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Abstract

When conducting high-throughput biological experiments, it is often necessary to develop a 

protocol that is both inexpensive and robust. Standard approaches are either not cost-effective or 

arrive at an optimized protocol that is sensitive to experimental variations. We show here a novel 

approach that directly minimizes the cost of the protocol while ensuring the protocol is robust to 

experimental variation. Our approach uses a risk-averse conditional value-at-risk criterion in a 

robust parameter design framework. We demonstrate this approach on a polymerase chain reaction 

protocol and show that our improved protocol is less expensive than the standard protocol and 

more robust than a protocol optimized without consideration of experimental variation.
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1 Introduction

Comprehensive and coordinated experimental efforts are increasingly being used to collect 

large amounts of data to address difficult biological questions while realizing economies of 

scale to keep the cost per sample low. Typically, these large scale efforts start with a pilot 

stage during which protocols are improved and preliminary data are collected and then move 

to a production phase where fixed protocols and procedures are repeated on many samples. 

The Cancer Genome Atlas (McLendon et al. 2008) and the 1000 Genomes Project (1000 

Genomes Project Consortium 2010) are two examples of such large scale efforts. The pilot-

production stage model is not exclusive to large scale projects, and is common in research 

and development in both academic and industrial laboratories for the development of 

pharmaceutical production processes, clinical biomarker assays and next-generation 

sequencing protocols.
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In the laboratory, the most common approach to optimizing a protocol is a one-at-a-time 

design/analysis where each factor in the process is adjusted individually until a protocol that 

meets the particular needs of the experimentalist is found (Roux 2009). Though it is well 

known that one-at-a-time designs are inefficient they are still widely used. Part of the reason 

for their continued use is familiarity and simplicity to simultaneously reduce cost, minimize 

failures, and provide insights into the process being optimized. However, better 

experimental procedures are possible.

Statistical design of experiments (DOE) was pioneered for use in agricultural yield 

improvement (Yates 1935). Later, DOE methods were improved and updated for use in 

industrial manufacturing to identify and improve processes and ensure the production of 

products that are robust to environmental variations (Box and Jones 1990). In particular, 

fractional factorial and split-plot designs proved to be among the most useful experimental 

designs for manufacturing applications (Michaels 1964). As computational tools have 

matured, DOE has been used to obtain data for complex models using response function 

modeling.

Response function modeling (RFM) aims to quantitatively model a response as a function of 

control and noise factors (Wu and Hamada 2009, Ch. 11). Control factors are those that can 

be set during the production phase to optimize the system, while noise factors are hard to 

control during the production phase though they may be adjustable during pilot experiments. 

Noise factors are not easily measurable during the production phase (Wu and Hamada 2009, 

p. 576). The aim of RFM is to characterize the process and account for the response 

variation in terms of control and noise factors.

Once a quantitative model of the system has been obtained by RFM, robust parameter 

design (RPD) provides a way of choosing settings of control factors so that the influence of 

the noise factors on the response is minimized (Wu and Hamada 2009, p. 511). The 

approach we describe uses robust optimization methods to accomplish robust parameter 

design.

Robust optimization (RO) methods are useful in real-world decision environments where the 

data contain noise, where the optimal solution is difficult to implement exactly and where 

small perturbations in the optimal solution yield infeasible solutions (Ben-Tal and 

Nemirovski 2002). The uncertainty set of the original problem is reformulated using convex 

analysis to form a robust counterpart that is computationally tractable to solve, insensitive to 

small perturbations and implementable in practice. RO methods have been successfully used 

for antenna design, truss topology design, dynamic system control and linear regression 

(Ben-Tal and Nemirovski 2002; el Ghaoui et al. 1998). Recently, robust optimization has 

been combined with novel measures of risk in portfolio optimization problems (Artzner et 

al. 1999). We show that the asymmetric coherent risk measures that have been developed 

and proven useful for those applications are also useful in the protocol optimization methods 

(Rockafellar 2007).

The general aim of this study is to obtain control factor settings that minimize cost subject to 

probabilistic constraints on performance across a range of noise levels using coherent risk 
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measures in a robust optimization framework. In Section 2, we describe our three-stage 

approach of experimental design, modeling and robust optimization. Then, we demonstrate 

the method on a polymerase chain reaction protocol in Section 3. We present experimental 

design, statistical model and optimization results in Sections 3.1, 3.2, 3.3, respectively. 

Additionally, in Section 3.3, we provide independent experimental validation of our 

approach. We show that this approach results in a protocol that has minimal cost and is 

robust to process variations.

2 Approach

Our approach combines statistical response function modeling (RFM) and robust 

optimization (RO) in the context of robust parameter design (RPD) to obtain an improved 

protocol. Though we describe our approach as a sequence of steps in this paper, in practice 

one would iterate through each of the steps (Figure 1). An initial experimental design is used 

to obtain a set of factors that are used in subsequent experimental design and modeling 

iterations. The model and variation estimates are then used in a robust risk optimization 

framework to improve the protocol. The optimized operating conditions are finally checked 

by independent validation experiments.

