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Abstract

With the rapid development of nano-technology, a “colorimetric sensor array” (CSA) which is 

referred to as an optical electronic nose has been developed for the identification of toxicants. 

Unlike traditional sensors which rely on a single chemical interaction, CSA can measure multiple 

chemical interactions by using chemo-responsive dyes. The color changes of the chemo-

responsive dyes are recorded before and after exposure to toxicants and serve as a template for 

classification. The color changes are digitalized in the form of a matrix with rows representing dye 

effects and columns representing the spectrum of colors. Thus, matrix-classification methods are 

highly desirable. In this article, we develop a novel classification method, matrix discriminant 

analysis (MDA), which is a generalization of linear discriminant analysis (LDA) for the data in 

matrix form. By incorporating the intrinsic matrix-structure of the data in discriminant analysis, 

the proposed method can improve CSA’s sensitivity and more importantly, specificity. A 

penalized MDA method, PMDA, is also introduced to further incorporate sparsity structure in 

discriminant function. Numerical studies suggest that the proposed MDA and PMDA methods 

outperform LDA and other competing discriminant methods for matrix predictors. The asymptotic 

consistency of MDA is also established. R code and data are available online as supplementary 

material.
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1. Introduction

The development and refinement of sensors for a rapid identification of volatile chemical 

toxicants (VCTs) is very important. Integrated into a security system, a sensor can be used to 

automatically trigger an instantaneous response, such as shutting down and isolating 
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ventilation systems when there is an accidental release of VCTs. A powerful sensor is 

crucial to curtail the spread of chemical spills and to limit the areas of contamination.

The traditional sensor systems that have been widely used in detecting VCTs are vapor 

sensors. Vapor sensors rely either on absorption into a set of polymers or on oxidations at 

heated metal oxides. While such systems generally allow for discriminating VCTs in 

different chemical classes, the discrimination of similar VCTs within one chemical class 

remains a challenging goal. To surmount the challenge, a low cost yet highly sensitive 

sensor called “colorimetric sensor array” (CSA) has been developed (Suslick et al. 2007, 

Lim et al. 2008 and Feng et al. 2010). Analogous to the mammalian olfaction system, which 

recognizes smells by the composite electronic signals generated by different epithelium 

olfactory cells in response to the smells, CSA uses large amount of chemical dyes to turn a 

smell into optical composite signals. Thus, CSA sensor is also referred to as “optical 

electronic nose”. As shown in Figure 1A, CSA is simply a digitally-imaged, two-

dimensional extension of litmus paper (Rakow and Suslick 2000; Rakow et al. 2005; Zhang 

and Suslick 2005). Thirty six chemo-responsive dyes are randomly assigned to 36 spots 

scattered as a 6 × 6 array on a chip. The 36 dyes can measure multiple chemical interactions, 

e.g., ligand-metal coordination, Lewis acid-base interactions, and strong dipolar interactions. 

For any odorant, a response is generated by digital subtraction, pixel by pixel, of the color of 

36 pre-print chemo-responsive dyes before and after exposure: red value after exposure 

(Rafter) minus red value before (Rbefore), green minus green, blue minus blue. Averaging the 

centers of the spots (~ 300 pixels) for each dye, the result is simply a 36×3 matrix, where 

each row represents the color change of a dye and each column represents one of the three 

spectrum coordinates (Red, Green, Blue) of a color cube. As shown in Figure 1B, the matrix 

is a color fingerprint of a VCT and can be used to classify VCTs. By measuring a much 

broader range of chemical interactions, CSA provides dramatic improvements over 

traditional sensor systems in both sensitivity and, even more importantly, specificity in 

VCTs detection.

The simplest and most popular classification approach is linear discriminant analysis (LDA). 

Classical LDA, introduced in Fisher (1936), can be formulated in the following way. Given 

a training sample, Fisher’s LDA aims to find linear combinations of all predictors that 

maximize the ratio of between-class variance to within-class variance; see Anderson (2003) 

for a review of Fisher’s LDA. It has been shown that the performance of Fisher’s LDA and 

its variants is comparable to that of many advanced classification methods in a variety of 

settings; see chapter 4 of Hastie, Tibshirani, and Friedman (2009) for a review. Though 

LDA has succeeded in many real applications, it is not directly applicable to analyze our 

CSA data due to the following two challenges. First, applying LDA to CSA data requires 

stacking a 36 × 3 matrix to form a 108 dimensional vector, which renders Fisher’s LDA 

inapplicable for small (say ≤ 100) sample application. Moreover, the rows and columns of 

CSA output have different interpretations and should be treated differently in classification 

analysis. Second, for some VCTs, only a small number of dyes are discriminant relevant 

dyes. See Figure 1C. Thus, using all dyes in classification models, like LDA, may bring in 

noise and result in high misclassification errors.
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To overcome the first challenge, we propose a matrix discriminant analysis method (MDA), 

in which we project the 36 × 3 matrix into row (dye) space and column (color) space 

separately. The two projections are estimated iteratively and integrated together for 

classification. Thus, rows and columns of the data are treated differently. By retaining the 

matrix structure of the data, MDA provides natural interpretations of the discriminant 

directions and alleviates the curse of dimensionality. To surmount the second challenge and 

improve MDA’s classification specificity, we impose a sparsity structure on dyes by 

developing a penalized MDA (PMDA). PMDA reduces not only the number of parameters 

in the discriminant analysis but also misclassification errors in many applications. More 

importantly, it provides further insight on which dyes are discriminant relevant for certain 

VCTs, and can serve as a guidance for designing the next-generation CSA.

