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Abstract

Prediction of future observations is a fundamental problem in statistics. Here we
present a general approach based on the recently developed inferential model (IM)
framework. We employ an IM-based technique to marginalize out the unknown
parameters, yielding prior-free probabilistic prediction of future observables. Ver-
ifiable sufficient conditions are given for validity of our IM for prediction, and a
variety of examples demonstrate the proposed method’s performance. Thanks to
its generality and ease of implementation, we expect that our IM-based method for
prediction will be a useful tool for practitioners.

Keywords and phrases: Disease count data; environmental data; inferential
model; plausibility; prediction interval; system breakdown data; validity.

1 Introduction

The prediction of future observations based on the information available in a given sample
is a fundamental problem in statistics. For example, in engineering applications, such as
computer networking, one might want to predict, to some degree of certainty, the time at
which the current system might fail in order to have resources available to fix it. Despite
this being a fundamental problem, the available literature does not seem to give any clear
guidelines about how to approach a prediction problem in general. From a frequentist
point of view, there are a host of techniques available for constructing prediction intervals
in specific examples; see, for example, the book by Hahn and Meeker (1991) and papers by
Fertig and Mann (1977), Bhaumik and Gibbons (2004), Krishnamoorthy et al. (2008),
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and Wang (2010). Some general approaches to the frequentist prediction problem are
presented in Beran (1990) and Lawless and Fredette (2005). From a Bayesian point of
view, if a prior distribution is available for the unknown parameter, then the prediction
problem is conceptually straightforward. The Bayesian model admits a joint distribution
for the observed data and future data, so a conditional distribution for the latter given the
former—the Bayesian predictive distribution—is the natural tool. Hamada et al. (2004)
presents some applications of Bayesian prediction. The catch is that often there is no
clear choice of prior. Default, or non-informative priors can be used but, in that case, it is
not clear that the resulting inference will be meaningful in either a personal probabilistic
or frequentist sense. Wang et al. (2012) propose a fiducial approach for prediction which,
at a high-level, can be viewed as a sort of compromise to the frequentist and Bayesian
approaches. They propose a very natural predictive distribution that obtains from the
usual fiducial distribution for the parameter (Hannig 2009, 2013). They show that the
prediction intervals obtained from the fiducial predictive distribution are asymptotically
correct and perform well, in examples, compared to existing prediction intervals.

The fiducial approach is attractive because no prior distributions are required. How-
ever, like Bayesian posterior or predictive distributions based on default priors, fiducial
distributions may not be calibrated for meaningful probabilistic inference, except possibly
in the limit (Liu and Martin 2015). Recently, Martin and Liu (2013) proposed a general
framework for prior-free probabilistic inference, called inferential models (IMs). This
framework has some parallels with fiducial (e.g., Fisher 1959; Hannig 2009, 2013) and
Dempster–Shafer theory (e.g., Dempster 2008; Shafer 1976) in that work is carried out in
terms of unobservable auxiliary variables. There are also some connections with the fre-
quentist confidence distributions (e.g., Xie and Singh 2013). The key difference between
IMs and these other frameworks is the way that the auxiliary variables are handled. The
important feature is that IMs provide probabilistic summaries of the information in data
concerning the quantity of interest, and that these summaries are provably meaningful,
not just in an asymptotic sense.

In this paper, we provide a IM-based solution to the problem of predicting future
observations. The critical observation that drives the approach here is that predicting
future observations is a marginal inference problem, one in which the full parameter
itself is a nuisance parameter to be marginalized out. With this view, in Section 2.3
we apply the general marginalization principles in Martin and Liu (2015b) to eliminate
the nuisance parameter, directly providing a marginal IM for the future observations.
In Section 2.5 we give general conditions under which the resulting IM for prediction is
valid, and discuss under what circumstances these conditions hold, in what cases they
can be weakened, and other consequences. The key point is that the plausibility function
obtained from a valid IM provides a probabilistic summary of the information in the
observed data concerning the future data to be predicted; this function can be plotted
to provide some visual summary. Moreover, the validity theorem demonstrates that the
predictive plausibility interval, defined in (8), has the nominal frequentist coverage for
all finite samples, not just in the limit. Our focus here is on the case of predicting a
univariate future observable, but the multivariate case, discussed briefly in Section 4.3,
requires some additional considerations. Several practical examples of prediction in the
IM context are worked out in Section 3. These examples involve a variety of common
models, and prediction problems in quality control, environmental, system breakdown,
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and disease count applications are considered. To compare our IM-based solution to other
existing methods, we focus on frequentist performance of our prediction intervals. In all
the examples we consider, the IM intervals are competitive with the existing methods.
R code for these examples is provided at www.math.uic.edu/~rgmartin. The take-
away message is that the IM approach provides an easily implementable and general
method for constructing meaningful prior-free probabilistic summaries of the information
in observed data for inference or prediction; that these summaries can be converted to
frequentist procedures with fixed-n performance guarantees and comparable efficiencies
compared to existing methods is an added bonus.

2 Inferential models for prediction

2.1 Basic notation and terminology

The basic IM framework is introduced in Martin and Liu (2013), and further develop-
ments are presented in Martin and Liu (2015a,b). Here we want to briefly introduce the
necessary notation and terminology. Suppose that the goal is inference on an unknown
parameter θ. Martin and Liu (2013) present a three-step IM construction: association
(A), prediction (P), and combination (C) steps. The starting point is identifying an
association that links the data Y and the parameter θ to an unobservable auxiliary vari-
able U . Often, a naive association will have auxiliary variables of higher dimension than
the parameter, so special conditioning and/or marginalization techniques are needed to
satisfactorily reduce the dimension of U . In any case, once this “baseline” association is
specified, the A-step of the IM construction is completed. The P-step, unique to the IM
approach, introduces a random set for predicting U . Finally, the C-step combines the
association with the predictive random set in a natural way, yielding a pair of belief and
plausibility functions for probabilistic inference on θ. The aforementioned papers give a
number of examples of this approach, along with further explanation and theory.

2.2 Preview for prediction

Before getting into the general details about the prediction problem, we present a rela-
tively simple example as a preview of our proposed IM approach. Consider a homogeneous
Poisson process {N(t) : t ≥ 0} with rate θ > 0. The arrival times T0, T1, T2, . . . are such
that T0 ≡ 0 and the inter-arrival times Ti − Ti−1, i ≥ 1, are independent exponential
random variables with rate θ.