2.1 Experiment Design

We first denote and classify the factors that influence the response in our application to 

biological protocols. Control factors, x, are controllable during the experimental phase and 

set for the production phase. Noise factors, z, are controllable during the experimental phase, 

but not during the production phase. Finally, noise factors, w, are not controllable during the 

during the experimental phase or production phase. The effect of noise factors on the 

response must be controlled by adjusting the control factors as usual in the robust parameter 

design framework.

We first ran a screening experiment focusing on main effects to eliminate potentially 

unimportant factors. We then designed a fractional factorial experiment to explore the 

response space of the subset of factors identified in a screening experiment. The fractional 

factorial design was then augmented with a center point to assess curvature in the response 

model. Finally, we designed and conducted a center-face composite arranged experiment to 

estimate quadratic effects.

We chose this staged strategy to allow for the adjustment of the experimental plan as more 

information became available from previous rounds. However, this strategy can lead to 

inefficiencies or missed significant factors. A two-level screening design may miss 

important quadratic effects that are identifiable for higher-level designs. If quadratic effects 

are anticipated a 3-level fractional factorial design or 2-level design with well chosen center 

points has more capacity to identify quadratic effects and may be better at the screening 

stage than a two-level design. It is challenging to select an optimal strategy on a fixed 

experimental budget when uncertainty is high at the outset. We present the approach we 

used with the understanding that as with all experimental strategies a more efficient 

experimental strategy may have been employed in hindsight.
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2.2 Model Fitting

We used a mixed effects model to estimate the factor effects and variance components in 

order to understand the protocol as a system and to predict its behavior under novel 

conditions. In a model of the form,

(1)

β terms were modeled as fixed effects and {u, e}, were modeled as random effects 

(Robinson 1991). Modeling u and e as random effects essentially means that we will be 

interested in estimating the variance parameters associated with these random variables. The 

variable w is an indicator variable for the noise factor. We fit a model with all main and 

interaction effects among the fixed effects and identified outlying and influential 

observations using measures based on the residuals, prediction matrix, volume of the 

confidence ellipsoid and influence function (Chatterjee and Hadi 1986). We are primarily 

interested in eliminating data due to various forms of execution error; situations caused by a 

discrepancy between what the experimental arrangement called for and what was actually 

done (Anscombe and Guttman 1960). Replications in the experimental design aid greatly in 

identifying such non-reproducible observations. We refit the complete model to the non-

outlying data and selected a parsimonious model by dropping model terms with insignificant 

regression coefficient t-statistics until the Bayesian Information Criterion (BIC) of the 

reduced model increased (Schwarz 1978; Hansen and Yu 2001). Having fit a parsimonious 

model for the fixed effects, we dropped random effects terms from the model that have a 

standard deviation that is not significantly greater than zero (Gelman 2005). The model was 

considered adequate for use in an optimization program when the estimated variance of the 

response is at least three-fold greater than the variance of the residual error (Box et al. 

2005). We checked the quality of the model fit by leave-one-out cross validation.

In addition to using REML to fit the model, we also used a Bayesian approach to combine 

the model selection and parameter estimation step. The details of that analysis are provided 

in Supplementary Section 2. We found that the model form and coefficients generally agree 

with the REML estimates and we carry the REML estimates forward in this analysis.

2.3 Robust Optimization

Our aim is to produce a protocol that, when implemented, is inexpensive and robust to 

experimental variations. We use a convex risk optimization framework to select a setting of 

control factors such that the per reaction cost of the protocol is minimized while providing 

for a margin of safety against failure due to experimental variation. We cast the problem as 

one of minimizing cost subject to a lower-bound constraint on the protocol performance,

(2)
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where g0(x) = cT x is the per reaction cost of the protocol with cost vector c and factor levels 

vector x ∈ . The constraint g(x, z, w, e) ≥ t ensures that the protocol performance, as 

predicted by the model, is at least as high as some threshold t. We have a stochastic 

optimization problem because g(x, z, w, e) is random due to the randomness in the noise 

factors z, w, and e.

Several classical approaches to dealing with the randomness in the constraint include: 

“guessing the future” “worst-case analysis” “relying on expectations” “standard deviation 

units as safety margins” and “probability of compliance.” In “guessing the future” values for 

z, w, and e are simply set and the problem is then treated as a deterministic one. For “worst-

case analysis” the minimal value of g(x, z, w, e) across z, w, and e is used for each x.