It is worth noting that 2D classification methods have been developed in the image 

processing community. The primary usage of these methods is the classification of 2D 

images where the 2D refers to the two pixel coordinates. The 2D-LDA that was proposed in 

Li and Yuan (2005) is one of the popular works in the 2D classification literature. To use the 

matrix structure, 2D-LDA seeks d linear discriminant directions that can maximize the trace 

of the between-group variation over the trace of the within-group variance. Though 2D-LDA 

incorporates the matrix structure into the estimation of the discriminant directions, as 

pointed out by Zheng et al. (2008), 2D-LDA ignores the between-row correlations in the 

matrix observations. Ignoring between-row correlations leads to substantially higher 

misclassification errors than Fisher’s LDA, when the rows are correlated (Zheng et al. 

2008). In our CSA data, some of the chemical responsive dyes have similar chemical 

structures, such as the PH indicators that respond to Brønsted acidity/basicity. Thus, the 

rows of the CSA observations are correlated with each other which renders the 2D-LDA 

approach inapplicable. Moreover, similar to many other 2D-discriminant methods developed 

in the image processing community, 2D-LDA assumes that results produced by using the 

original images and the rotated images are the same. This assumption is referred to as the the 

rotation-invariant property (section 3.7.2 in Gonzales and Woods 2002). This rotation-

invariant property does not hold for our CSA data, in which rows represent the chemical 

responsive dyes and columns represent the spectral components on the color space. Thus, we 

need a 2D classification method that can treat the rows and columns differently.

Our MDA method is also related to the dimension folding sliced inverse regression method 

(Li et al. 2009) that is proposed for effectively reducing the dimensionality of the matrix 

predictors in regression. However, different from the dimension folding method, our 

primary goal is to reduce the misclassification error when the sample size is small. 

Moreover, effective methods for imposing sparsity on the estimates in the dimensional 

folding are still lacking.

The rest of the article is organized as follows. In Section 2, we briefly review the LDA 

method. We develop the matrix discriminant analysis method (MDA) and present its 

asymptotic properties in Section 3. In Section 4, we develop the penalized matrix 

discriminant analysis method (PMDA). Simulations and real data analysis are presented in 

Sections 5 and 6. A few remarks in Section 7 conclude the article.
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2. Fisher’s Linear Discriminant Analysis for p-dimensional Vectors

In this section, we briefly review Fisher’s LDA method to motivate our MDA and PMDA 

methods. To make Fisher’s LDA applicable to our CSA data, we can stack the columns of 

the random matrix X to create a p-dimensional random vector x. Let Y ∈ {1, …, K} be the 

class label. We assume that x|Y = k has a normal distribution with equal covariance matrix 

for all k. Fisher’s LDA seeks a d ≤ K − 1 dimensional projection of x with the largest 

between-group variation relative to within-group variation. Given d, the linear discriminant 

directions, β1, …, βd, in Fisher’s LDA can be obtained by progressively maximizing

(1)

with respect to η under the constraints that βi and βj are orthogonal with respect to Var[x]; 

see Fisher (1936). In general, d is unknown unless you have extra structure information of 

the data. A χ2 test that is described in Section 12.5 of Mardia et al. (1979) can be used to 

estimate d.

Observing (xi, Yi), i = 1, …, n, we can estimate E[x] by its sample version x̄, where 

, and estimate E[x|Y] by its sample version Ê[x|Y], where 

with nk being the number of observations in group k. Similarly, Var[x] can be estimated by 

 and Var[E(x|Y)] can be estimated by 

. Replacing Var[E(x|Y)] and 

Var[x] in (1) by  and , we can easily obtain the d estimated Fisher’s LDA 

directions, β̂
1, …, β̂

d, by solving the following linear system:

(2)

with respect to ηi, where I{}is the indicator function taking value 1 if i = j and value 0 if i ≠ j.

