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ABSTRACT
It is increasingly recognized thatmany industrial and engineering experiments use split-plot or othermulti-
stratum structures. Much recent work has concentrated on finding optimum, or near-optimum, designs for
estimating the fixed effects parameters inmulti-stratumdesigns. However, often inference, such as hypoth-
esis testing or interval estimation, will also be required and for inference to be unbiased in the presence
of model uncertainty requires pure error estimates of the variance components. Most optimal designs pro-
vide few, if any, pure error degrees of freedom. Gilmour and Trinca (2012) introduced design optimality cri-
teria for inference in the context of completely randomized and block designs. Here these criteria are used
stratum-by-stratum to obtain multi-stratum designs. It is shown that these designs have better properties
for performing inference than standard optimumdesigns. Compound criteria, which combine the inference
criteria with traditional point estimation criteria, are also used and the designs obtained are shown to com-
promise between point estimation and inference. Designs are obtained for two real split-plot experiments
and an illustrative split–split-plot structure. Supplementary materials for this article are available online.

1. Introduction

Obtaining efficient results from experiments under limited
resources and practical constraints has led to an increasing
number of studies dealing with design of experiments which
involve restricted randomization due to some factors having lev-
els which are hard to set. Such randomization restrictions gen-
erate the class of multi-stratum designs (Trinca and Gilmour
2001; Goos and Gilmour 2012; Trinca and Gilmour 2015) from
which the simplest special case includes regular orthogonal and
nonorthogonal split-plot designs. To take into account random-
ization restrictions at each level of hardness to set or blocking,
known as strata, random coefficients are included in the statisti-
cal model leading to a linear mixed model (Letsinger et al. 1996;
Trinca and Gilmour 2001; Hinkelmann and Kempthorne 2005).
The mixed model includes fixed effects for the treatment fac-
tors and random effects for the experimental units in each stra-
tum. Treatment effects and variances of randomeffects (variance
components) are the parameters to be estimated from the data.
The standard estimation procedure for the variance components
is residual maximum likelihood (REML) whose estimates are
then substituted into the usual generalized least squares (GLS)
solutions to obtain fixed effects estimates and an approximate
variance–covariance matrix of these estimates.

There is a large body of work on locally optimal split-plot
designs, at point prior estimates of the variance components,
considering the optimization of a single statistical property. See,
for example, Goos (2002), Goos and Vandebroek (2003), Goos,
Langhans, and Vandebroek (2006), Goos and Donev (2007),
Jones and Goos (2007), Jones and Goos (2009), Jones and
Nachtsheim (2009), Macharia and Goos (2010), Jones and Goos
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(2012), Sambo, Borrotti, and Mylona (2014), and Nguyen and
Pham (2015) for comprehensive work on D, and more recently
on I, optimum designs for fixed effects of split-plot and split–
split-plot designs, with designs generally being produced assum-
ing all variance component ratios are known to be 1. For the D
criterion, it has been shown that such designs are usually opti-
mal, or very close to optimal, for a reasonable range of known
values of the variance components. Usually the property opti-
mized is based on the information matrix of the fixed effects
parameters and so refers directly to point estimation of these
parameters, or related properties such as prediction. It has been
noted however that such methods produce designs that have no
or little information for estimating the variance components. In
light of this, Mylona, Goos, and Jones (2014) proposed Bayesian
D optimum designs for the full information matrix, including
the variance components. Of course, in some experiments, point
estimation is the main priority and the standard criteria remain
important for these cases.