In order to compare these approaches for handling uncertainty in the optimization problem 

we use the concept of coherency of a risk measure. Consider risk measure (R) : ℒ2 ↦ (−∞, 

∞] that is a functional of a random variable that quantifies the risk of loss. Such functionals 

that satisfy convexity, monotonicity, closedness and positive homogeneity axioms (Artzner 

et al. 1999) are considered coherent measures of risk in the basic sense and have been shown 

to (1) preserve convexity of the deterministic function, (2) preserve certainty and (3) be 

scale insensitive (Rockafellar 2007). Without coherency, we may loose the convexity of the 

original problem, or we may be left with a solution that is exceedingly fragile to small 

perturbations. The risk measures induced by all of the classical approaches fail one or more 

of these axioms.

Another potential solution that has been used for similar problems is to swap the constraint 

and objective in (2) and pose a larger-the-better optimization problem. In the larger-the-

better robust design framework, one maximizes E[g(x, z, w, e)2] over x such that the cost 

g0(x) < t for some threshold t. Here we must have some idea of what an acceptable cost is 

for the protocol, which may not be available. But more importantly, recasting the objective 

in this way combines the expected value of the response and the variance of the response 

into one functional and thus only exerts indirect control over the worst-case events. In our 

original problem, we are not interested in a better response beyond a certain threshold. 

Instead, we are interested in ensuring that the response exceeds the threshold with high 

probability. Recasting the problem as a larger-the-better optimization may solve that 

objective, but only indirectly.

Instead of these classical approaches, we employ the conditional value-at-risk (CVaR) 

functional because it is coherent and it solves the original problem statement directly 

(Rockafellar 2007). The definition of CVaR is

(3)

where γ is dummy variable for integration and g̱(x) ≜ g(x, z, w, e) to simplify notation. We 

see that CVaR at level α measures the expected value of g̱(x) in the α-tail.
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By ensuring that the CVaR exceeds some threshold t, we ensure that with high probability 1 

− α the response will be at least t. Indeed, we guarantee that the expected value in the α-tail 

is a least t. Our CVaR definition (3) differs slightly from the one provided by Rockafellar 

(2007) because theirs was constructed to ensure loss in a portfolio does not go above a 

certain threshold whereas ours ensures the yield of the protocol does not go below a certain 

threshold.

In some applications it is more useful, for interpretation purposes, to consider the value-at-

risk (VaR) or α-quantile functional, and we use that measure as well because of its intuitive 

accessibility. VaR is the percentile constraint functional common in stochastic optimizatio

(4)

Figure 2 shows a simplified diagram of the constraint ḡ(x) ≥ t where the cumulative 

distribution function Fg̱(x)(z) for a Normal(0,1) random variable is shown with level α. The 

value-at-risk constraint VaRα[g̱(x)] in (4) is the α–percentile of the distribution. The 

conditional value-at-risk constraint CVaRα[g̱(x)] in (3) is the expected value of the lower α-

tail of the distribution. Requiring that CVaRα[g̱(x)] ≥ t is more conservative than VaRα[g̱(x)] 

≥ t because the conditional value-at-risk considers where the mass of the distribution lies 

along s in the tail while the value-at-risk criterion only considers that there is α mass in the 

tail without regard to where it lies along s.

The general robust counterpart to (2) is then

(5)

In other applications of this methodology it may be useful to endow a noise variable with a 

prior and form the marginal cumulative distribution function Fg̱(x). Samples may be obtained 

from Fg̱(x) and the sample mean in the α-tail of the empirical cumulative distribution 

function may be used as an approximation of the true distribution. This approach was used 

by Palmquist et al. (1999) in their analysis of stock market returns from simulation data.

In special cases, such as if a noise variable enters as a linear term in g̱(x) and has a Gaussian 

distribution, we may write Fg̱(x) analytically. A simple example of the closed-form solution 

can be constructed by considering the model g(x, z, e) = 1 − 0.2x − 0.5xz + e where z ~ (0, 

1) and e ~  (0, 1) are independent. Then we have g̱(x) ~  (1 − 0.2x, 0.25x2 + 1). We can 

write the CVaR risk function as  where Φ(·) is the 

standard normal cdf.
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3 Polymerase Chain Reaction Protocol

Polymerase chain reaction (PCR) is a common and indispensable molecular biology 

technique used to amplify the total number of molecules of a fragment of DNA (Mullis and 

Faloona 1987; Schochetman et al. 1988) and verify that a sequence of interest is present in a 

DNA sample. Thus, our objective is to minimize the per reaction cost while maintaining an 

adequate yield so the PCR product band is clearly visible on an agarose gel. The process 

with control and noise factors identified is shown in Figure 3.

Taq DNA polymerase, an enzyme that is able to duplicate a single strand of DNA, is made 

to operate repeatedly yielding a geometric increase in the number of copies of the original 

DNA molecule. The Taq polymerase is combined with other components: MgCl, dNTPs, 

oligonucleotide primers and template DNA. The temperature of this mixture is cycled from 

95°C to 55°C to 72°C and a new copy of the template DNA is synthesized for each original 

molecule.