With small sample size, stacking the matrix observation of our CSA data may lead to a 

severe curse of dimensionality, which refers to various difficulties a large number of 

variables (or dimensions) can cause to function approximation, model fitting, information 

extraction as well as to computation (Fan and Li 2006). For example, with a typical 36-dye 

CSA data that can be modeled by 36 parameters for dyes effect and 3 parameters for Red, 

Green and Blue color spectrum effect, simple vectorization generates 36 × 3 = 108 

parameters for a classical vector-based LDA. Thus the simple vectorization renders many 

vector-based approaches infeasible for a sample with less than 108 observations. Moreover, 

even if we have a fairly large sample, both the computational efficiency and the estimation 

accuracy of the classical vector-based LDA will be compromised by simple vectorization 

(Donoho and Elad 2003; Fan and Li 2006). To alleviate the curse of dimensionality, 

penalization approaches have been proposed. The regularized discriminant analysis (RDA) 

Zhong and Suslick Page 4

Technometrics. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



method proposed by Friedman (1989) is one of the early proposals. Instead of directly using 

the sample within-group covariance matrix, a ridge penalty is employed in RDA to stabilize 

the estimate. Following the same trend, Clemmensen et al. (2011) developed sparse 

discriminant analysis (SDA). In SDA, an L1 penalty is employed to obtain a sparse estimate 

of the discriminant directions. Though penalization can alleviate the curse of dimensionality 

to some degree, it may also generate some bias and computational complexity in estimating 

the discriminant directions. A method that can eliminate the bias and achieve sparsity 

simultaneously, such as our MDA method, is more attractive.

3. Matrix Discriminant Analysis for r × q dimensional Matrices

To retain the matrix structure of X in the CSA data, we shall develop a matrix discriminant 

analysis method. To discriminate the objects in the form of matrices, we aim to find d 

orthogonal low dimensional representations of X,  , j = 1, …, d, that exhibit the 

maximum ratio of between-class variance to within-class variance. Here, we require the d 

low dimensional representations to be orthogonal to make the representations be identifiable 

and easy to interpret. In the CSA application, each entry in βj specifies the discrimination 

power of a chemo-responsive dye and each entry in ξ specifies the effect of spectral 

components coded by the RGB triplets. To discriminate among similar compounds within 

one chemical class, the dyes used in CSA are the nanoporous pigments, which measure the 

subtle difference between VCTs in one chemical class. As similar compounds display color 

differences along one spectral direction on the nanoporous pigments (Feng et al. 2010), we 

assume ξ resides in a one-dimensional space. As illustrated in the case study that is 

presented in Section 6, the assumption is valid in most CSA applications. When the effect of 

spectral components cannot be summarized by a single ξ, we can generalize our method to 

accommodate multiple ξs. The generalization will be discussed in Section 3.3. Without loss 

of generality, we assume that X is an r × q matrix. Correspondingly, the βjs, j = 1, …, d are r 

dimensional vectors and the ξ is a q dimensional vector.

3.1. Matrix discriminant analysis method

Motivated by Fisher’s LDA, we aim to find d orthogonal vectors β1, …, βd and ξ that 

maximize the ratio of between-class variance to within-class variance along the  , j = 

1, …, d directions. Here, we assume that the within-group covariance matrices are the same. 

Thus, the d orthogonal vectors β1, …, βd and the vector ξ can be obtained by maximizing

(3)

with respect to η and θ. Because (3) is a bivariate quadratic function, we can find β1, …, βd 

and ξ by iteratively maximizing L(η, θ).

Observing (Xi, Yi), 1 ≤ i ≤ n, for any given δ, we use  to denote the sample 

version of Var(E[Xδ|Y]), where 
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, and  to denote the 

sample version of Var[Xδ], where .

Given an initial estimate of ξ, denoted by ξ̂, analogous to Fisher’s LDA, we can obtain an 

estimate of β1, …, βd, say β̂
1, …, β̂

d, by solving the linear system,

(4)

with respect to ηi.

Meanwhile, fixing β at β̂
1, we can obtain an estimate of ξ, say ξ̂, by maximizing,

(5)

with respect to θ.

Since the L(η, θ) is bounded from above and nondecreasing at each iteration (detailed proof 

is given below), we employ the following iterative algorithm for estimating β1, …, βd and ξ. 

We, first, give an initial estimate of ξ. For the fixed ξ, we can estimate the β1, …, βd by 

solving (4). Then fixing β at β̂
1, we can estimate the ξ by maximizing (5). The two steps 

iterate until convergence.

Algorithm 1 (MDA algorithm)

• Initialize ξ̂(0) such that ξ̂(0)′ξ̂(0) = 1.

•
Fixing ξ̂ at ξ̂(0), solve the linear system (4) to find .

•
Iterate until  converges.

–
Fixing β̂ a , maximize (5) to find ξ̂(1).

–
Fixing ξ̂ at ξ̂(1), solve the linear system (4) to find .

–
Update ξ̂(0) by ξ̂(1) and  by  and calculate .

•
Output final estimates  for j = 1, …, d and ξ̂(1).

In the following, we show that Algorithm 1 converges. Given ξ̂(0), since  is the solution 

of (4), it follows that for any η,
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(6)

On the other hand, given , since ξ̂(1) is the solution of (5), it follows that for any θ,

Thus, we have

(7)

Now given ξ̂(1), similar to the derivation of (6), we have

(8)

since  is the solution of (4) at . Combining (7) and (8), we have

(9)

Meanwhile, L(η, θ) is bounded above since Var[η′Xθ] = Var[E[η′Xθ|Y]] + E[Var[η′Xθ|Y]]. 