On the other hand, much data analysis involves inference
such as hypothesis testing and interval estimation. This requires
either a strong assumption that the assumed model is known
to be correct, which is unrealistic with empirical polynomial
models, or pure error estimates of the variance components.
In completely randomized structures, it has been standard
practice since the dawn of response surface methodology in
the 1950s to ensure estimation of pure error (Box and Draper
2007; Myers, Montgomery, and Anderson-Cook 2009) to carry
out model checking and inference, as in widely used designs
such as central composite designs, Box-Behnken designs and
subset designs. The most common design optimality criteria
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typically produce designs which allow little estimation of pure
error, unless the number of runs is considerably greater than
the number of parameters in the model. In particular, for the
most popular single design criterion used, the D criterion, it
has been found that optimal designs include too few degrees of
freedom to estimate the extra parameters of the mixed model,
the variance components (Mylona, Goos, and Jones 2014), even
assuming the polynomial model is correct. This may also be the
cause of too often obtaining variance component estimates in
the higher stratum to be zero as discussed by Goos, Langhans,
and Vandebroek (2006) and Gilmour and Goos (2009). Such
D-optimal designs, however, will often be excellent for point
estimation of the polynomial effects.

It has been argued that inferences based on pure error vari-
ance component estimates should be preferred due to their
known desirable statistical properties (Kowalski, Cornell, and
Vining 2002; Vining, Kowalski, and Montgomery 2005; Vin-
ing and Kowalski 2008; Gilmour and Trinca 2012). For small to
medium-sized experiments the number of degrees of freedom
to estimate error can often be zero as we show in some exam-
ples in Section 3. Although variance components are not the
parameters of primary interest in this type of experiment, the
standard errors of the fixed effect estimates depend on them.
In addition, powers of hypothesis tests are poor for few error
degrees of freedom. Gilmour and Trinca (2012) proposed new
design criteria which allow completely randomized and ran-
domized block designs to be built which optimize for inference
rather than point estimation. In this article, we proposemethods
for designingmulti-stratum experiments that optimize for infer-
ence. Of course, since we are trying to do more than just point
estimation, the designs produced for carrying out inference will
require more runs than the standard optimal designs.

It is widely recognized that designs for real experiments
must have several good properties (Box and Draper 2007)
and some advances have been made with multiple objectives
(Lu, Anderson-Cook, and Robinson 2011; Sambo, Borrotti, and
Mylona 2014) and composite criteria (Jones and Nachtsheim
2011; Gilmour and Trinca 2012; Mylona, Goos, and Jones 2014;
da Silva, Gilmour, and Trinca 2017) in the last few years in the
context of factorial and response surface designs. Designs using
composite criteria are also introduced in this article and these
are likely to be useful in practice. In Section 2, we justify and
describe our algorithm for constructing designs. This is applied
to several published applications in Section 3 and some general
recommendations are given in Section 4.

2. A Stratum-by-Stratum Strategy for Building
Designs for Inference

Multi-stratum designs have treatment factors applied in differ-
ent strata of experimental units. For example, in the split-plot
design the levels of some factors, the hard to set factors (HS), are
randomized to whole plot units, and levels of other factors, the
easy to set (ES) factors, are randomized to subplot units. We can
also have strata, defined by a restriction in the randomization,
which do not have factors applied, as in the case of a blocks
stratum. The nested multi-stratum structure generalizes all
the special cases. Treatments are the combinations of levels of
all treatment factors and, as a consequence of the restricted

randomization, some effects are confounded with unit effects
in the higher strata. Let T be the n × t full treatment indicator
matrix and Y the n × 1 random response vector. For s strata,
each containing ni units within each unit of stratum (i − 1)
(i = 1, . . . , s and n0 = 1), such that n = ∏s

i=1 ni, the full
treatment model can be written as

Y = Tμ +
s∑

i=1

Ziεi, (1)

where μ is the t × 1 vector of treatment means, Zi is an n × mi
indicator matrix for the units in stratum i,mi = ∏i

j=1 nj, and εi
is themi × 1 vector of random errors in stratum i. For continu-
ousY, it is assumed that εi ∼ N(0, σ 2

i Imi ) and all random effects
are uncorrelated. The model implies that the variance matrix of
Y is V(Y) = σ 2

s V, where V = ∑s
i=1 ηiZiZ′

i and ηi = σ 2
i /σ 2

s .
To aid interpretation, for continuous or two-level factors we

usually prefer the approximation

Tμ = Xpβ, (2)

where Xp is the n × p model matrix for some low-order poly-
nomial and β is the p× 1 parameter vector (p ≤ t). Simi-
lar approximations involving interactions up to an appropriate
order are used for qualitative factors and similar models, but
allowing for constraints among the components, are used for
experiments with mixtures. All of these cases are covered by the
methodology presented here. Given the ratios of variance com-
ponents, the generalized least-squares estimator of β is