The difference between the volume of the constituent ingredients and the total volume is 

made up with sterile water. The amount of water varies with the total volume of the other 

components but is always greater than 50% of the total volume. Because water serves as a 

slack variable, the level of a control factor does not need to be adjusted to compensate for an 

increase or decrease in another control factor in the mixture.

The amplified DNA product is visualized by running the product through an agarose gel by 

electrophoresis. This separates the DNA on the basis of size since longer fragments move 

more slowly through the gelatin matrix. The DNA is then stained by immersing the gel in a 

water bath containing ethidium bromide which intercalates in the DNA polymer and 

fluoresces at UV wavelengths.

The agarose gel is scanned by a laser and the intensity of each pixel in the band region of 

interest (ROI) is measured as a 16-bit integer. The background intensity (BG) of a ROI is the 

median intensity of pixels on the border of the ROI. The signal-to-noise ratio (SNR) is the 

ratio of the average intensity in the ROI to the median background intensity for all of the 

ROIs on the gel image. This SNR could also be considered a contrast ratio,

(6)

where ROI is the set of pixels in the region of interest, q is a pixel intensity, and BG is a 

vector of background intensities near the ROI on the gel.

We divide the experimental noise factors into two groups: those associated with the template 

DNA, z, and those associated with the experimental batch and gel staining w. Template 

length and template concentration can be controlled during the experimentation phase, but 

are not during the production phase. Biological replicates, which are completely independent 

experiments, are captured in the factor, w2. Technical replicate, which are splits within a 

biological replicate, are captured in w1. Multiple runs are stained together in ethidium 

bromide on a single gel slab and the staining batch is captured in the noise factor w3.
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A master mix cocktail contains all the PCR reaction components except the DNA template. 

The total cost of the master mix can be divided into fixed and variable costs. Buffer and 

MgCl2 are supplied with Taq, so they are considered fixed costs. Primers could be 

considered either a variable or fixed cost because they are usually supplied in ample quantity 

to perform many reactions. We consider it a variable cost here. The component costs of a 

standard 50µL reaction are shown in Table 2. Taq DNA polymerase is by far the most 

expensive component, and we expect an improved protocol will minimize the amount of 

Taq required.

3.1 Experiment Design

Our experiment design used three stages: First, a screening experiment was conducted to 

identify important factors affecting PCR yield. Then a fractional factorial experiment of 

higher resolution was conducted to fit a response surface. Finally, validation experiments 

were conducted at the optimized control factor levels to verify that the yield was sufficient 

to visualize on a gel with high confidence.

For the screening experiment, we designed a  fractional factorial arrangement to identify 

factors listed in Table 1 having a significant effect on yield. Figure 4 shows a least squares 

regression analysis of two replicates of the arrangement. Figure 4A shows the fitted values 

and the observed values indicating that there is significant variation due to the control 

factors and a much lower intra-run variation - the experiments are reproducible. Model 

coefficients (shown in Figure 4B) indicate that the factors x1, x3, x4, and z1 have a significant 

effect on the response. Though the dNTP concentration, x2, did not have a statistically 

significant effect, the main effect is aliased with the M × P and T × L interaction effects 

which we believe may be significant due to prior experience working with this system 

(Roux 2009). We include these two interaction effects in the next experimental stage to 

obtain more data on them. Figure 4C and Figure 4D show that the quality of the fit is 

sufficient for this stage of the experimental plan and we move to the next stage of 

experimentation with these factors.

To collect data for fitting a response surface model, we designed a  fractional 

factorial arrangement. This notation indicates that we used a basic  arrangement and 

augmented that with 2 center points at each of the levels of the template length noise factor, 

L. Upon initial examination of the data, we identified a peak in the PCR yield around the 

center point for the MgCl2 factor, so a center-face composite design was conducted to 

augment the  fractional factorial design data. The center-face composite design (runs 

19–34) fixes levels of all factors but one of the master mix components to the average of the 

high and low levels in the fractional factorial design. These 16 runs are divided into 8 runs 

with the long template and 8 runs with the short template. Within each subdivision, there are 

4 pairs of experiments where one of the 4 master mix components is set to the high and low 

levels and the remaining components are set to the center value.

The experiment was conducted by setting up the reaction mixture runs prescribed by the 

arrangement, then the reaction was split in half for technical replication. Each technical 
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replicate was assayed on separate agarose gels for each of the three experimental block 

replicates. The noise factors (experiment, run, stain) were recorded and entered into the 

statistical model to estimate the variance components of the random effects.

Figure 5 shows the PCR yield results on the agarose gels and the quantified yield for the 

second stage experiment. Figure 5A shows the yield of the PCR reaction on an agarose gel. 