If the sampling scheme is to wait for the n-th arrival, then the sufficient statistic for θ
in this model is Y = Tn, the last arrival time. Based on the arguments in Martin and Liu
(2015a), the baseline association for θ is

Y = (1/θ)G−1
n (U), U ∼ Unif(0, 1),

where Gn is the Gamma(n, 1) distribution function. If inference on θ was the goal, then
this would complete the A-step. However, suppose the goal is to predict Ỹ = Tn+k, the
time of the (n + k)-th arrival, for some fixed integer k ≥ 1. Then θ itself is a nuisance
parameter, and the quantity of interest is Ỹ . From the baseline association above, we
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can easily solve for θ in terms of (Y, U), i.e.,

θ(Y, U) = G−1
n (U)/Y.

Since Ỹ = Tn+k, for given Y = Tn, equals Y plus an independent gamma random variable
with shape k and rate θ, following Martin and Liu (2015b), we have a marginal association
for Ỹ given by

Ỹ = Y +
1

θ(Y, U)
G−1

k (Ũ) = Y
(

1 +
G−1

k (Ũ)

G−1
n (U)

)

.

This completes the A-step for prediction. If R denotes the ratio in the far right-hand
side above, then R has a generalized gamma ratio distribution (Coelho and Mexia 2007)
with density function f(r) ∝ (1 + r)−(n+k), r > 0. If F is the corresponding distribution
function, then we may rewrite the marginal association as

Ỹ = Y {1 + F−1(W )}, W ∼ Unif(0, 1).

Thus, we have successfully marginalized out the unknown parameter, directly associating
the quantity to be predicted, Ỹ , to the observed data, Y , and an auxiliary variable, W .
Then, the general IM principles (Martin and Liu 2013, 2015a,b) can be applied directly.
In particular, we apply the P- and C-steps to the association for Ỹ , resulting in prior-free
probabilistic prediction of the future arrival time. The next two subsections will describe
the proposed approach in more detail, and our examples in Section 3 will demonstrate
its generality, its quality performance, and its simplicity in applications.

2.3 General setup and the A-step

In the prediction problem, there is observed data Y and future data Ỹ to be predicted;
the two are linked together through a common parameter θ. Here we assume that Ỹ is
a scalar, though it could be a function of several future observations; see Section 4.3 for
discussion on the multivariate prediction problem. Write the sampling model PY |θ for Y
in association form:

Y = a(θ, U), U ∼ PU , (1)

where PU is known and free of θ. We call this the “baseline” association, and it connects
observable data Y and unknown parameter θ to an unobservable auxiliary variable U .
Despite its simple form, the baseline association is quite general, i.e., it covers cases
outside the structural models in Fraser (1968); see Sections 3.3–3.4. For example, for any
iid model with a smooth distribution function Fθ, take the i-th component of a(θ, U) to
be F−1

θ (Ui) for Ui ∼ Unif(0, 1). Intuitively, any model that can be simulated has a form
(1).

As our first step, assume that this baseline association can be re-expressed as

T (Y ) = b(θ, τ(U)) and H(Y ) = η(U),

for functions (T,H) and (τ, η) such that y 7→ (T (y), H(y)) and u 7→ (τ(u), η(u)) are one-
to-one. A key feature of this decomposition is that a solution θ = θ(y, v) of the equation
T (y) = b(θ, v) is available for all (y, v). By conditioning on the observed value, H(Y ), of
η(U), this association can then be reduced as follows:

T (Y ) = b(θ, V ), V ≡ τ(U) ∼ Pτ(U)|η(U)=H(Y ).
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Martin and Liu (2015a) show that such a decomposition exists in broad generality. For
simplicity, we assume here that τ(U) and η(U) are independent, so the conditioning can
be dropped, i.e., Pτ(U)|η(U)=H(Y ) ≡ Pτ(U). This assumption holds for many problems,
including those in Section 3. Dependence in this context is only a technical complication,
not conceptual, so we focus here on the simpler case of independent τ(U) and η(U); the
dependent case is discussed further in Section 4.2.

For the observed data Y and the future data Ỹ , write a joint association:

T (Y ) = b(θ, V ) and Ỹ = ã(θ, Ũ),

where (V, Ũ) ∼ P(V,Ũ). When Y and Ỹ are independent, V and Ũ are likewise indepen-
dent, but in time series problems, for example, the auxiliary variables will be correlated.
The use of “ã” for the mapping instead of simply “a” is to cover the case where Y and
Ỹ are related through a common parameter θ, but possibly have different distributions.
For example, Y might be an iid normal sample, while Ỹ is the maximum of ten future
normal samples; similarly, in a regression context, Y and Ỹ might have different values
of the predictor variables.

Solving for θ in the first equation and plugging in to the second gives

T (Y ) = b(θ, V ) and Ỹ = ã
(

θ(Y, V ), Ũ
)

,

Since prediction is a marginal inference problem, where θ itself is the nuisance parameter,
it follows from the general theory in Martin and Liu (2015b) that the first equation in
the above display can be ignored. This leaves a marginal association for Ỹ :

Ỹ = ã
(

θ(Y, V ), Ũ
)

. (2)

This marginalization has some similarities to the Bayesian and fiducial predictive distri-
butions. That is, the model for Ỹ in (2) is that of a mixture of the distribution of θ(Y, V ),
for fixed Y , with the distribution of ã(θ, Ũ) for fixed θ. This, of course, is not the “true”
distribution of Ỹ given Y ; the idea is that the future observable Ỹ is being modeled as
a Y -dependent function of (V, Ũ). We claim that equation (2) describes a sort of predic-
tive distribution of Ỹ for a given Y , similar to the frequentist predictive distributions in,
e.g., Lawless and Fredette (2005). To see this better, let GY be the distribution of the
right-hand side of (2) as a function of (V, Ũ) for fixed Y . Then, in the case this is an
absolutely continuous distribution, (2) can be rewritten as

Ỹ = G−1
Y (W ), W ∼ Unif(0, 1), (3)

so GY plays the role of a predictive distribution for Ỹ . This completes the A-step in
the construction of the IM for prediction. That is, (3) is the association that links the
observable data Y , the unobservable auxiliary variable (U, Ũ), and the future data Ỹ .