Ensuring that the  is increasing in each iteration, convergence of ξ̂(1) is 

guaranteed. Then, convergence of  is also guaranteed.

Although Algorithm 1 is a powerful tool for high dimensional classification, like other 

iterative algorithms, the iteration may reach a local rather than the global maximum of target 

function L(η, θ) in practice. To avoid being stuck at a local optimum, we uniformly sample 

multiple ξ̂(0)s on ℝ as the initial value and choose the discriminant rule that gives the 

smallest misclassification errors.

3.2. Theoretical properties

We now show that MDA yields consistent estimators of β1, …, βd if ξ̂(0) is reasonably close 

to the true ξ.
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Theorem 1—Given Y1, …, Yn, we assume that X1, …, Xn ∈ ℝr×q are independent and 

identically distributed random matrices with each entry having finite mean, variance and 

fourth moment. Let β1, …, βd and ξ be the maximizer of (3) and  be the output of 

Algorithm 1. If ξ̂(0) in Algorithm 1 is a  consistent estimator of ξ, we have that

in probability as nk → ∞ for k = 1, …, K.

The proof of Theorem 1 is sketched as follows. Since ξ̂(0) is a  consistent estimator of ξ, 

we have Var[E(Xξ̂(0)|Y)] = Var[E(Xξ|Y)] + O(1/n) and Var[Xξ̂(0)] = Var[Xξ] + O(1/n). 

Meanwhile, using the Tchebycheff inequality, we can show that 

 and . 

Thus, we have that  and 

. These facts imply that

By the perturbation theory of matrix eigenvectors, e.g., Stewart and Sun (1990), the 

conclusion follows immediately.

Similarly, we can show that ξ̂(1) is a consistent estimator of ξ, if  is a consistent estimator 

of β1.

Theorem 2—Given Y1, …, Yn, we assume that X1, …, Xn ∈ ℝr×q are independent and 

identically distributed random matrices with each entry having finite mean, variance and 

fourth moment. Let β1, …, βd and ξ be the maximizer of (3) and ξ̂(1) be the output of 

Algorithm 1. If  in Algorithm 1 is a  consistent estimator of β1, we have that

in probability as nk → ∞ for k = 1, …, K.

The conclusion of Theorem 2 follows immediately from Theorem 1. Theorem 1 and 2 imply 

that ξ̂(1) and  are consistent estimators when ξ̂(0) and  iterates to a 

small neighborhood of the true parameters. It is worth noting that Theorem 2 still holds if we 
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replace  in Theorem 2 by any one of  to . We opt to use  in Algorithm 1 to 

estimation ξ because  is more efficient than any one of  to  (Mardia et al. 1979).

3.3. Matrix discriminant analysis for multiple ξs

Now, we consider a slightly more general case that there are multiple classification relevant 

ξs, say ξ1, …, ξc. Algorithm 1 can be generalized to the applications with multiple ξs using a 

two-step strategy. In the first step, we obtain  using Algorithm 1. In the second 

step, we obtain estimates of  by solving the following linear system

(10)

where i = 1, ···, c.. As with algorithm 1, convergence is guaranteed since no iteration is used 

in the second step of the generalized Algorithm 1. Theorems 1 and 2 imply that  and 

converge asymptotically to β1 and ξ1. As  is a consistent estimator of ξ1, we can further 

show by Theorem 1 that  is also a consistent estimator of βj for j = 2, ···, d. Similarly, we 

can show that  is a consistent estimator of ξi, where i = 2, …, c.

4. Penalized Matrix Discriminant Analysis

As shown in Figure 1C, not all dyes in CSA are chemo-responsive to decylamine and sec-

Bu2amine. Some dyes do not change color and appear as black in the color difference map. 

Among the chemo-responsive dyes, some dyes, such as the dyes in circles in Figure 1C, are 

classification irrelevant. Building classification rules using nonreponsive dyes and 

discriminant-irrelevant dyes can reduce classification accuracy. To surmount this challenge, 

we shall shrink the effect of discriminant-irrelevant dyes and keep the discriminant relevant 

dyes in the classification analysis. This goal can be achieved by penalizing the L1 norm of 

the parameters which specify the dye effect in MDA method (Tibshirani 1996). In this 

section, we develop the penalized matrix discriminant analysis (PMDA) method to serve this 

purpose.

Let  be the penalized estimate of βj. Given ξ̂, an MDA estimate of ξ,  can be obtained 

by maximizing

(11)

over η, where || · ||α denotes the Lα norm. When ρ = ∞, the maximizer of (11) is the same as 

β̂
1 in MDA, and when ρ = 0, the discriminant effects of all dyes are shrunken to zero. In 
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reality, we need to choose an appropriate ρ such that only the discriminant-relevant dyes are 

included in the discriminant analysis.