Runs 1–18 comprise the fractional factorial part of the design with two center points at the 

extreme template lengths and runs 19–36 comprise the center-face composite design. The 

fractional factorial design has two technical replicates nested within three biological 

replicates for each run. The center-face composite design also has two technical replicates, 

but only one biological replicate.

Intensity measurements shown in Figure 5A are converted to SNR values in Figure 5B 

according to (6). Due to the replication structure, the fractional factorial runs each have six 

data points and the center-face composite runs each have 2 data points. A signal-to-noise 

ratio of six or greater (denoted by the horizontal dashed line) is clearly visible on the gel. 

The majority of factor combinations are consistently visible, while some reactions mixtures 

produce little if any product. Outliers are labeled as filled circles.

Figure 5C shows the fractional factorial experimental arrangement. The fractional factorial 

design is shown in the left matrix (runs 1–18) and the center-face composite design is shown 

in the right matrix (runs 19–36). The runs for each design are shown in the same sequence 

on the gel lanes in 5A.

The gel staining effect is clearly visible and is significant in the statistical model. The 

experimental block replicates are reproducible in general though some runs have specific 

reaction yields that are distant from the average. Our arrangement identifies factor 

combinations that consistently fail to achieve a threshold for visibility on the gel as well as 

combinations that consistently succeed.

The estimated main effect of each of the control factors is shown in Figure 6. The low level 

for MgCl2 produces very little yield and the medium and high levels produce approximately 

equal yield. Furthermore, for all levels of MgCl2, the reaction produces higher yield for the 

1000bp template length compared to the 3000bp length. A similar pattern is observed for the 

other control factors. To more fully understand the interdependencies amongst the control 

factors, we turn to fitting a response surface model. If our objective were to simply obtain a 

robust reaction mixture it would be sufficient to select a factor setting from the runs and stop 

here. However, since we aim to achieve an inexpensive robust mixture, we use this data to 

estimate a model for the yield and then optimize over the cost.

3.2 Statistical Model

To construct a statistical model for the protocol, we followed the procedure outlined in 

Section 2.2. Briey, we fit a full model with all main effects for the control factors, x, and 

noise factors, z; pairwise interactions among the control factors; pairwise interactions 

between the control factors and noise factors, z; and quadratic effects for the control factors. 

Then we subjected that full model to several tests for influential observations and removed 
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those identified data points. Third, we identified a parsimonious model by stepwise model 

selection and a Bayesian model selection method. We applied these two independent model 

selection procedures and identified the same model structure giving us confidence that the 

model identified is not particular to one model selection procedure. Finally, we checked the 

fit of the parsimonious model to the data by leave-one-out cross validation.

The full mixed effects model (1) was fit by maximum likelihood with the control and noise 

factors, z, were entered as fixed effects. The effects u3, u2, and u1 associated with staining 

(w3), biological replicate (w2) and technical replicate (w1) were entered as random effects 

because we are interested in the variance components associated with these factors. Again, 

w1, w2 and w3 are indicator variables. The technical replicate is nested within the biological 

replicate in the experimental arrangement and entered into the mixed effects model as such.

Outliers were identified by a variety of methods. Chatterjee and Hadi (1986) review 11 

influence measures that can be broadly categorized into five groups: residual-based 

measures, prediction matrix-based measures, confidence ellipsoid-based measures, influence 

function-based measures, and partial influence-based measures. We computed these 

influence measures with a significance cutoff of α = 0.001 where necessary. Figure 7 shows 

the standardized and studentized residuals for the data set used to estimate the model. We 

called an outlier if it was identified in two or more of four categories: residual, prediction 

matrix, confidence ellipsoid volume, influence function. The results for all of the individual 

influence tests are shown in Supplementary Section 2.3. In total, six data points out of 144 

measurements were called outliers (shown as filled circles in Figure 5).

After removing outliers, we selected a parsimonious model by minimizing BIC for fixed 

effects and eliminating random effects with near zero standard deviation. The final model 

for the PCR protocol was fit by restricted maximum likelihood (REML). The estimated 

fixed effects, β̂ are shown in Figure 8A. The coefficients indicate that increasing MgCl2 (x1) 

or Taq (x3) increases yield and longer templates yield less product holding other factors 

constant. The main effect of MgCl2 is the largest, consistent with anecdotal evidence, and 

has a maximum for the response due to the quadratic term. One might expect that increasing 

the amount of the raw material for DNA, dNTPs (x2), would increase yield. So the 

observation that increasing dNTP concentration decreases yield is initially surprising. 

However, it has been shown that dNTP chelates MgCl2 and actually decreases the yield by 

decreasing the amount of available MgCl2 which in turn has a large main effect (Henegariu 

et al. 1997). The eight significant interaction terms illustrate interdependence of the factors 

in a biochemical reaction. The effect of the interaction terms are illustrated by the curvature 

of the contours in the pairwise marginal plots of the response in Figure 8B. Each plot is a 

marginal of fixed effect factors shown in the corresponding row and column. In particular, a 

rapid decline in the yield is evident as MgCl2 decreases, but the yield is relatively 

unchanged for a wide range of Taq and primer concentrations holding the other factors 

fixed.