Though (2) has some connection to Bayesian and fiducial prediction, it differs from
a plug-in or parametric bootstrap prediction. The difference is that the quantity θ(Y, V )
plugged in is not fixed. That is, we consider the distribution of ã(θ(Y, V ), Ũ) as a function
of (V, Ũ), not the distribution of ã(θ̂Y , Ũ), as a function of Ũ , for fixed θ̂Y .
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2.4 P- and C-steps

After the A-step in (3), the P-step requires specification of a suitable predictive random
set S ∼ PS for W . A rigorous presentation on the theory of random sets is given
in Molchanov (2005), including a general definition. For our purposes here, it suffices
to define a random set by first specifying a probability space (W,BW,PW ) and a map
S : W → BW which is measurable in the sense that {w : S(w) ∩ K 6= ∅} ∈ BW for all
compact K ⊆ W. Then S = S(W ), for W ∼ PW is a random set, and its distribution
PS is the push-forward measure PWS

−1. Martin and Liu (2013) argue that the choice
of predictive random set ought to depend on the assertion A of interest. There are
three kinds of assertions about Ỹ that will be of interest here in the prediction problem:
two one-sided assertions, and a singleton assertion. Given a predictive random set and
an assertion of interest, the C-step proceeds by combining the A- and P-step results.
Martin and Liu (2013) give a general explanation, but here this amounts to computing
the plausibility of A, i.e.,

plY (A) = PS{G
−1
Y (S) ∩ A 6= ∅}.

Next we discuss, in turn, the P- and C-steps for each of these kinds of assertions.

• Right-sided. A right-sided assertion is of the form A = {Ỹ > ỹ} for a fixed ỹ.
For this assertion, by Theorem 4 in Martin and Liu (2013), the optimal predictive
random set is one-sided: S = [0,W ] for W ∼ Unif(0, 1). In this case, the C-step
gives the plausibility function

plY (A) = PS{G
−1
Y (S) ∩ A 6= ∅} = 1−GY (ỹ) (4)

The plausibility function is a non-increasing function of ỹ; see Figure 1(a) described
in Section 3.2. Hence the prediction region (8) based on the plausibility function
in (4) will be an upper prediction bound for Ỹ .

• Left-sided. A left-sided assertion is of the form A = {Ỹ ≤ ỹ} for a fixed ỹ. Similar
to the right-sided case, the optimal predictive random set is S = [W, 1] for W ∼
Unif(0, 1). Then the C-step gives the plausibility function

plY (A) = PS{G
−1
Y (S) ∩A 6= ∅} = GY (ỹ) (5)

The plausibility function is an non-decreasing function of ỹ; see Figure 2(a). Hence
the prediction region (8) based on the plausibility function in (5) will be a lower
prediction bound for Ỹ .

• Singleton. A singleton assertion is of the form A = {Ỹ = ỹ} for a fixed ỹ. The op-
timal predictive random set worked out in Martin and Liu (2013) for this assertion
is complicated, but a natural choice that is suitable in most cases (and optimal in
some cases) is the “default” predictive random set S = {w : |w−0.5| ≤ |W −0.5|},
for W ∼ Unif(0, 1). Then the C-step gives the plausibility function

plY (A) = PS{G
−1
Y (S) ∩A 6= ∅} = 1− |2GY (ỹ)− 1| (6)

The prediction region (8) based on the plausibility function in (6) will be a two-sided
prediction bound for Ỹ .
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It is important to note that, although the general P- and C-steps may appear rather
technical, implementation of the IM approach for prediction requires only that one be able
to evaluate, either analytically or numerically, the distribution function GY . Section 3
gives several examples and applications to demonstrate that our IM-based plausibility
intervals are good general tools for the prediction problem, and that such intervals are
often better than what other methods provide.

2.5 Prediction validity

Here we give the main distributional property of the plausibility function for prediction.
The key requirement is a mild condition on the predictive random set S. Following Martin
(2014), define the contour function fS(w) = PS(S ∋ w). Then the predictive random set
S is valid if

fS(W ) ≥st Unif(0, 1) when W ∼ PW , (7)

where ≥st means “stochastically no smaller than.” Martin and Liu (2013) demonstrate
that this is a very mild condition. (Though not required for the theorem, they also
recommend to consider only predictive random sets with nested support. Those discussed
in the previous section are all nested.) The three assertions A described in Section 2.4
depend on a generic ỹ. Here we write plY (ỹ) for the plausibility function for such an
assertion; the specific kind of assertion will be clear from the context.

Theorem 1. For the marginal association (3) for Ỹ , let S ∼ PS be a valid predictive

random set for W ∼ Unif(0, 1), i.e., (7) holds, which is non-empty with PS-probability 1.

If GY (Ỹ ) ∼ Unif(0, 1) for (Y, Ỹ ) ∼ P(Y,Ỹ )|θ for all θ, then

sup
θ

P(Y,Ỹ )|θ{plY (Ỹ ) ≤ α} ≤ α, ∀ α ∈ (0, 1).

This holds whether plY (Ỹ ) is based on right-sided, left-sided, or singleton assertions.

Proof. Since ply(ỹ) = fS(Gy(ỹ)), the result follows from the assumed validity of S and

the assumption that GY (Ỹ ) ∼ Unif(0, 1) as a function of (Y, Ỹ ).

The following sequence of remarks discusses the assumptions, interpretations, and
various extensions of Theorem 1. See, also, Section 4.

Remark 1. Martin and Liu (2013) argue that validity gives the plausibility function a
scale on which the numerical values can be interpreted. For example, like in the familiar
case of p-values, if the plausibility function is small, e.g., ply(ỹ) < 0.05, then, for the
given Y = y, the value ỹ is not a plausible prediction; see, also, Remark 2.

Remark 2. A consequence of Theorem 1 is that the set

{ỹ : ply(ỹ) > α} (8)

is a 100(1−α)% prediction plausibility region, i.e., the probability that Ỹ falls inside the
region (8) is at least 1− α under the joint distribution of (Y, Ỹ ) for any parameter value
θ. Then, for the three kinds of assertions, namely, right, left, and singleton, discussed
in Section 2.4, one gets 100(1 − α)% upper, lower, and two-sided prediction intervals,
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respectively. Moreover, the region (8) has the following desirable interpretation: each
point ỹ it contains is individually sufficiently plausible. No frequentist, Bayes, or fiducial
prediction interval assigns such a meaning to the individual elements it contains.

Remark 3. Suppose that S is such that fS(V ) ∼ Unif(0, 1) for V ∼ Unif(0, 1). Then
plY (Ỹ ) ∼ Unif(0, 1) as a function of (Y, Ỹ ) ∼ P(Y,Ỹ )|θ for all θ. These conditions hold
in many examples (see Section 3) and they imply that the plausibility region in (8) has
exact prediction coverage, 1− α, not just conservative.