β̂ = (X′
pV

−1Xp)
−1X′

pV
−1Y, (3)

with variance given by

V(β̂) = σ 2
s (X′

pV
−1Xp)

−1. (4)

Since in practice we are not given the ratios of variance com-
ponents, the usual approach is to estimate the variance compo-
nents by REML and substitute these estimates into Equations (3)
and (4) to get fixed effect estimates and estimates of their stan-
dard errors.

For the analysis of experimental results, many authors have
argued for the appropriateness of using pure error variance com-
ponent estimators. Vining, Kowalski, and Montgomery (2005)
and Vining and Kowalski (2008) suggested using the sam-
ple variance from replicated treatments. Gilmour, Goos, and
Großmann (2017) showed that more robust and less biased
REML variance component estimates can be obtained from
using the residuals from the full treatment fixed effects model
(Equation (1)). Similar recommendations have been made, for
slightly different reasons, for modeling the covariance struc-
ture in linear (Fitzmaurice, Laird, and Ware 2011, p. 175) and
nonlinear (Pinheiro et al. 2014; Latif and Gilmour 2015) mixed
models.

In the context of completely randomized and random-
ized block designs, Gilmour and Trinca (2012) noted that
for valid inferences error variance should be estimated from
pure error. They then proposed adjustments to the usual
design optimality criteria in order that the design is correctly
optimized for the inferences to be done. Hereafter, in our
notation we use the model matrix X which does not include the
intercept, that is, Xp = [1X]. For example, for s = 1, for a
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(DP)S optimum unblocked design (with the intercept treated
as a nuisance parameter) Gilmour and Trinca (2012) pro-
posed minimizing (Fp−1,d;1−α )p−1/|X′Q0X|, where d is the
number of pure error degrees of freedom, Fp−1,d;1−α is the
1 − α quantile of the F distribution with p− 1 numerator
and d denominator degrees of freedom and Q0 = I − 1

n11
′.

The number of degrees of freedom d is obtained by fitting
the full treatment model, that is, Equation (1). Similar adjust-
ments were proposed for other common design criteria. For
a blocked design the function to be optimized, to get (DP)S
optimum designs (with intercept and block effects treated
as nuisance parameters), is (Fp−1,dB;1−α )p−1/|X′QX|, where
dB is the number of pure error degrees of freedom from the
blocked design, Q = I − Z(Z′Z)−1Z′ and Z is the n × bmatrix
whose columns are indicators for blocks. These formulas are
most easily obtained from an analysis using fixed block effects,
though there is no restriction to fixed blocks implied in the
data analysis. With random block effects, they represent the
appropriate variances in the limit as the ratio of higher to lower
stratum variance components tends to infinity; this allows us to
exploit these results for the split-plot and other multi-stratum
cases.

Here, we extend the approach of Trinca and Gilmour
(2015) for constructing multi-stratum designs stratum-by-
stratum to criteria which optimize for inference. An imme-
diate advantage of the stratum-by-stratum approach is that
it is general for any multi-stratum structure and it does
not require prior estimates of variance components. A fur-
ther advantage is its straightforward extension to criteria for
inference.