The random effects u1 and u3 were retained in the final model, and their standard deviations 

were estimated to be 0.42 and 0.26 respectively. The cause of the u1 effect is likely due to 

pipetting variation; a multichannel pipettor was used to split the reaction material for the 
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technical replicate as well as to load the agarose gel. The significance of this effect 

illustrates the importance of recording as much of the experimental process and using 

statistical analysis to interpret which effects to disregard or retain in the model.

To check the fit of the model, we performed a leave-one-out cross-validation. That 

procedure gives a root mean squared prediction error of 0.96, which compares favorably to 

the total random effect standard deviation of 0.76 obtained by summing the variances due to 

random effects and the residual variance.

3.3 Optimization Problem

The protocol was optimized using the value-at-risk criterion and the conditional value-at-

risk criterion. We compare the solutions under these formulations to solutions without 

margin-of-safety constraints and the standard protocol.

When optimizing the master mix, we are uncertain as to the particular value of the template 

length factor, z1. A conservative approach is to choose values of the control factors such that 

the yield is great enough in the worst case over template length. So, we require that the 

protocol yield enough product for all values of template length, z1 with high probability. 

This allows us to minimize (1) over z1 and eliminate z1 from the optimization problem.

Recall that our model of the process is quadratic in x and z. Ignoring the random variables u 

and e for now, we can write the process model as

(7)

where we have recast the fixed effects terms in (1) to a standard optimization form by 

partitioning β̂ into {A, B1, B2, C11, C12, C22}. Since the model does not have a quadratic 

effect for template length (C22 = 0), the objective function involving z is affine. The 

optimization over z is then solvable by linear programming (see Supplementary Section 2.1). 

Furthermore, since C11 ≼ 0, the model is a concave function of the decision variables, x.

Now, reintroducing the random variables for u and e, the process model is

(8)

Where

Flaherty and Davis Page 11

Technometrics. Author manuscript; available in PMC 2016 July 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and  models the variation in the measured yield on the agarose gel. 

Recall, the variance terms  and  correspond to the technical replicate w1 and stain batch 

w3. The estimates of the variance components are σ̂
1 = 0.26, σ3̂ = 0.42, and σ̂

e = 0.58.

We use (8) in the robust optimization framework (5) to solve for robust parameters x for the 

process. A margin-of-safety level α = 10−3 was used for both the value-at-risk criterion (4) 

and the conditional value-at-risk criterion (3). We obtained the deterministic form of the 

optimization problem to compare these robust solutions to a process optimized without 

robust constraints.

A comparison of the optimal solutions is shown in Figure 9. A table of the robust and non-

robust parameters is shown in Figure 9A. All of the optimized solutions contain more 

MgCl2, less dNTPs, and less Taq than the standard formulation. The primer concentration is 

greater in the two RO formulations. The standard formulation is most expensive at $0.86 per 

50µl reaction and the deterministic solution is least expensive at $0.62. The RO solutions are 

in between those extremes with the more conservative CVaR solution costing more than the 

VaR formulation. However, the per reaction cost reduction comes at the price of limited 

robustness to experimental variations. The deterministic reaction is expected to fail to meet 

the yield requirement 50% of the time for a 3kb template (Figure 9B). Considering a 

geometric rate of success for repeated reactions, the long term cost per reaction is $0.8998, 

$1.242, $0.6783 and $0.7885 for the standard, deterministic, VaR and CVaR formulations 

respectively. The apparent cost savings of the deterministic formulation are illusory due to 

the fragility of the solution to experimental variation.

Figure 9C shows a sensitivity analysis varying each control factor one-at-a-time around the 

CVaR solution point. The sensitivity analysis is shown for two settings of the template 

length (z1) for the short (1kb, solid line) and long (3kb, dashed line) template with ±1s.d. 

intervals (light and dark gray respectively). The solution is insensitive to large scale 

variations in any one component. Figure 9D shows an independent experimental validation 

of the four optimization solutions at a 1kb and 3kb template length. The PCR yield was 

measured at each of the four optimized solutions for two template length levels with two 

replicates for a total of 16 validation experiments. The deterministic reaction failed two out 

of two times for the long template length while the standard, VaR and CVaR formulations 

worked in all trials (the measured value is greater than the detection threshold shown as a 

dotted line). To ensure the formulation was not particular to the specific genomic region 

amplified, we selected a different 3kb region in the genome for validation. These 
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observations are consistent with our model-based expectation that the naive optimization of 

the biological protocol without a margin of safety can lead to overly optimistic solutions that 

fail when implemented in practice.