Remark 4. A natural question is: under what conditions does GY (Ỹ ) ∼ Unif(0, 1) hold?
An important example is the case we shall call “separable,” where the effect of Y on
the right-hand side of (2) can be separated from the auxiliary variables, i.e., (2) can
be rewritten as p(Y, Ỹ ) = ϕ(V, Ũ) for some functions p and ϕ. In the language of
Lawless and Fredette (2005), the quantity p(Y, Ỹ ) is an exact pivot. Many problems
with a group transformation structure (e.g. Eaton 1989) are separable, and are covered
by Theorem 1. Some of the examples in Section 3 are of this type, but the numerical
results even for the non-separable models (see Sections 3.3–3.4) suggest that the validity
result holds broadly. Section 4.1 has more discussion on the non-separable case.

Remark 5. An advantage of the IM’s handling of the auxiliary variables, revealed in the
previous remarks, is that one has finite-sample control on the prediction coverage. The
fiducial approach to prediction, on the other hand, can only guarantee asymptotic control
of frequentist prediction coverage (Wang et al. 2012, Theorem 1).

Remark 6. The uniformity condition in Theorem 1 can be relaxed to a stochastic or-
dering condition, but then the conclusion holds only for certain predictive random sets
and certain assertions. For example, suppose GY (Ỹ ) is stochastically no smaller than
Unif(0, 1). Then the conclusion of Theorem 1 holds for the one-sided predictive random
set S = [0,W ], W ∼ Unif(0, 1). In this case, by taking assertions A = {Ỹ > ỹ}, the lower
plausibility bounds obtained via (8) have the nominal frequentist coverage probability as
described in Remark 2. Similar conclusions hold if GY (Ỹ ) is stochastically no larger than
Unif(0, 1), with obvious changes to the predictive random set and assertion.

3 Examples and applications

3.1 Normal models and a quality control application

Let Y = (Y1, . . . , Yn) be an iid sample from a N(µ, σ2) population, where θ = (µ, σ) is
unknown. Our first goal is to predict the next independent observation Ỹ = Yn+1. To
start, consider the baseline association involving the original data

Yi = µ+ σZi, i = 1, . . . , n,

where Z1, . . . , Zn are iid N(0, 1). Based on the arguments in Martin and Liu (2015a), a
conditional IM for θ = (µ, σ) has association

Ȳ = µ+ σn−1/2U1 and S = σU2,

where Ȳ = n−1
∑n

i=1 Yi is the sample mean, S2 = (n− 1)−1
∑n

i=1(Yi − Ȳ )2 is the sample
variance, U1 ∼ N(0, 1), and (n−1)U2

2 ∼ ChiSq(n−1), with U1 and U2 independent. Then
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it is easy to see that

θ(Y, U) =
(

µ(Y, U), σ(Y, U)
)

=
(

Ȳ −
S

n1/2

U1

U2
,
S

U2

)

.

For the next observation Ỹ = Yn+1, the association is just like the baseline association
above, i.e., Ỹ = µ+ σŨ , where Ũ is independent of (U1, U2). As discussed above, we can
insert θ(Y, U) in place of θ in this association to get a marginal association for Ỹ :

Ỹ = Ȳ −
S

n1/2

U1

U2

+
S

U2

Ũ = Ȳ + S
( 1

n1/2

U1

U2

−
Ũ

U2

)

. (9)

This is clearly one of those separable cases as described in Remark 4. Also,

V =
1

n1/2

U1

U2

−
Ũ

U2

is distributed as (n−1 + 1)1/2t(n − 1), with distribution function Fn. Then the marginal
association (9) can be written as Ỹ = Ȳ + SF−1

n (W ), with W ∼ Unif(0, 1). If we are
interested in a two-sided prediction interval, then, as in Section 2.4, we take a singleton
assertion A = {Ỹ = ỹ} and get the following plausibility function:

plY (ỹ) = 1−
∣

∣

∣
2Fn

( ỹ − Ȳ

S

)

− 1
∣

∣

∣
.

Then the corresponding two-sided 100(1− α)% plausibility interval (8) for Ỹ is

Ȳ ± t⋆n−1,1−α/2S(1 + n−1)1/2,

where t⋆ν,p is the 100pth percentile of the t-distribution with ν degrees of freedom. This
is exactly the classical Student-t prediction interval discussed in, e.g., Geisser (1993).

The ideas just discussed extend quite naturally to the case of normal linear regression.
The details of the IM calculations would be similar to those presented in Wang et al.
(2012) for the fiducial case and, hence, omitted here.

As a more sophisticated example, Odeh (1990) gives a quality control application
involving sprinkler systems for fire prevention in a hotel. In this application, based on
a sample of n = 20 sprinklers, whose activation temperatures are normally distributed,
the goal is to give a two-sided prediction interval for the temperature at which at least
k = 36 of m = 40 new sprinklers will activate. In other words, the goal is to predict the
temperature at which at least k of the m new sprinklers will activate. The IM method-
ology can be used for this problem. Let Ỹ be the k-th largest of m future independent
normal observations Yn+1, . . . , Yn+m. The corresponding association for Ỹ is

Ỹ = µ+ σŨ , where Ũ = k-th largest of Un+1, . . . , Un+m,

and Un+1, . . . , Un+m are iid N(0, 1). Then the marginal association for Ỹ can be written
exactly as in (9) and the problem is still separable. The only difference here is that V =
(n−1/2U1−Ũ)/U2 has a non-standard distribution. As before, write Ỹ = Ȳ +SF−1

n,m,k(W ),
where Fn,m,k is the distribution function of V , andW ∼ Unif(0, 1). The distribution Fn,m,k

can be simulated and, therefore, one can easily get a Monte Carlo approximation of the
plausibility function (6) for Ỹ and, in turn, a two-sided prediction interval. The IM
prediction interval for Ỹ in this normal prediction problem is the same as the fiducial
interval in Wang et al. (2012) and the interval in Fertig and Mann (1977).
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3.2 Log-normal models and an environmental application

Let Y = (Y1, . . . , Yn) be an iid sample from a log-normal population, with unkown param-
eter θ = (µ, σ). Log-normal models are frequently used in environmental statistics (Ott
1995). In this case, X = (X1, . . . , Xn), with Xi = log(Yi), will be an iid N(µ, σ2) sample,
and the prediction problem can proceed as in Section 3.1 above. In particular, predict-
ing the next observation Ỹ = Yn+1 is straightforward, so we focus here on something
more challenging. Consider, as in Bhaumik and Gibbons (2004), the problem of finding
the upper prediction limit for the arithmetic mean of m future log-normal observations,
i.e., Ỹ = m−1

∑m
j=1 Yn+j. Working on the log-scale, with the Xi’s, we can first reduce

dimension according to sufficiency and then solve for θ as follows:

θ(Y, U) =
(

µ(Y, U), σ(Y, U)
)

=
(

X̄ −
S

n1/2

U1

U2
,
S

U2

)

,

where X̄ = n−1
∑n

i=1Xi, S
2 = (n− 1)−1

∑n
i=1(Xi − X̄)2, U1 ∼ N(0, 1), and (n− 1)U2

2 ∼
ChiSq(n− 1), with U1, U2 being independent. The marginal association for Ỹ , the arith-
metic mean of m future log-normal observations, is

Ỹ =
1

m

m
∑

j=1

elog Yn+j =
1

m

m
∑

j=1

exp
{(

X̄ −
S

n1/2

U1

U2

)

+
( S

U2

Ũn+j

)}

,

where Ũ = (Ũn+1, . . . , Ũn+m) are iid N(0, 1), independent of U1 and U2. Here we use this
association for Ỹ to construct an upper plausibility prediction limit.

