rors, MIAE(3) = E{ [[ |3(s, t) — (s, t)| ds dt}, based on 300 Monte Carlo replications,
for c = 0 ando = .10 respectively. ThelIAEs of the models selected by AICC and
GCV were very similar, so we only report the results for AIGAZ see that in the absence

of warping the dynamic regression estimator is comparabl@dinary least squares, so
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Figure 2: Simulated data. Ten illustrative sample curfeesy;) for Model 1 [(a) covari-
ates, (b) responses] and Model 2 [(c) covariates, (d) resgsin
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Model without warping
4 knots 9 knots

n = 50 n = 100 n = 50 n = 100
(p,q) D L D L D L D L
(1,1) .074 .066 .072 .066 .142 .062 .115 .062
(1,2) .078 .066 .079 .066 .129 .063 .120 .063
(2,1) .070 .103 .070 .101 .130 .219 .149 .222
(2,2) .069 .138 .092 .131 .123 .240 .128 .231
AICC .071 .131 .069 .129 .121 .238 .103 .236

Model with warping
4 knots 9 knots
n = 50 n = 100 n = 50 n = 100

¢ D L D L D L D L

(1,1) .085 .650 .082 .656 .134 .593 .132 .598
(1,2) .082 .647 .080 .653 .144 .595 .143 .600
(2,1) .148 .669 .175 .672 .136 .612 .177 .614

(2,2) .158 522 .317 .522 .209 .506 .287 .505
AICC .203 .522 .349 .522 .207 .506 .295 .505

Table 1: Simulation results for Model 1, case= 0 (no error term). Mean integrated
absolute errors of the slope estimatéare given, for dynamic regression (D) and ordinary
linear regression (L).
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Model without warping
4 knots 9 knots

n = 50 n = 100 n = 50 n = 100
(p,q) D L D L D L D L
(1,1) .112 .124 .110 .115 .171 .140 .165 .127
(1,2) .094 .076 .090 .072 .145 .074 .152 .070
(2,1) .105 .271 .132 .236 .180 .513 .198 .561
(2,2) .373 .193 .342 .172 .296 .256 .310 .245
AICC .333 .083 .337 .072 .276 .076 .317 .069

Model with warping
4 knots 9 knots
n = 50 n = 100 n = 50 n = 100
D L D L D L D L

(P, q)

(1,1) .118 .647 .114 .650 .161 .589 .156 .596
(1,2) .100 .643 .097 .646 .143 .591 .174 .597
(2,1) .172 .668 .228 .671 .165 .608 .205 .610

Y

(2,2) .480 .529 .516 .526 .399 .518 .378 .514
AICC .343 529 531 .526 .325 .518 .375 .514

Table 2: Simulation results for Model 1, case= .10. Mean integrated absolute errors of
the slope estimatorsare given, for dynamic regression (D) and ordinary linegression

(L).
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nothing is lost by using a more complex estimator. But in @negs of warping the dy-
namic estimator is clearly better. We know that warpingatistthe principal component
estimators and, as a consequence, the ordinary least sqsii@ator cannot produce a
good estimator of unless too many components are used, and in that case avgiitt
a problem. On the other hand, the dynamic estimator suedlsefcovers the principal
component®,, and, of the z;s andy;s, and therefore it provides an accurate estimator
of 3, especially for the optimal mode(p, ¢) = (1,1) and(p, ¢) = (1,2). Unfortunately
GCV and AICC do not provide very useful guidance for modeésebn, judging from
their MIAEs, so alternative procedures likefold cross-validation should be explored.
We did not study the performance offold cross-validation by simulation but it did prove
useful for the Lip Movement data analysis in Secfion 4.