The modified stratum-by-stratum (MSS) approach of Trinca
and Gilmour (2015) starts the design construction with the
highest stratum in which factors are applied, considering the
factors in that stratum and any higher blocking stratum only.
Thus, in this phase we need an optimal unblocked or blocked
design. Standard exchange algorithms are used for optimizing
the design in this stratum. In the second stratum, the units in
the first stratum are considered as blocks and the full treat-
ment matrix is the treatment matrix arising from factors in
these two strata, that is, each combination of levels of factors
applied in either of these two strata represents a unique treat-
ment. The approximating model matrix includes all the effects
to be estimated in the second stratum. This process continues
following these ideas until the lowest stratum design is con-
structed. Exchange algorithms are used in each step, but only
levels of factors applied to the stratum being designed are sub-
ject to exchanges. There are many varieties of exchange algo-
rithm and any of them can be used with the stratum-by-stratum
approach. However, a simple modified Fedorov point exchange
algorithm has proved effective. Although coordinate exchange
algorithms can be faster with standard criteria, the inference-
based criteria pose an extra penalty on them, since the treatment
set used needs to beworked out after every exchange.With point
exchange algorithms, the full treatment set can be labeled in the
candidate set and these labels brought into the design with each
exchange. Also, since we only deal with one stratum at a time, it
is unusual for there to bemore than about six factors in a stratum
and it is with more factors that coordinate exchange algorithms
really show speed benefits.

As noted by Trinca andGilmour (2015) and emphasized very
strongly in Trinca and Gilmour (2001), the stratum-by-stratum
approach is not confined to any specific criterion, but can be
used with any criterion at each step. Designs can be constructed
in a straightforwardmanner by using the criteria ofGilmour and
Trinca (2012), which optimize for interval estimation (or equiv-
alently, hypothesis testing), rather than point estimation, in each
stratum. In this article, we explore this approach.

The first thing to note is that the designs in the higher strata
are chosen to have optimal numbers of pure error degrees of
freedom, but these numbers of degrees of freedom are not in
general retained when we combine designs from different strata.
This is because the effects of factors estimated in the lower strata
will usually not all be estimated orthogonally to the higher stra-
tum block effects. Thus, some lower stratum effects will also be
estimable via inter-block information in the higher strata and
this might reduce the available pure error degrees of freedom in
the higher strata.

This is not as serious a limitation as it might at first appear.
First, many multi-stratum designs are such that there are rela-
tively few higher stratum units, for example, few whole plots.
In this case, it is unrealistic to expect to be able to perform
inferences on the parameters estimated in the whole plots
stratum. The most that can be expected is that we can get
decent point estimates of these parameters and inferences on
the parameters estimated in the lowest stratum. On the other
hand, if there are enough whole plots to give realistic chances
of performing inference, then by ensuring we get pure error
degrees of freedom in the subplots, we will also get them in the
whole plots as a by-product.

The reason this happens is as follows. A nonorthogonal split-
plot design can be considered as an incomplete block design,
where the whole plots are blocks and the treatments are com-
binations of levels of the factors. Some treatment contrasts are
completely confounded with blocks and information on them
is recovered from the inter-block analysis. The block sum of
squares is split into treatment sum of squares and residual sum
of squares, the latter representing pure error in the whole plots
stratum when we consider our response surface model. The
pure error degrees of freedom correspond to the number of lin-
early independent unbiased estimators of contrasts among block
effects that can be obtained (Hinkelmann and Kempthorne
2005, pp. 14–16). Clearly a treatment which appears in r differ-
ent blocks provides r − 1 whole plot pure error degrees of free-
dom. Different treatments which appear in different blocks will
providemore degrees of freedom if the estimable block contrasts
are linearly independent.

Therefore, to estimate whole plot pure error with a large
number of degrees of freedom,we requiremany replicated treat-
ments, with the replicates spread across blocks as much as pos-
sible. The (DP)S, (AP)S and similar criteria used in the subplot
optimal design search will ensure that we obtain subplot pure
error degrees of freedom. These require large numbers of repli-
cates of treatments, which can be either in the same block or
in different blocks. However, the good estimation of parame-
ters (the determinant or trace part of the criterion) will tend to
push replicates to be in different blocks, since it is well known
that efficient designs tend not to have replicates within blocks.
Hence, using pure error based criteria in the lower stratum will



TECHNOMETRICS 449

have the effect of ensuring pure error degrees of freedom in the
higher stratum. The examples in the next section illustrate this.