4 Discussion

Improving high throughput biological protocols requires attention to both the cost and the 

fragility of the final protocol. By exploring the factor space efficiently with a designed 

experiment, modeling the systems accurately and exploiting that understanding using robust 

optimization methods, we are able to optimize the protocol and ensure a margin-of-safety 

against failure of the protocol.

While we have focused on product yield, other applications may have constraints on fidelity 

and specificity of the product. The gel image in Figure 5A shows some product bands are 

more smeared than others which may indicate less specific amplification. By modeling each 

response of interest and incorporating constraints on those in the optimization program, we 

can obtain a robust solution that accounts for multiple response factors.

In this paper, we fixed the parameters of the model in the optimization problem. A full 

Bayesian procedure would incorporate parameter uncertainty through estimated distributions 

for the coefficients and would likely give better estimates of the variation in the predicted 

response distribution. In future work we aim to address the issue of incorporating parameter 

uncertainty in the risk optimization framework in a way that preserves the computational 

tractability of the RO program.

We considered the worst case PCR yield over template length in a bounded interval in (7). 

An alternative approach would be to incorporate the distribution over z in response variation 

in the CVaR risk functional. The outcome of the optimization would give us a statement 

about the confidence on the PCR yield over random variation due to noise factors as well as 

template length. However, in a typical use case, the experimentalist knows the template 

length before doing the PCR. Indeed, primer sequences were designed specifically to ank the 

template sequence. In contrast, staining effect u3 and the other noise factors are not even 

measurable prior to the PCR experiment. So we found it more practical to consider the worst 

case over z and incorporate the other noise effects into the CVaR risk framework.

We have assumed a Gaussian distribution for the model error term, but the RO program 

provides a flexible framework to incorporate any error distribution including empirical 

distributions obtained from simulation or experimental data. In the Gaussian case, the CVaR 

constraint reduces to a margin-of-safety based on standard deviations which is in general not 

coherent, so we have described our approach using the general case so that it can be used 

more broadly in applications.

We have used the DOE data to empirically model the protocol as a process and predict the 

outcome of different factor settings in order to optimize the protocol. This approach has 

additionally pointed towards the underlying biological mechanisms of the enzymatic action 

of Taq polymerase. Specifically, we observed that increasing dNTP concentration decreased 

the yield due to MgCl2 chelation. We expect that this systematic empirical modeling 
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approach will generally inform valuable directions for research into the underlying 

mechanistic causes of surprising observations.

As the unit cost of translational medicine assays (medical assays that make use of basic 

genetic research to optimize patient care) continue to decline, it is becoming feasible to 

collect more data on more patients. A robust protocol is necessary to ensure reproducible 

results and consistent data collection. A margin-of-safety against failure is provided for in 

the production protocol by optimizing the protocol for both cost-efficiency and obustness 

using the DOE-RO method.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

ACKNOWLEDGEMENTS

This work was supported by National Institutes of Health [T32 CA1211940 to P.F., P01 HG000205 to P.F. and 
R.W.D.]. We would like to thank Joe Horecka and Angela Chu for the generous donation of the yeast strain 
JHY222, primer sequences to amplify genomic loci and experimental advice. The authors are grateful to the Editor, 
the Associate Editor, and referee for their helpful comments that led to substantial improvements to this article. The 
authors thank Sarah Moore, Nancy Zhang, and Janine Mok for their careful reading and helpful comments on early 
versions of this manuscript.

References

1. 1000 Genomes Project Consortium. A map of human genome variation from population-scale 
sequencing. Nature. 2010; 467:1061–1073. [PubMed: 20981092] 

2. Anscombe FJ, Guttman I. Rejection of Outliers. Technometrics. 1960; 2:123–147.

3. Artzner P, Delbaen F, Eber JM. Coherent measures of risk. Mathematical Finance. 1999; 9:203–
228.

4. Ben-Tal A, Nemirovski A. Robust optimization–methodology and applications. Mathematical 
Programming. 2002; 92:453–480.

5. Box G, Jones S. Designing Products That Are Robust to the Environment. Tech. rep. 1990

6. Box, GE.; Hunter, JS.; Hunter, W. Statistics for Experimenters: Design, Innovation, and Discovery. 
2nd ed.. Wiley-Interscience; 2005. 

7. Chatterjee S, Hadi AS. Inuential observations, high leverage points, and outliers in linear regression. 
Statistical Science. 1986; 1:379–393.

8. el Ghaoui L, Oustry F, Lebret H. Robust solutions to uncertain semidefinite programs. SIAM 
journal of optimization. 1998; 9:33–52.

9. Gelman A. Analysis of variance: why it is more important than ever. The annals of statistics. 2005; 
33:1–31.

10. Hansen MH, Ya B. Model selection and the principle of minimum description length. Journal of 
the American Statistical Association. 2001; 96:746–774.