We also ran a second set of simulations where we varied therdiion of the warping
spaces used for estimation. The data was generated from e ¢coorplex model that
we will call “Model 2”. The warped covariate§z;} followed a two-component model
Zi(s) = pa(s) + ooy zindp(s) with pz(s) = e71006=3)° 4 =100(s=6)* and eachyp,
proportional to a peak (more specificallygif(s) = e~ 1963 andg,(s) = e~ 100(s=6)°
we tooke, = g1/||g1|| andoy, = ¢(g2—(®4, g2) P, ) With c a normalizing constant). Theg,s
were i.i.d.N(0,.07%) and N (0, .05?), respectively. As regression slope we tgtlk, ) =
{01(5)¥1(8) + @a(s)¥, (1) H{s < ¢}, with ¢y = ¢, andy, = —¢,; the mean of the
warped responsely;} was set agi;(t) = e 100037 — =106 Sg theg;s have a
peak and a valley; the height of the peak is proportional ehbight of the first peak
of z;, and the depth of the valley is proportional to the heighthef $econd peak af;.

No random erroe;(t) was used for Model 2, since the results for Model 1 were simila
for models with or without random error. The péir;, 7;) was then warped with a; (¢)

that had two independent warping knots, one at each peakcifitéply, we generated
i1 ~ U(.2,.4) and1;, ~ U(.5,.7) independently and constructed a piecewise linear

wl(t) such thath(O) = 0, w2(3) = Til, wl(6) = T2 andwl(l) =1. A Sample of

15



A

MIAE(3)  MIAE(w@) x 10
H MS H MS
637 226 171  .108
220 215 068 .08l
150 .138 066  .079
215 171 081 .084
231 .184 081 .084

AN N N AN AN AN
W~
LN DD = R
Lo W NN 3

S N N N N

Table 3: Simulation results for Model 2. Mean integratedotite errors of the slope
estimators? and the warping functions are given, for dynamic regressgtimators using
Hermite splines (H) or monotone smooth transformations)(&Swvarping functions.

ten pairs(z;, y;) is shown in Figurél2(c,d) for illustration. We generated phas of size

n = 50 and 300 replications were run.

We compared the performance of dynamic functional regoassstimators with two
different families of warping functions: Hermite splinasdasmooth monotone functions
(Ramsay and Li, 1998). We considered three knot sequenoelincreasing dimensions:
.50, (.33,.66), and(.25,.50,.75). For Hermite splines we did not penalized the rough-
ness of thew;s, but for smooth monotone functions we did, since the algoritended
to produce degenerate warping functions otherwise (the#mrg parameter was chosen
subjectively and the same value was used in all cases).¢I$@ndq;s were modeled
as cubic B-splines with nine equally spaced knots, as befoverall, we considered five
combinationsp, ¢,r): (1,1,1),(1,1,2),(2,2,2),(2,2,3),and(3, 3, 3); the model closest
to the truth is(2, 2, 2).

In addition to the mean integrated absolute errors ofbheve wanted to assess the
warping quality, so we also computedIAE(w) = E{n~'>""" | [ |w;(t) — w;(t)|dt}.
They are shown in Tablg 3. We see that the optimal mod@l & 2) as expected, and that
monotone smooth transformations generally produce snegtemation errors fop than
Hermite splines, although the latter produce smaller waygirrors, probably because the
true warping functions were also splines. Monotone smaathsformations seem to be
more robust to misspecification of the warping knots, altfiothis comes at the price of

having to select a smoothing parameter.
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) D L

) 244 293
) 223 275
) 222 .257
) .236 .238
) 220 .231
) — 232
) — 232

NN AN N S N N
~N Cﬂ:& W N =3
N O O W N R

Table 4: Lip Movement Example. Cross-validated mean ptixsti@rrors for several mod-
els of dynamic functional regression (D) and ordinary limegression (L).

4 Application: Lip Movement Data

In this section we apply the new estimation method to the datdalfait and Ramsay
(2003). As explained in the Introduction, the goal is to jecetlp acceleration (Figure
[d(b)) using lip neural activity (Figurel 1(a)). This data &rth to analyze for a number of
reasons: the curves have sharp peaks and valleys, the fixStdpie occurs very close to
the origin, there is substantial phase variability, anddtee only 29 sample curves left
after removing 3 obvious outliers. We computed dynamic amihary retrospective re-
gression estimators with different numbers of componéntg) and chose the best model
by five-fold cross-validation (see Taklé 4). The principainponents were modeled as
cubic B-splines with knots &f.05, .10, ...,.65}. As warping functions we used Hermite
splines with knotsry = (.08, .2, .4,.5), which approximately correspond to the average
location of the EMG peaks.