The above association is not of the separable form in Remark 4. However, for a
given Y , if GY is the distribution of the right-hand side in the previous display, then the
marginal association for Ỹ can be written in the form Ỹ = G−1

Y (W ), for W ∼ Unif(0, 1),
just like in (3). This completes the A-step. Since we seek to determine an upper prediction
limit, the plausibility function for Ỹ is given by (4); see Section 2.4.

For illustration, we consider an environmental study presented in Bhaumik and Gibbons
(2004) concerning lead concentration in soil. It is a “brownfield” investigation in which
a now-closed plating facility was being investigated for future industrial use. In April
1996, m = 5 soil borings were installed to delineate the extent of lead-impacted soil
at the portion of the facility that may have been used for plating. An important en-
vironmental question, which Bhaumik and Gibbons (2004) addressed using frequentist
prediction methods, is to determine whether the on-site mean lead concentration at this
area of the facility exceeded background. To facilitate this determination, n = 15 off-
site soil samples were collected in areas that were uninfluenced by the activities at the
facility. The data are reproduced in Table 1. Using the Shapiro-Wilk normality test,
Bhaumik and Gibbons (2004) ascertained that, at the 5% significance level, a log-normal
model provides adequate fit to this data. Our main goal in this application is therefore
to demonstrate that the on-site concentrations, on average, do not significantly exceed
the backgrund. To this end, we will use the IM framework discussed above to produce
an upper prediction limit for the arithmetic mean of lead contents, Ỹ , of m = 5 on-site
soil samples based on the n = 15 off-site soil samples, Y , and then we will compare it to
the arithmetic mean of the data collected on the on-site lead concentration.

The plausibility for Ỹ , for right-sided assertions A = {Ỹ > ỹ}, as a function of ỹ, is
shown in Figure 1(a). Those ỹ values with plausibility function exceeding 0.05 provide
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Off-site 26 63 3 70 16 5 1 57 5 3 24 2 1 48 3
On-site 50 82 95 103 88

Table 1: Lead (mg/kg) for soil boring samples in off-site and on-site locations.

an upper prediction bound for Ỹ which, in this case, is 136.16 mg/kg. For comparison,
Bhaumik and Gibbons (2004) provide the bound 152.26 mg/kg based on their Gram–
Charlier approximation, and Kim (2007) provides the bound 139.30 mg/kg based on a
Bayesian approach. All three prediction bounds contain the realized arithmetic mean
of the on-site data in Table 1, which was 83.6 mg/kg. We therefore conclude that the
on-site concentrations do not significantly exceed the backgrund. However, since smaller
upper prediction limits are more precise, our IM-based bound is preferred. An additional
advantage of our IM-bound is that it, per Remark 2, also has a clearer interpretation
than the above Bayesian and frequentist bounds.

To check the prediction performance for settings similar to the soil example, we take
5000 samples of size n = 15 from a log-normal distribution with µ = 2.173 and σ2 =
2.3808, the maximum likelihood estimates based on the off-site data in Table 1. A Monte
Carlo estimate of the distribution function of GY (Ỹ ) is shown in Figure 1(b). Apparently,
GY (Ỹ ) is Unif(0, 1), so the plausibility function for prediction is valid, by Theorem 1.

For further comparison, we performed a simulation study similar to the one presented
in Bhaumik and Gibbons (2004). We considered three values for µ (2, 3, 10), six values for
σ2 (0.0625, 0.2, 0.5, 1, 2, 10), five values for n (5, 10, 20, 30, 100), and three values form (1,
5, 10). For each combination, we evaluated the coverage probability of both the lower and
upper 90% prediction intervals. In all cases, the coverage probability equals the nominal
level, up to Monte Carlo error; these estimates are based on 10,000 Monte Carlo samples.
Unlike the Gram–Charlier approximation method in Bhaumik and Gibbons (2004), our
IM-based interval method does not need technical tools for derivation, and achieves the
nominal coverage probability even when σ2 > 3. Moreover, the other two frequentist
approximation methods reported in Bhaumik and Gibbons (2004) do not achieve the
nominal coverage probability.

3.3 Gamma models and a system breakdown application

Let Y = (Y1, . . . , Yn) be an iid sample from a gamma distribution with shape parameter
θ1 > 0 and scale parameter θ2 > 0, both unknown. Gamma models are often used in
system reliability applications. Following Martin and Liu (2015a, Sec. 5.3), a conditional
association for (θ1, θ2) based on sufficient statistics is given by

T1 = θ2Γ
−1
nθ1

(U1) and T2 = F−1
θ1

(U2),

where U = (U1, U2) are iid Unif(0, 1), T1 =
∑n

i=1 Yi, T2 = n−1
∑n

i=1 log Yi − log(n−1T1),
Γa is the Gamma(a, 1) distribution function, and Fb is a distribution function without a
familiar form. First, suppose the goal is to predict the next (independent) observation
Ỹ = Yn+1, with the following association:

Ỹ = θ2Γ
−1
θ1
(Ũ), Ũ ∼ Unif(0, 1). (10)
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Figure 1: Panel (a): Plausibility function of Ỹ in the log-normal data example. Panel (b):
Distribution function of GY (Ỹ ) (gray) compared with that of Unif(0, 1) (black) based on
Monte Carlo samples from the log-normal distribution with µ = 2.173 and σ2 = 2.3808,
the maximum likelihood estimates in the Bhaumik and Gibbons (2004) example.