Maximizing (11) is equivalent to solving a generalized eigenvalue problem (Zou et al. 2006, 

Qiao et al. 2009), which can be further coverted to a least squares problem. Following 

Theorems 2 and 3 in Zou et al. (2006) and Theorem 1 in Qiao et al. (2009), we reformulate 

(11) as a least squares type of problem. Let

so that . Let R′R be the Cholesky decomposition of , where R 
∈ ℝp×p is an upper triangular matrix. Given two non-negative tuning parameters ω1, ω2, we 

can find  by minimizing

(12)

with respect to α1 and β1, where α1 satisfies the condition ||α1||2 = 1. Here α1 was created 

only for the purpose of computational convenience. See Zou et al. (2006) and Qiao et al. 

(2009) for a detailed explanation of the reformulation.

When there are d classification directions, we let B = (β1, …, βd) and A = (α1, …, αd). Let 

 and Â = (α̂1, …, α̂d) be their estimates. Then B̂* can be obtained by 

minimizing

(13)

subject to A′A = Id. Whereas the same ω1 is used for all d directions, different ω2j are 

allowed to penalize different discriminant directions.

Numerically, B̂* can be obtained by iteratively minimizing (13) with respect to A and then 

B. We first estimate B given A = Â. Let Ỹj = ZR−1 α̂
j. B̂* can be obtained by solved q 

independent LASSO problems

(14)

for 1 ≤ j ≤ d. In practice, we can use either the least angle regression (Efron et al. 2004) or 

coordinate descent method (Friedman et al. 2010) to estimate B. We then replace B by the 

B̂* obtained in previous step and estimate A. Because the two penalty terms are positive and 

do not involve A at all, minimizing (13) is equivalent to minimizing
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(15)

subject to A′A = Id. Because of the orthogonality constraint, (15) is not a least squares 

problem but a Procrustes problem (Gower and Dijksterhuis 2004). The solution can be 

obtained by computing a singular value decomposition on R−1(Z′Z)B̂* (Zou et al. 2006; 

Qiao et al. 2009). Let UDV′ be the singular value decomposition of R−1(Z′Z)B̂*, we have 

that Â= UV′. The PMDA method is outlined in the following algorithm.

Algorithm 2 (PMDA algorithm)

• Run algorithm 1 to obtain ξ̂.

• Initialize A by Â such that Â′Â = Id where Id is a d × d identity matrix.

• Iterate until convergence.

– Find B*̂ by optimizing d independent penalized least squares functions (14).

– Replace B by B̂* and perform the singular value decomposition UDV′ for 

R−1(Z′Z)B̂*.

– Update A by UV′.

• Output final estimates B̂*.

In Algorithm 2, we estimate βj by optimizing d independent penalized least squares 

functions. An alternative approach is that, instead of d independent L1 penalties, we can use 

a group penalty, e.g., , where Bi represents the ith row of B. By using the group 

penalty, we can select a subset of dyes that are discriminant-relevant across all discriminant 

directions. We opt to choose the d independent L1 penalties for the CSA data because we 

expect to use different sets of dyes for different discriminant directions. As we will see in 

the real data analysis, different discriminant directions with different sets of dyes represent 

different chemical interactions.

The key to the success of method is the selection of the tuning parameters. There are two 

tuning parameters ω1 and ω2j involved in the optimization of (13). It was shown in Zou et al. 

(2006) and Qiao et al. (2009) that the optimizer is independent of the selection of ω1 when 

ω2j = 0 (no penalty at all). When ω2j ≠ 0, the optimization of (13) may be affected by the 

value of ω1. However, our extensive simulations suggest that the minimizer of (13) is robust 

as ω1 varies in a wide range in (0.01, 1000). Thus, to alleviate the computational cost, we set 

ω1 = 1 in our numerical studies. In practice, we select the tuning parameter ω2j by 

minimizing a K-fold cross validation (CV) of the misclassification error. Because our CSA 

data has less than 10 observations in each group in general, we randomly partition the 

sample under the constraint that each class has at least one observation in the training 

sample, and at least one observation in the test sample. The CV misclassification error is 

calculated as the average of the misclassification errors in those test samples.
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5. Simulation Studies

To assess the performance of the proposed methods, we carry out extensive analysis on 

simulated data sets.

5.1. Multiple-class discrimination

This simulation is designed to demonstrate the empirical performance of MDA and PMDA 

methods in discriminating multiple-class observations. We generated 100 data sets from the 

following model. Let Y be the class label simulated from a multinomial distribution with 

four classes. We assume the probability of occurrence in each class equal to π0 = 0.25. Let X 
= (xi,j) be a 36 × 3 random matrix predictor. The conditional distribution of X given Y is 

simulated from a multivariate normal distribution with conditional mean

where A = 11′ and 1 = (1, 1)′, and conditional variance

where k = 1, …, 4. We also set Cov(xi,j, xi′,j′) = 0 if (i, j) ≠ (i′, j′). Each data set consists of a 

training sample of sample size m1 and a test sample of sample size m2. We apply Fisher’s 

LDA, MDA and PMDA to the training sample. We then apply the models learned from the 

training sample to the test sample and calculated the misclassification error rate. As a 

benchmark, we also calculate Bayes misclassifiction error, the optimal misclassification 

error that we can have by assuming all the parameters are known. The misclassification error 

for each method is summarized in Table 1.