Two warnings are worth noting. First, when there are more
than two strata with treatment factors applied to them, this fea-
ture will ensure that there are sufficient pure error degrees of
freedom in the higher strata, but will not ensure that they are
spread between these strata in the best way. Second, if one is par-
ticularly interested in performing inference on the whole plot
factor effects and is happy with only point estimation of the sub-
plot factor effects (admittedly a strange requirement), onemight
be tempted to use the pure error criterion for constructing the
whole plot design and a standard point estimation criterion for
constructing the subplot design. However, the arguments above
show that in this case the pure error degrees of freedomare likely
to be lost, as the optimal subplot design will tend to avoid having
replicates. Therefore, even in this situation, we should use pure
error based (or compound) criteria in each stratum.

If, in the more usual situation, one is interested in inference
for the subplot factor effects, but only point estimation for the
whole plot factor effects, it is not clear if it is better to use the pure
error criteria or the standard criteria in the whole plots stratum.
This will be explored in some of the examples in the next section.

3. Applications: Improved Split-Plot and
Split–Split-Plot Designs

In this section, we find efficient designs for inferences on the
fixed effects, two for split-plot structures and one for a split–
split-plot structure. We got the motivation from published
designs but since inference is not possiblewith tight experiments
we increased their sizes when necessary to allow for pure error
degrees of freedom. For comparison, we obtained designs by
methods that do not insist on including degrees of freedom for
pure error such as the modified stratum-by-stratum approach
and DS optimum designs using JMP. Note that JMP constructs
D optimum designs that are also DS optimum when the nui-
sance parameter is the intercept or when fixed block effects are
nuisance parameters. The only difference is in the efficiencies
and here we show the DS efficiencies. In the remainder of this
article, all DS optimum designs were constructed using JMP,
unless otherwise stated. To obtain more robust designs Gilmour
and Trinca (2012) also proposed a compound criterion that
incorporates up to four properties focused on the type of anal-
ysis to be performed, each property being given some prior-
ity weight κ . Here, we will use three properties as follows: a
global F-test ((DP)S efficiency), point estimation (weighted-AS
efficiency) and a test for lack of fit for the assumed polynomial
model (degree of freedom efficiency), with weights equal to κ1,
κ3, and κ4, respectively, following the notation of Gilmour and
Trinca (2012). The compound criteria then simplify to

|X′Q0X| κ1
p−1 (n − d)κ4

(Fp−1,d;1−α1 )
κ1 [tr{W(X′Q0X)−1}]κ3 , (5)

whereW is a diagonal matrix of weights for the weighted-A cri-
terion. In this formula, the determinant in the numerator and
the F quantile in the denominator come from (DP)S efficiency,
the trace in the denominator comes from AS efficiency and the

(n − d) in the numerator comes from degree of freedom effi-
ciency. In the following examples, we used relative weights 1, 1

4
and 1 for linear, quadratic and interaction parameters, respec-
tively, as in Trinca and Gilmour (2015).

For blocked designs the compound criterion function is sim-
ilar with appropriate changes to take account of blocking, and
simplifies to

|X′QX| κ1
p−1 (n − b+ 1 − dB)κ4

(Fp−1,dB;1−α1 )
κ1 [tr{W(X′QX)−1}]κ3 . (6)

In the following examples we used (DP)S and a composite cri-
terion using weights κ = (1/3, 1/3, 1/3) for DPS, AS, and DF
efficiency. Designs for these criteria were constructed following
the stratum-by-stratum approach but to keep the notation sim-
ple we will refer to them just as (DP)S and CP optimum designs,
respectively.

In practice, we would recommend using several different
weights in the compound criterion and carefully studying many
properties of the designs obtained; this can often help the exper-
imental team to clarify the objectives of the experiment. One
could go further and obtain the Pareto front of all designs which
are not dominated by any other design—see Lu, Anderson-
Cook, and Robinson (2011), Sambo, Borrotti, and Mylona
(2014), Jones (2013) and Borrotti et al. (2017) for recent work
in this area. However, this does add considerably to the compu-
tational cost of finding designs.