Specifically, we want to give a lower prediction limit for Ỹ . The general strategy is to
solve for θ = (θ1, θ2) in the conditional association, and then plug this solution in for θ
in the association for the new observation. In particular, for a given U = (U1, U2), write

θ(Y, U) =
(

θ1(Y, U), θ2(Y, U)
)

(11)

for this solution; it depends on Y only through (T1, T2). The solution exists and is unique,
though there is no closed-form expression. A proof of this claim, along with some details
about computing the solution in (11), are given in the Appendix. Plugging (11) in to the
association for Ỹ gives the marginal association

Ỹ = θ2(Y, U)Γ
−1
nθ1(Y,U)(Ũ). (12)

This association is not of the separable form in Remark 4. In any case, if GY denotes the
distribution function of the quantity on the right-hand side of (12), then we can write
Ỹ = G−1

Y (W ) for W ∼ Unif(0, 1). This completes the A-step for IM prediction. Since we
are interested in lower prediction limits, we compute the plausibility function in (5).

In some system reliability applications, like in Hamada et al. (2004) and Wang et al.
(2012), interest may be in the largest among a collection of m future observations.
In that case, we have an association that looks exactly like (12), except that Ỹ =
max{Yn+1, . . . , Yn+m} is a maximum of m future gamma observations and Ũ is the max-
imum of m independent uniforms, independent of U . This involves the same solution
θ(Y, U) as before, so nothing changes except the distributions being used in the Monte
Carlo simulation of the plausibility function.

For illustration, consider the data Y = (Y1, . . . , Yn) on the first breakdown times of
n = 20 machines given in Hamada et al. (2004). These data are reproduced in Table 2. At
the 5% significance level, the Kolmogorov–Smirnov test cannot reject the null hypothesis
that these data are gamma, so the goal is to use the IM machinery described above to
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18 23 29 409 24 74 13 62 46 4
57 19 47 13 19 208 119 209 10 188

Table 2: Machine first breakdown times, in hours.
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Figure 2: Panel (a): Plausibility function of Ỹ in the gamma data example. Panel (b):
Distribution function of GY (Ỹ ) (gray) compared with that of Unif(0, 1) (black) based on
Monte Carlo samples from Gamma(θ̂1, θ̂2), where θ̂1 = 0.8763 and θ̂2 = 90.91 are the
maximum likelihood estimates.

produce a lower prediction limit for Ỹ , the maximum of m = 5 future breakdown times.
Proceeding as described above, the plausibility function of Ỹ is given by ply(ỹ) = Gy(ỹ),
which can be easily evaluated via Monte Carlo. A plot of this plausibility function for
A = {Ỹ ≤ ỹ}, as a function of ỹ, is given in Figure 2(a). A one-sided 90% plausibility
interval is the set of all ỹ values such that ply(ỹ) > 0.10, and the lower bound in this case
is 73.53 hours. For comparison, our lower bound is bigger, i.e., more precise, than the
Bayesian lower bound (71.8 hours) in Hamada et al. (2004) and slightly smaller than the
fiducial lower bound (74.36 hours) in Wang et al. (2012). The IM bound, per Remark 2,
also has a clearer interpretation than the Bayesian and fiducial bounds. To assess the
performance of the method in problems similar to this one, we simulate 2000 data sets
based on the maximum likelihood estimates based on the failure time data. A Monte
Carlo estimate of the distribution function of GY (Ỹ ) is shown in Figure 2(b). This
distribution function is sufficiently close to that of Unif(0, 1), so we can conclude our
one-sided IM-based 90% prediction interval has exact coverage.

For further illustration, we consider a simulation experiment, similar to that in Wang et al.
(2012), with three values of the sample size n (10, 25, 125), four values of the shape pa-
rameter θ1 (0.5, 1, 5, 10), and two values of m (1, 5); we keep the scale parameter θ2 fixed
at 1. For each combination, we evaluated the coverage probability of both the lower and
upper 90% prediction intervals based on 10,000 Monte Carlo samples. In all cases, the
coverage probability is within an acceptable range of the target 0.90.
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3.4 Binomial models and a disease count application

Let Y ∼ Bin(n, θ) and Ỹ ∼ Bin(m, θ) be independent binomial random variables, where n
and m are known. The goal is to predict Ỹ based on observing Y . There is considerable
literature on this fundamental problem: see, e.g., Wang (2010) for frequentist prediction
intervals and Tuyl et al. (2009) for Bayesian prediction intervals. The starting point for
our IM-based analysis is the following joint association for Y and Ỹ ,

Fn,θ(Y − 1) ≤ 1− U < Fn,θ(Y ) and Fm,θ(Ỹ − 1) ≤ 1− Ũ < Fm,θ(Ỹ ),

where U and Ũ are independent uniforms, and Fn,θ is the Bin(n, θ) distribution function.
To marginalize over θ, we need a known identity linking the binomial and beta distribution
functions, i.e., Fn,θ(y) = 1−Gy+1,n−y(θ), where Ga,b is the Beta(a, b) distribution function.
Now rewrite the first expression in the joint association as a θ-interval:

G−1
Y,n−Y+1(U) ≤ θ < G−1

Y+1,n−Y (U). (13)

Next, rewrite the Ỹ association as

F−1
m,θ(1− Ũ) < Ỹ < F−1

m,θ(1− Ũ).

Klenke and Mattner (2010) show that F−1
m,θ(v) is an increasing function of θ for all v, so

we can “plug in” the Y -dependent interval for θ in to this latter inequality, to get

F−1
m,θ1(Y,U)(1− Ũ) < Ỹ < F−1

m,θ2(Y,U)(1− Ũ), (14)

where θ1(Y, U) and θ2(Y, U) are, respectively, the left and right endpoints of the interval
in (13). This completes the A-step. We are interested in two-sided prediction intervals
here; see the P- and C-steps for singleton assertions in Section 2.4. Note that this
association is an interval, compared to the singletons in the previous examples. This is a
consequence of the discreteness of the binomial, not a limitation of the IM approach; but
see below. Some minor adjustments to the C-step in Section 2.4 is needed to handle this
discreteness. Since we can easily get a Monte Carlo approximation for the distribution
of the two endpoints, constructing a plausibility function for Ỹ is no problem.

In medical applications, it may be desirable to obtain accurate prediction of the
number of future cases of a disease based on the counts in previous years. Wang (2010,
Sec. 5) gives the following example. The total number of newborn babies with permanent
hearing loss is Y = 23 out of n = 23061 normal nursery births over a two-year period.
The goal is to predict Ỹ , the number of newborns with hearing loss in the following year,
based on m = 12694 normal births. For a two-sided, IM-based 90% prediction interval
for Ỹ , we compute the 5th and 95th percentiles of the distribution of the lower and upper
endpoints, respectively, in (14). The interval obtained is (6, 21), which contains the true
Ỹ = 20 and is essentially the same as the intervals in Wang (2010); see Remark 2.