We see that MDA and PMDA have substantially lower misclassification error rates than 

Fisher’s LDA. This suggests that incorporating the matrix structure of the predictors and 

reducing the number of parameters are very important in the multiple class discriminant 

analysis. The PMDA misclassification error is very close the the Bayes misclassification 

error. In Figure 2, we project the observations onto the first two Fisher’s LDA, MDA and 

PMDA directions. It is easy to see that the first two Fisher’s LDA directions lead to 

unsatisfactory classification result for the test sample, though the clusters are tight in the 

training sample. In contrast, the first two MDA directions result in relatively scattered 

clusters in the training sample, but a much better classification result in the test sample. 

Figure 2 also indicates that PMDA has better discrimination than MDA in the test sample. In 

order to understand why PMDA outperforms MDA, we illustrated in Figure 3 the test 

sample misclassification error for PMDA as ω2j in (14) varies. We plotted in Figure 3 the 
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CV of the misclassification error against the change of the number of predictors. The 

predictors are selected by changing ω2j in (14). The misclassification error drops quickly as 

we increase the number of predictors, reaches the minimum when the number of predictors 

is 4, which is the number of discriminant-relevant predictors in this simulation (recall that, 

the four discriminant-relevant predictors are the first, the second, the 35th and the 36th 

predictors). Misclassification error increases as we include more predictors in PMDA 

analysis. This suggests that including more discriminant-irrelevant predictors in discriminant 

analysis increases the misclassification error, and thus, PMDA has the edge over MDA and 

LDA in terms of misclassification error.

5.2. Comparison with other Methods

This simulation is designed to compare the empirical performance of MDA and PMDA 

methods with other competing methods. We simulated 100 data sets from the following 

model. Let Y be the class label generated from a Bernoulli distribution with success 

probability 0.5. Let X = (u1, u2, u3), where ui ∈ ℝ36 and ui given Y are generated from the 

following process.

where |u1| is a vector with each entry as the absolute value of corresponding entry of u1. In 

this setting, u3 does not have any discriminant power between two classes, but u1 and u2 

together have discriminant power. In each data set, we randomly generated a training sample 

of 120 observations and a test sample of 500 observations.

We apply MDA and PMDA to the training sample. For comparison, we also apply to the 

data the following competing methods: 2D-LDA (Li and Yuan 2005), regularized 

discriminant analysis (Friedman 1989), Fisher’s LDA, sparse discriminant analysis 

(Clemmensen et al. 2011). In particular, we use the R implementation lda for Fisher’s LDA, 

klaR for regularized discriminant analysis, sparseLDA for sparse discriminant analysis. We 

implemented 2D-LDA, because the code is not available from the authors. For klaR, 

sparseLDA, the regularization parameters are chosen by cross-validation. When more than 

one regularization parameter is required, such as RDA, a grid search method is used. We 

then apply the models learned from the training sample to the test sample and calculate the 

misclassification error rate. The boxplots of misclassification errors are plotted in Figure 4.

We can see that PMDA has the smallest misclassification error, and MDA has slightly larger 

misclassification error. Both PMDA and MDA have smaller misclassification error than 

other competing methods. As expected, LDA gives larger misclassification, and adding 

regularization, i.e., RDA and sparse LDA, reduces the misclassification error. Since the 2D-

LDA does not take into account the between-row correlation, we can see the 2D-LDA has 

slightly larger misclassification error than LDA. Since RDA is a compromise between linear 
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and quadratic discriminant analysis and provides a nonlinear discriminant boundary, its 

misclassification error is low relative to other linear discriminant methods.

6. Case Studies

6.1. Classification of CSA data after exposure to TICs at IDLH concentrations

A series of CSA experiments for 147 chemicals were conducted with the aim to classify 

these chemicals into either non-toxic or one of 20 toxic industrial chemicals (TICs). These 

20 TICs are listed as “High Hazard TICs” on the NATO International Task Force 25 and are 

summarized in Table 2. The experiments consist of seven chemicals in the non-toxic class 

and in each of the 20 TICs classes. The color changes of all 36 dyes in CSA were measured 

and recorded as RGB triplets before and two minutes after exposure to TICs at their 

concentrations that are Immediately Dangerous to Life or Health (IDLH). The primary 

interest is to assess the prediction accuracy using the CSA and build classification rules that 

can be used to monitor the chemical exposure in workplaces.

First, we apply MDA to the difference map of 147 chemicals. In order to do that, we need to 

determine whether the single ξ can summarize the spectral component effect of RGB colors. 