11. Henegariu O, Heerema NA, Dlouhy SR, Vance GH, Vogt PH. Biotechniques. Tech. rep. 1997 
UNITED STATES. 

12. McLendon R, Friedman A, Bigner D, Van Meir EG, Brat DJ, et al. Comprehensive genomic 
characterization defines human glioblastoma genes and core pathways. Nature. 2008; 455:1061–
1068. [PubMed: 18772890] 

13. Michaels SE. The usefulness of experimental designs. Applied Statistics. 1964; 13:221–235.

14. Mullis KB, Faloona FA. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain 
reaction. Methods in enzymology. 1987; 155:335–350. [PubMed: 3431465] 

Flaherty and Davis Page 14

Technometrics. Author manuscript; available in PMC 2016 July 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



15. Palmquist J, Uryasev S, Krokhmal P. Portfolio Optimization with Conditional Value-at-risk 
Objective and Constraints. Tech. Rep. 1999:99–14.

16. Robinson GK. That BLUP is a good thing: The estimation of random effects. Statistical Science. 
1991; 6:15–32.

17. Rockafellar RT. Coherent approaches to risk in optimization under uncertainty. Tutorials in 
operations research: OR tools and applications: glimpses of future technologies. 2007

18. Roux KH. Optimization and Troubleshooting in PCR. Cold Spring Harbor Protocols. 2009:1–7.

19. Schochetman G, Ou C, Jones W. Polymerase chain reaction. The Journal of infectious diseases. 
1988; 158:1154–1157. [PubMed: 2461996] 

20. Schwarz G. Estimating the dimension of a model. The annals of statistics. 1978; 6:461–464.

21. Wu, CFJ.; Hamada, MS. Experiments: Planning, Analysis, and Optimization (Wiley Series in 
Probability and Statistics). 2nd ed.. Wiley; 2009. 

22. Yates F. Complex experiments. Supplement to the Journal of the Royal Statistical Society. 1935; 
2:181–247.

Flaherty and Davis Page 15

Technometrics. Author manuscript; available in PMC 2016 July 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
The DOE-RO approach to robust parameter design.

Flaherty and Davis Page 16

Technometrics. Author manuscript; available in PMC 2016 July 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Comparison of Conditional Value-at-Risk and Value-at-Risk probabilistic constraints. VaRα 

is the α-percentile of the distribution and CVaRα is the expected value of the α-tail of the 

distribution.
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Figure 3. 
PCR Process Flow
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Figure 4. 
Screening experiment model fit. (A) Observed and estimated outcomes for an 8 run 

screening design. (B) Coefficients for main effects model. (C) Normal Q-Q showing error 

distribution. (D) Fitted vs Measured SNR for screening experiment data.
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Figure 5. 
Response surface experimental design and measurements. (A) Agarose gel band intensities 

measure the amount of PCR product for each experimental run. Runs 1–18 each have 2 

technical replicates nested in 3 biological replicates and runs 19–36 each have 2 technical 

replicates. The blocking structure for the gel staining step (A–D) is shown to the right of the 

gel image. (B) Intensity values are normalized and quantified by signal-to-noise ratio (SNR) 

for the 36 runs. (C) Experimental design for the response surface model.
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Figure 6. 
Control factor main effects by template length. Yield as measured by SNR is higher across 

all factor levels for shorter (1000bp) template length.
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Figure 7. 
Residual-based influence measures to identify outliers. The line indicates a outlier threshold 

for the particular measure. Only six points are called outliers out of a sample size of 144.
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Figure 8. 
Response surface model coefficients and predictions for control factors x and noise factors z. 

(A) Coefficients for the linear model with quadratic and two-way interactions. (B) Model 

yield isoclines show that yield is sensitive to some combinations of factors changes and 

robust to other factors.
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Figure 9. 
Robust optimization solutions and validation experiments. (A) Optimal levels of the PCR 

master mix components for deterministic, VaR and CVaR optimization strategies compared 

to the standard manufacturer’s recommended solution. (B) Probability distribution functions 

for the predicted response for the four master mix solutions. The minimum yield that is 

visible on an agarose gel is shown as a dashed vertical line. (C) Sensitivity analysis of the 

yield to large variations in each master mix factor for short and long template length 

scenarios. (D) Predicted response and independent validation experimental data shows that 

the model fit is accurate and the deterministic optimization solution has a high failure rate 

for longer template length.
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Table 1

Experimental factor levels

Factors Low High Coding

M: MgCl2(mM) 1 3 x1 = (M − 2)

N: dNTP (mM) 0.1 0.3 x2 = (N − 0.2)/0.1

T: Taq (U/µL) 0.015 0.025 x3 = (T − 0.02)/0.005

P: Primer (each µM) 0.1 0.5 x4 = (P − 0.3)/0.2

L: Template length (bp) 1000 3000 z1 = (L − 2000)/1000

C: Template concentration (ng/µL) 0.1 10 z2 = log10(C)
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