The plausibility function obtained based on the above construction is a bit conser-
vative. One possible adjustment, based on an idea presented by Wang et al. (2012) in
the fiducial context, is to eliminate the interval association for Ỹ by first eliminating the
interval association (13) for θ in terms of the limits θ1(Y, U) and θ2(Y, U). The idea is
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Figure 3: Coverage probability and average length of the modified IM (solid), fiducial
(dashed), and Jeffreys prior Bayes (dotted) upper 95% prediction intervals, as functions
of θ; the three length curves in Panel (b) are indistinguishable. Here n = m = 100 and
estimates are based on 2500 simulated data sets.

to sample a value, θ̂(Y, U), of θ at random from the interval (θ1(Y, U), θ2(Y, U)). This
results in a modified association for Ỹ :

Ỹ = F−1

m,θ̂(Y,U)
(1− Ũ). (15)

The intuition is that the uncertainty due to the interval association has been replaced
by the uncertainty from sampling. Since the sampled point is “less extreme” than both
of the endpoints, this modified association gives a more efficient plausibility function for
prediction, which we now demonstrate. Consider binomial samples of size n = m = 100
over a range of θ values. Here we compare the coverage probability and average lengths of
95% upper prediction limits based on the modified IM, fiducial, and Jeffreys prior Bayes
methods. We simulated 2500 data sets, and each computation of the prediction interval
(modified IM, fiducial, and Bayes) used 10,000 Monte Carlo samples. In Figure 3, we
see that all three methods have coverage slightly above the nominal level over the entire
range of θ; this is to be expected, given the discreteness of the binomial model. The
modified IM intervals based on (15) tend to have slightly higher coverage probability
than the others, but with no perceptible difference in length.

4 Some further technical details

4.1 Asymptotic validity

Outside the separable class in Remark 4, or in cases where Ỹ is a non-linear function of
several future observables, the theory of prediction validity is more challenging. However,
our examples in Section 3 demonstrate that the uniformity assumption of Theorem 1 holds
at least approximately. Here we give a theoretical argument to explain this phenomenon.

Write Y n = (Y1, . . . , Yn) for data consisting of n iid components. Suppose that the
solution θ(Y n, V ) converges in probability to θ, as a function of (Y n, V ); this usually
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is easy to arrange, see the examples in Section 3. If Ỹ has a continuous distribution,
then, without loss of generality, we can write GY n(Ỹ ) = F̃θ(Y n,V )(Ỹ ), where F̃θ is the

true distribution of Ỹ . Trivially, we have (θ(Y n, V ), Ỹ ) → (θ, Ỹ ) in distribution so, if
(θ, ỹ) 7→ F̃θ(ỹ) is continuous, then the continuous mapping theorem implies that

GY n(Ỹ ) = F̃θ(Y n,V )(Ỹ ) → F̃θ(Ỹ ) ∼ Unif(0, 1) in distribution.

Therefore, we can generally be sure that the distribution of GY n(Ỹ ) will be approximately
Unif(0, 1) when the sample size n is large. This argument holds even if Ỹ is some scalar
function of several future observations.

In addition to providing an asymptotic validity result, the argument above is also
relevant to prediction accuracy. That is, we have demonstrated that the IM “predictive
distribution” for Ỹ , which mixes F̃θ(Y n,V ) over the distribution of V , converges to F̃θ, the

true distribution of Ỹ . A precise prediction accuracy result requires computing a measure
of the distance/divergence of the IM predictive from the truth. We expect that results
comparable to those in Lawless and Fredette (2005) can be derived, but we leave this as
a question to be considered in future work.

4.2 Case of dependent τ(U) and η(U)

Recall that, in Section 2.3, it was assumed that the original association, Y = a(θ, U),
could be decomposed as T (Y ) = b(θ, τ(U)) and H(Y ) = η(U), and, furthermore, that
τ(U) and η(U) are independent. Of concern here is the case where τ(U) and η(U) are not
independent, which would arise, say, in models that are not regular exponential families.
The IM framework is equipped to handle this, but the details are more complicated.
Here, we describe the three-step construction of an IM for prediction in the case where
the model is a location shift of a Student-t distribution.

Let Y = (Y1, . . . , Yn)
⊤ be iid, with Yi = θ + Ui and Ui ∼ td, i.e., θ is a location

parameter and the error has a Student-t distribution with known degrees of freedom d.
The case with an additional unknown scale parameter can be handled similarly. Let
T (Y ) be the maximum likelihood estimator for θ, and let H(Y ) = Y − T (Y )1n be the
vector of residuals, where 1n is a (column) n-vector of unity. Since T is equivariant in
this example, we have

T (Y ) = θ + T (U) and H(Y ) = H(U),

so that τ = T and η = H . However, τ(U) and η(U) are not independent here. As
suggested in Martin and Liu (2015a) and in Section 2.3 above, we want to consider the
conditional distribution of τ(U), given that η(U) equals the observed value of H(Y ). Let
H0 denote the observed value of H(Y ). Then Martin and Liu (2015a) give a formula for
the conditional distribution of τ(U), given η(U) = H0. Write PV |H0

for this conditional
distribution of V = τ(U), so that

T (Y ) = θ + V, V ∼ PV |H0
.

This can be solved for θ, and a marginal association connecting the observed Y , the next
Ỹ to be predicted, and the pair (V, Ũ) of auxiliary variables is of the form

Ỹ = T (Y ) + Ũ − V, where V ∼ PV |H0
, Ũ ∼ td.
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Computation with the conditional distributions is more cumbersome, but our claim that
the dependent case is conceptually no different than the independent case should now
be clear. Moreover, using the law of iterated expectation, it can be shown that the
conditioning does not affect validity result in Theorem 1.

4.3 Multivariate prediction

The focus of this paper was on the case of predicting a scalar Ỹ , which is possibly a
scalar-valued function of several future observables. However, in some cases there could
be interest in simultaneous prediction of several future observables. One example is in
regression, where interest may be in predicting the response value corresponding to several
values of the predictor variables simultaneously. While the general IM framework is well-
equipped to handle the multivariate case, our developments here have employed a few
scalar-specific steps. Our goal in this section is simply to highlight those scalar-specific
steps, defining a roadmap to extend the present developments to the multivariate case.

First, note that, up to the simplified association formula in (3), there is nothing in
the developments in Section 2.3 specific to the scalar Ỹ case. There, we introduced a
distribution GY and a probability integral transform, which is only valid in the scalar case.
However, (2) is well-defined for vector Ỹ , and would conclude the A-step for multivariate
prediction. From here, the P-step proceeds by introducing a predictive random set for the
pair (V, Ũ). Validity, as usual, would not be a major obstacle, but an efficient choice of
predictive random set would be problem specific. For a scalar auxiliary variable, the only
reasonable choice of predictive random set is an interval, but in the multivariate case,
there are lots of “reasonable” shapes, and the choice among them makes a difference in
terms of the corresponding IM’s efficiency. Work on the construction of efficient predictive
random sets, in general, is ongoing, and results to be obtained will have immediate
application to the multivariate prediction problem.