3.1 Example 1: Protein Extraction

The objective of this experiment as first described by Trinca and
Gilmour (2001) was the extraction of protein from a mixture
of two sources A and B. The factors thought to affect produc-
tion were the feed position, the feed flow rate, the gas flow rate,
and the concentrations of A and B. The second-order model
was chosen as an approximation to the response function. The
experimenters had about 20 days to run the experiment but real-
ized that if the feed position was to be set for each experimen-
tal run, as in a completely randomized design, only one run per
day would be possible. This characterized the feed position as
a hard to set (HS) factor, but once its level was set, two runs
could be performed per day. Trinca and Gilmour (2001) pro-
posed the use of 21 days (21 whole plots), each of size two, with
one factor applied in stratum 1 and four factors in stratum 2. To
design the experiment, they fixed the treatment set for each stra-
tum and arranged them to units following the stratum by stra-
tum approach. This resulted in 2 and 0 degrees of freedom for
pure error in strata 1 and 2, respectively, and low DS-efficiency
compared with competing designs. Goos (2002) constructed a
D-optimum design and Trinca and Gilmour (2015) constructed
designs by the MSS approach but none of them allowed pure
error estimation in either of the strata. Since whole plots are of
size two and the full second-order model has p = 21 parame-
ters, the original design was too small for performing inference.
Thus, we have added five extra whole plots and constructed four
designs:DS optimal assuming η = 1;MSS using theDS criterion
(MSSD); (DP)S optimal; and a compromise design. In short, for
constructing the designs stratum-by-stratum we follow:
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1. Fix the candidate set for X1, for example, (−1, 0, 1);
2. Generate a randomnonsingular design forX1, usingN =

26 units. The model includes three parameters. Let X1
be the design-model matrix for the linear and quadratic
effects (p− 1 = 2);

3. Optimize, according to the criterion function chosen,
the design X1 in (2) by performing point exchanges.
For inference criteria, treatment labels are assigned to
the rows of X1 to calculate PE degrees of freedom, the
implicit model being based on the full treatment effects
matrix T1. For inference criteria, we use both models to
optimize the design (although for this particular exam-
ple the error df from both models are the same, since
we are using a three-level design), otherwise we use
just X1;

4. The rows of the matrices X1 and treatment labels are
duplicated to form the 26 whole plots each of size 2;

5. Fix the candidate set for X2,X3,X4,X5, for example, the
34 factorial;

6. With X1 fixed, generate a random blocked nonsin-
gular initial design for X2, X3, X4, and X5. The whole
plots act as blocks and thus the number of blocks is

b = 26. The approximating model has block effects plus
second-order model terms for X2, X3, X4, and X5, plus
the two-factor interaction terms between these factors
and X1. The total number of parameters in this model is
b+ p− 1 with p− 1 = 18. Let X2 be the design-model
matrix for these 18 parameters;

7. Optimize, according to the criterion function chosen, the
design X2 in Step 6 by performing point exchanges. For
PE degrees of freedom, the model has block effects plus
T2 (the full treatment effects matrix involving X2, X3, X4,
and X5) plus the interactions T1 × T2.

The four design constructed for this example are shown in
Supplementary Table A and in Table 1. The (DP)S optimal
designs includes five whole plots which are completely repli-
cated twice (whole plots 2&3, 4&5, 7&8, 12&13, and 22&23) and
three whole plots which have the same treatment repeated twice
(whole plots 6, 16, and 17). Similarly the compound optimum
design has four whole plots completely replicated (whole plots
8&9, 10&11, 14&15, and 16&17) and two whole plots with the
same treatment repeated twice (whole plots 12 and 24).

The skeleton ANOVAs (Goos and Gilmour 2012) with the
breakdown of degrees of freedom are shown in Table 2 for these

Table . (DP)S andCP designs for Example  with  whole plots of size ,  HS, and  ES three-level factors.