Following the algorithm in Section 3.3, we calculate the ratios of between-group variation to 

within-group variation for three ξs, where ξ1 accounts for 96.35% of all the variation, ξ2 

accounts for 3.23% and ξ3 for 0.41%. We thus opt to keep a single ξ for the rest of the 

analysis. The 147 chemicals are projected on the first two MDA directions and the 

projection is plotted in Figure 5(a). It is easy to see that the two MDA discriminant 

directions are not adequate to make a clear classification for some closely related chemicals 

even though some chemicals with different chemical structures can be well discriminated. 

To determine the number of classification relevant directions, a classic F test is 

employed(Section 6.3, Kshirsagar 1972) to test the null hypothesis that there are d 

classification relevant directions against the alternative hypothesis that there are more than d 

classification relevant directions. Eight classification relevant directions are identified at 

0.005 significance level. We then check the coefficients of each dye to interpret the effect of 

each dye in the classification analysis. The dyes with large coefficients in the first two 

directions are those that tend to be active on the van der Waals interactions. The van der 

Waals interaction are commonly used in traditional sensors for simple chemical structure 

detection. Whereas the dyes with large coefficients in the other six directions are those that 

respond to intermolecular interactions between the nanoporous pigments and the VCTs. This 

suggests that those dyes that react to the intermolecular interactions are important to 

discriminate the toxicants with complicated chemical structures. This also supports the 

design of the current CSA, which probes a much wider range of chemical interactions than 

traditional sensors.

To compare the empirical performance of Fisher’s LDA, MDA and PMDA methods on this 

dataset, we calculate the misclassification error using seven-fold CV. To keep the balance 

between classes, we randomly select one observation from each class to form the test sample 

and use the rest of observations as the training sample. Plotted in Figure 5(b) is the CV of 

misclassification error with its standard error against the number of directions. The plot 

shows that, for all the three methods, the misclassification errors decrease drastically as we 

Zhong and Suslick Page 14

Technometrics. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



increase the number of discriminant directions up to eight. We also see that MDA method 

and PMDA method outperform Fisher’s LDA method uniformly in reducing the 

misclassification error. Moreover, there is no significant difference of the misclassification 

error between MDA and PMDA methods. This is well expected since the design of the CSA 

is highly optimized to ensure that all dyes respond to TICs at the IDHL concentration. Thus, 

shrinking the number of dyes in MDA cannot significantly improve the discrimination 

accuracy. Finally, it is worth pointing out that with 147 observations and 21 classes the 

standard errors of misclassification error for PMDA method are small.

6.2. Classification of the CSA data after exposure to the TICs at PEL concentrations

A pressing need for the environmental control of industrial chemical workplace and more 

general epidemiological studies is to accurately monitor low concentrations of TICs because 

multiple low-level exposures to the TICs may cause extremely serious effects on an 

individual’s health. Thus, 147 difference maps were obtained for the 20 TICs (Table 2) at 

their Permissible Exposure Level (PEL) before and after five-minute exposure.

Compared to the IDLH concentrations used in the previous example, only a limited number 

of dyes show significant color change at the PEL concentration. Many dyes do not respond 

at this concentrations. This gives a significant advantage to PMDA, which assumes the 

sparseness of underlying classification functions.

We apply Fisher’s LDA, MDA and PMDA to the PEL data. For each of the three methods, 

we calculate misclassification errors using seven-fold CV for different number of 

discriminant directions. The result is plotted in Figure 6 (a). We can see that PMDA 

consistently outperforms the other two methods and the optimal classification can be 

achieved using 13 directions. We further plot in Figure 6 (b) the classification error along 

the change of the number of classification relevant dyes using the 13 directions. It is easy to 

see that the misclassification is minimized using 15 classification relevant dyes.

To further understand the performance of PMDA, we choose three TICs in one training 

sample and project them on the first two directions obtained by MDA and PMDA 

respectively in Figure 7. We can clearly see that PMDA can better discriminate the three 

TICs than MDA in both training and test samples. It suggests that imposing sparsity 

structure can further improve the classification accuracy if the underlying classification rule 

is indeed sparse.

7. Discussion

In this article, we developed a simple and efficient matrix classification method named 

MDA to improve the classification sensitivity and specificity of colorimetric sensor array 

(CSA) data. Our MDA method can be viewed as an extension of Fisher’s LDA to the data in 

the form of matrices. By retaining the matrix structure of the data, MDA can substantially 

reduce the misclassification error of chemicals that belong to the same chemical class. For 

general matrix classification with multiple discriminant relevant linear combinations on both 

rows and columns, we generalized MDA method with a one-step extension. The 

generalization of MDA algorithm (section 3.3) is fast and easy to implement. However, it 
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may lose classification relevant directions. The method that can pick up all the classification 

relevant directions is under study and will be introduced in a follow-up publication.