Second, observe that the discussion of one-sided assertions in Section 2.4 is not ap-
propriate in the multivariate setting, where there is no proper ordering. The two most
natural assertions would be the singletons and assertions defined via level sets of some
scalar-valued function of Ỹ , e.g., balls {ỹ : ‖ỹ‖ ≤ r} for some fixed radius r > 0. The
latter case reduces to the scalar prediction problem covered in this paper. For the sin-
gleton assertion case, nothing in the present development needs to change, except that
the predictive random set, in general, must be specified for the pair (V, Ũ) directly. If
this predictive random set is valid, then the conclusion of Theorem 1 holds. Again, the
challenge is that the shape of the predictive random set is directly related to the shape
and efficiency of, say, the IM prediction regions for Ỹ . So, more work on constructing
good/optimal predictive random sets for multivariate auxiliary variables is needed.

5 Conclusion

In this paper, we have proposed a method for prediction of future observables based on
the recently developed IM framework. The key to the IM approach in general is the
association of data and parameters with unobservable auxiliary variables, and the use of
random sets on the auxiliary variable space to construct belief and plausibility functions
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on the parameter space. In the context of prediction of future observables, all the model
parameters are nuisance, and an extreme form of the marginalization technique described
in Martin and Liu (2015b) is required, which allows us to reduce the dimension of the
auxiliary variables, increasing efficiency. We give conditions which guarantee that the
IM for prediction is valid, and we argue that this notion of IM validity translates to
frequentist coverage guarantees for our plausibility intervals for future observables. A
sequence of practical examples demonstrates the quality performance of the proposed
method, along with its generality and overall simplicity.

The methodology described here covers both discrete and dependent-data problems.
However, these problems present unique challenges. For example, in the binomial example
in Section 3.4, our standard IM approach was valid but conservative. A modified and more
efficient IM was proposed, and its validity was confirmed numerically, but a theoretical
basis for this modification is required. For dependent data problems, marginalization to
reduce the dimension of auxiliary variables as described here is possible, but the details
would be more challenging. Moreover, as discussed in Section 4.3, additional work is
needed to properly extend the developments in the present paper to the multivariate
prediction problem. These are all topics for future research.

To conclude, recall the take-away message from Section 1. The IM approach provides
a general and easy-to-implement method for constructing valid prior-free probabilistic
summaries of the information in observed data relevant for inference or prediction. The
fact that these summaries can be converted to frequentist procedures with fixed-n perfor-
mance guarantees and comparable efficiency compared to existing methods is an added
bonus. We expect further developments and applications of IMs in years to come.
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A Technical details for Section 3.3

A.1 Existence and uniqueness of the solution (11)

Here the issue is existence and uniqueness of the solution θ(T, U) = (θ1(T, U), θ2(T, U))
in the gamma problem in Section 3.3. The only non-trivial part is the solution θ1 of
equation Fθ1(t2) = u2, involving only (t2, u2). The challenge is that Fθ1 is a non-standard
distribution. Glaser (1976), in his notation, considers the random variable

U⋆ =
{(

∏n
i=1 Yi)

1/n

1
n

∑n
i=1 Yi

}n

,

the n-th power of the ratio of geometric and arithmetic means of an iid Gamma(θ1, 1)
sample. Then T2 = n−1 log(U⋆), i.e., our T2 is a monotone increasing function of Glaser’s
U⋆. A consequence of Glaser’s Corollary 2.2 is that U⋆ is stochastically strictly increasing
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in θ1, which implies that Fθ1(t2) is a decreasing function of θ1 for all t2. Therefore, if a
solution exists for θ1 in (11), it must be unique by monotonicity.

Turning to the existence of a solution for θ1, we need to show that, for any t2, Fθ1(t2)
spans all of the interval (0, 1) for u2 as θ1 varies. By monotonicity, it suffices to consider
the limits θ1 → {0,∞}. Jensen (1986) considers the random variable W = −1/T2 and
shows, in his Equation (9), that θ1/W has a limiting distribution as θ1 → {0,∞}, which
implies the same for θ1T2. It is now clear that Fθ1(t2) converges to 1 and 0 as θ1 converges
to 0 and ∞, respectively, for all t2. Therefore, a solution for θ1 in (11) exists for all (t2, u2)
pairs, as was to be shown.

A.2 Computing the solution (11)

Here we consider computing the solution θ(Y, U) in (11). The only challenging part is
solving for θ1, so we shall focus on this. Suppose t2 and u2 are given, and define a
function r(x) = Fx(t2) − u2; the goal is to find the root for r. One can evaluate r(x)
by simulating Gamma(x, 1) variables, giving a Monte Carlo approximation of Fx(t2), and
the root can then be found with any standard method, e.g., bisection. However, this can
be fairly expensive computationally. A more efficient alternative approach is available
based on large-sample theory. By Theorem 5.2 in Glaser (1976) and the delta theorem,
if n is large, then Fx can be well approximated by a normal distribution function with
mean ψ(x)− log(x) and variance n−1{ψ′(x)−1/x}, where ψ and ψ′ are the digamma and
trigamma functions, respectively. With this normal approximation, it is easy to evaluate
r(x) and find the root numerically. Though this is based on a large-sample approximation,
in our experience, there is no significant loss of accuracy, even for small n.

The normal approximation discussed above is simply a tool to find the solution
θ(Y, U). It also provides some intuition related to the asymptotic argument in Sec-
tion 5.1. When n is large, the variance in the normal approximation is O(n−1), so the
distribution function Fx will have a steep slope in the neighborhood of the solution to
the equation t2 = ψ(x) − log(x) and, therefore, the root for r(x) will be in that same
neighborhood, no matter the value of u2. The solution to the equation t2 = ψ(x)− log(x)
is the maximum likelihood estimator of θ1 (e.g., Fraser et al. 1997), which is consistent.
Therefore, when n is large, (12) and (10) are essentially the same, so the approximate
validity of the corresponding prediction plausibility function is clear.

One last modification that we found to be helpful was to modify that normal approx-
imation discussed above by replacing the normal distribution function with a gamma.
That is, find solutions for the mean and variance of the normal approximation as before,
but then use a gamma distribution function with mean and variance matching those
obtained for the normal. See the R code available at the first author’s website.
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