(DP)S

WP X1 X2 X3 X4 X5 WP X1 X2 X3 X4 X5 WP X1 X2 X3 X4 X5

 — — — — —   — — —   + — — — —
 — + + —    — + + —  + + + + —
 — —  + +   — — +   + — — — +
 — + — — —   — + — +  + + +  +
 — —  + +   — + + +  + — — + —
 — + — — —     + —  + + — — 
 — — + —    — + + +  + — + — —
 — + + + +     + —  + + — — —
 — — + —     —  +  + — + + 
 — + + + +   + + +   + + — + +
 —  —      + +   + — + + 
 —  —     +  — —  + + — + +
 —  + — —   + + — +  +   + +
 — + — + —   + + — +  + + +  —
 —  + — —   + +  —  +  + — —
 — + — + —   + +  —  + +   +
 — + — — +  + + —  —
 — + +  —  + + + — +

CP

WP X1 X2 X3 X4 X5 WP X1 X2 X3 X4 X5 WP X1 X2 X3 X4 X5

 — — —     —  —   + — — — —
 — + + — —    —  —  +  + + 
 — — — + +   —  —   + — — — +
 — +       —  —  + — + — —
 — —  + —   —  — +  + — — + 
 —  —  +   —  — +  + + — — +
 — — + —    —  + +  + — —  +
 — +  + +   + + + —  + + — + —
 — — +  —   — + + +  + — + + —
 — +  — +   + + — +  +   — 
 — — +  +   — + + +  + — + — +
 —  — — —   + + — +  + +   
 —   — +     + —  +    —
 — + — +    + — —   +    —
 —  + +      + —  +  — — +
 — +   —   + — —   + + + + +
 —  + +   + + — + +
 — +   —  + + + — —
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Table . Skeleton ANOVA of designs for Example  in whole plots with  subplots,
 HS and  ES three-level factors.

Designs

Stratum Source DS MSSD (DP)S CP

Whole plot Treat:    
X1, X

2
1    

Inter-WP Info.    
PE    
Total WP    

Subplot Treat:    
nd order    
Lack of Fit    

PE    
Total    

designs. In this and subsequent tables, indented degrees of
freedom are a subdivision of the preceding unindented degrees
of freedom. For example, for the DS-optimum design there are
25 treatment degrees of freedom in the whole plots stratum,
which break down into 2 for the polynomial terms of X1 and
23 for inter-whole-plot information. The pure error degrees
of freedom are obtained by fitting the full treatment model
(Equation (1) with fixed block effects) using a standard linear
models package. The subplot pure error degrees of freedom are
those which correspond to the residual sum of squares, while
the whole plot pure error degrees of freedom are those which
correspond to the extra sum of squares for whole plots, given
treatments. The treatment degrees of freedom are then given
by subtraction. In the whole plots stratum, with only a single
three-level factor allocated and two degrees of freedom used for
estimating its polynomial effects, there is no possibility of lack
of fit being estimated, so the additional treatment degrees of
freedommust be for estimating effects which are also estimated
in the subplot stratum. This corresponds exactly to the usual
inter-block information in an incomplete block design. In the
subplots stratum, the extra degrees of freedom for treatments
must correspond to lack of fit, since there are no other treatment
effects which can be estimated in this stratum.

Even for the larger number of units theDS andMSSD designs
allow no or few PE degrees of freedom in either stratum. The
(DP)S optimumdesign optimizes the criterion in the lower stra-
tum only since PE degrees of freedom in the higher stratum can
be lost when constructing the blocked design in the second stra-
tum. However, it turns out that the design has 5 and 8 degrees of
freedom for PE in the two strata. All designs except the (DP)S
optimal design allow the fitting of some extra higher order terms
if needed, as indicated by the lack of fit degrees of freedom in
the subplot stratum. Note that the additional treatment degrees
of freedom in the whole plot stratum are for contrasts involv-
ing the factors applied to the sub plot stratum and so are of lit-
tle practical use. As happened with (DP)S designs in completely
randomized and randomized block structures in Gilmour and
Trinca (2012) there is no extra term to be estimated in the lower
stratum. The efficiencies of these designs in terms of the theo-
retical variance matrix of the fixed effect estimators for varying
known values of variance components are shown in Table 3. The
need to estimate PE imposes some cost in terms of traditional
efficiencies, especially in terms of DS, but also to a lesser extent
for AS. The cost is attenuated by the compound optimal design

Table . DS and AS efficiencies, relative to the DS optimum design, and stra-
tum (DP)S efficiencies, relative to the (DP)S optimum designs, of designs for
Example  in  whole plots with  subplots,  HS and  ES three-level factors.