According to Tabld ¥4, the best dynamic regression estimiatgriven by a three-
component model and the best ordinary linear regressiomasir by a five-component
model. FiguréIl(c,d) shows the warped sample curves. Wehagelynamic regression
does a good job at synchronizing the curves. The featurestbfxplanatory and response
curves emerge very clearly. In particular, the peaks of tMé&Eurves around = .4 and
t = .5, which were barely discernible in Figure 1(a), are plainge s Figuré fL(c). These

peaks correspond to the agonistic and antagonistic aabibtie lower-lip muscle at the
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Figure 3: Lip Movement Example. (a) Response curves; (lBdfitturves obtained by
dynamic regression; (c) fitted curves obtained by ordinawgdr regression.
beginning and the end of the second ‘b’ in ‘Bob’.

Figure[3 shows the lip acceleration curfes} together with the fitted curveg); }. We
see that ordinary least squares produces a substantiatg\iih the mean prediction error
of dynamic regression is .0898 while the mean predictioaresf ordinary regression is
.1648, almost twice as large. Even though ordinary regrassses two more principal
components than dynamic regression to estimateis clear that these extra components
cannot make up for the lack of a time-warping mechanism, adihg more components
actually makes prediction worse, as Table 4 shows. So tlassituation where the data
clearly calls for a model that includes a time-warping medsia, and dynamic regression
then represents a substantial improvement over ordinaegtiregression.

InterpretingB(s, t) is harder but also interesting. To determine which feataféise 3s
are actually statistically significant, we estimated thearece ofB(s, t), v(s,t), by boot-
strap (using residual resampling). Contour plots of theréid estimators (s, ¢)I{|3(s, t)| >
2./0(s,t)} are shown in Figurél4. The dynamic regression estimator stsigwificant
features outside the diagonal, implying that lip acceleratan be predicted not only by
neural activity immediately preceding the event, but algméural activity further in the
past. For example, consider predicting the sharp decilarat they;s att = .45, which
is given byyu;(.45) + f0'45 B(s,.45){Z;(s) — pz(s) tds. In Figureld(a) we see thal(s, .45)

not only has a peak near the diagonal, which is unsurprisaéegise it corresponds to the
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Figure 4: Lip Movement Example. Contour plots of estimateges functions@(s, t) [(a)
dynamic regression estimator, (b) ordinary least squatasator].
immediately preceding neural activity, but alsosat .1 (where the valley between the
first two peaks of the;s occur), and troughs before and after that peak (where tte fir
two peaks of ther;s occur). This implies that if the first two spikes ©f (related to the
first ‘b’) are sharper than the mean, the integfd’i‘F B(s,.45){Z;(s) — pz(s)}ds will tend
to be negative and thej(.45), the deceleration of the lips at tkecondb’, will tend to
be stronger than the mean. Off-diagonal features of thenargdileast squares estimator
can also be seen in Figuré 4(b), and were also observed byiMaifd Ramsay (2003)
using a different approach to ordinary least squares (basedriangular-basis expansion
for § rather than on a tensor-product principal-component esipai), but they are harder
to interpret because they are applied to non-synchronizeas.

More information about the dynamics of the process can baebetd from the warping

functions themselves. The use of interpolating Hermitesglfacilitates this, because the
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estimated parametefs roughly correspond to the locations of the landmarksn the
respective sample curve. For our choicergf the #;s will roughly correspond to the
location of the four characteristic peaks of the EMG curvédsisd;; = 7,» — 7,1 indicates
the duration of the first ‘b’d;» = 7,3 — 742 the duration of the ‘0’, and;;s = 7,4 — 73 the
duration of the second ‘b’. The pairwise correlations of dsearep,, = —.46, p;5 = .66
and p,; = —.24, indicating that there is a significant negative correlato@tween the
duration of the first ‘b’ and the ‘0’, and a significant poséicorrelation between the
durations of the two ‘b’s. More accurate information abdwg phonemes’ duration could
be obtained by estimating the exact peak locations curveubye¢ but that would be
unfeasible for larger datasets. An advantage of Hermitieesgarping is that the-;s are

estimated automatically as a by-product of the procedure.
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