To further reduce the misclassification error, we proposed PMDA method by imposing a 

sparse structure on discriminating functions using L1 penalty. Numerical studies suggest that 

MDA and PMDA outperform many competing linear classification methods. A potential 

improvement on MDA and PMDA methods is to extend them to nonlinear discriminant 

analysis by using appropriate kernel functions. In that case, we may need fewer discriminant 

directions than MDA and PMDA in discriminating matrix data. A potential drawback of 

using the nonlinear discriminant analysis is that we may lose the model interpretability.

An R code implementing MDA and PMDA methods is provided in the supplementary 

material.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Difference maps for colorimetric sensor arrays. Panel A illustrates the calculation of a 

difference map, generated by digital subtraction at pixel level. The before and after exposure 

images are subtracted to form the difference map. Differences in each of red, green and blue 

are averaged over each circle and stored in a 36 × 3 matrix, with each row corresponding to 

a chemo-responsive dye and each column corresponding to one of the three colors. Plotted 

in panel B are the color changes of CSA for 15 representative toxic industrial chemicals at 

their IDLH (immediately dangerous to life or health) concentration after two-minute 

exposure. Enlargements of color changes for two of the 15 cases are presented in Panel C. 

Three dyes shown in the red circles are chemo-responsive but discriminant-irrelevant dyes. 

The black regions, regions show no color changes, are the non-chemo-responsive dyes.
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Figure 2. 
The upper panels show a training sample projected on the first two Fisher’s LDA, MDA and 

PMDA discriminant directions; The lower panels show the corresponding test sample 

projected on the first two Fisher’s LDA, MDA, and PMDA discriminant directions. The 

sample was generated from the four-class model in Section 5.1 with μ = 3, σ2 = 3, m1 = 120, 

and m2 = 500. The MDA and PMDA discriminant directions are calculated using 

for j = 1, 2 respectively.
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Figure 3. 
The misclassification error vs the number of predictors used in PMDA method. The 

predictors are selected by changing the ω2j in (14)). The middle line is the average 

misclassification error for each corresponding number of predictors and the upper and lower 

line are the average misclassification error ±2× standard error. The sample was generated 

from the four-class model in Section 5.2 with μ = 3, σ2 = 3, m1 = 120, and m2 = 500.
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Figure 4. 
The boxplots of misclassification error of PMDA, MDA, Fisher’s LDA, regularized 

discriminant analysis (RDA), sparse discriminant analysis (SDA) and 2D-LDA
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Figure 5. 
Panel (a) shows the CSA data of the 147 VCTs projected on the first two MDA directions. 

Panel (b) is the seven-fold CV misclassification error versus the number of discriminant 

directions used in the classifications.
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Figure 6. 
Plotted in (a) is the misclassification error calculated at different number of discriminant 

directions for CSA data at PEL concentrations. Plotted in (b) is the misclassification error of 

PMDA for d = 13 calculated using different number of dyes.
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Figure 7. 
(a)The CSA data of Chlorine (CL2), Formaldehyde (F2) and Nitric Acid (HNO) projected 

on the first two MDA discriminant directions. (b) The same data projected on the first two 

PMDA discriminant directions. The test sample is circled.
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Table 1

Each entry reports the mean and standard deviation (in parentheses) of the misclassification error calculated 

based on the 100 test samples.

π0 = 0.25

Methods μ = 3, σ2 = 3
m1 = 120, m2 = 500

μ = 1.5, σ2 = 3
m1 = 120, m2 = 500

μ = 1.5, σ2 = 3
m1 = 200, m2 = 500

Bayes 0.000 (0.000) 0.015(0.006) 0.014(0.005)

Fisher’s LDA 0.186 (0.069) 0.468(0.060) 0.126(0.020)

MDA 0.010 (0.018) 0.168 (0.060) 0.110 (0.032)

PMDA 0.003 (0.008) 0.093 (0.053) 0.071(0.023)

Technometrics. Author manuscript; available in PMC 2016 September 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhong and Suslick Page 26

Table 2

The list of toxic industrial chemicals (TICs) at their immediately dangerous to life of health (IDLH) and 

permissible exposure level (PEL) concentrations in ppm.

TIC IDLH PEL Symbol

Ammonia 300 50 ⊕

Arsine 3 0.05 ○

Chlorine 10 1 ⊞

Diborane 15 0.1 +

Dimethylamine 500 10 ⊠

Fluorine 25 0.1 ⊗

Formaldehyde 20 0.75 □

Hydrogen Chloride 50 5 ✡

Hydrogen Cyanide 50 10 ▲

Hydrogen Fluoride 30 3 ◆

Hydrogen Sulfide 100 20 ▽

Hydrazine 50 1 •

Methylamine 100 10 *

Methyl Hydrazine 20 0.2 ■

Nitric Acid 25 2 ●

Nitrogen Dioxide 20 5 ⍌

Phosgene 2 0.1 ⋄

Phosphine 50 0.3 ×

Sulfur Dioxide 100 5 △

Trimethylamine 200 10
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