Designs

Efficiency η DS MSSD (DP)S CP

DS  . . . .
 . . . .
 . . . .

AS  . . . .
 . . . .
 . . . .

(DP)1S  . . . .
 . . . .
 . . . .

(DP)2S  . . . .
 . . . .
 . . . .

NOTES: : (DP)S-efficiency in the first stratum.
: (DP)S-efficiency in the second stratum.

that shows higher efficiencies and reasonable PE degrees of
freedom.

3.2 Example 2: Ceramic Pipes

This example uses as motivation the ceramic pipe strength
experiment presented in Vining, Kowalski, and Montgomery
(2005). There were four factors: temperatures in zones 1 and 2
of a furnace, amount of binding in the formulation, and grind-
ing speed. Temperatures were HS and the experiment used 12
whole plots of size four. An equivalent estimation three-level
central composite design (CCD) was used for the experiment.
Vining, Kowalski, and Montgomery (2005) also gave an equiv-
alent estimation Box–Behnken design (BB) for the same lay-
out. Both designs allowed 2 and 21 PE degrees of freedom for
whole and subplot strata, respectively, indicating that there are
plenty of experimental resources at least in the lower stratum.
On the other hand, the efficiencies shown in Table 4 indicate
that these resources may not be being used efficiently. As dis-
cussed at the end of Section 2, though we will have to use one of
the inference-based criteria in the lower stratum, it is not clear
whether we should use this or a standard criterion in the higher
stratum, so we make some comparisons. We constructed three
designs, one using the (DP)S criterion in each stratum, one using
DS in the first stratum and (DP)S in the second stratum, labeled
(DP)�S, and a compound optimum design, all shown in Table 5.
The (DP)S optimum design has six whole plots each completely
replicated twice but only one pair of whole plots within which
a treatment is replicated (whole plots 3 and 4). The (DP)�S opti-
mumdesign, on the other hand, only has three whole plots com-
pletely replicated (whole plots 1&2, 9&10, and 11&12), but has
ten treatments replicated within whole plots (two treatments in
whole plots 3, 4, 6, and 8 and one in whole plots 5 and 7). The
compound optimum design has three whole plots completely
replicated (whole plots 1&2, 9&10, and 11&12) and one treat-
ment replicated within a whole plot (whole plot 7). We note that
another pair ofwhole plots are almost replicates, but differ in one
coordinate (whole plots 4&5). These differences reflect the dif-
ferent criteria used in each stratum in a fairly natural way. The
construction steps are similar to those for Example 1 and are
described in the supplementary material.
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Table . DS and AS-efficiencies, relative to the DS optimum design, and stratum (DP)S efficiencies, relative to the (DP)S optimum design, for Example  in  whole plots
with  subplots,  HS and  ES three-level factors.

Designs

Criterion η CCD BB DS MSSD (DP)S (DP)�S CP

DS  . . . . . . .
 . . . . . . .
 . . . . . . .

AS  . . . . . . .
 . . . . . . .
 . . . . . . .

(DP)1S  . . . . . . .
 . . . . . . .
 . . . . . . .

(DP)2S  . . . . . . .
 . . . . . . .
 . . . . . . .

NOTES: � : the criteria for designing were DS in the first stratum and (DP)S in the second stratum. 1 : (DP)S-efficiency in the first stratum. 2 : (DP)S-efficiency in the second
stratum.

Table . Designs for Example  with  whole plots of size ,  HS and  ES three-level factors.

(DP)S (DP)�S CP

WP X1 X2 X3 X4 X1 X2 X3 X4 X1 X2 X3 X4

 — — — — — — — — — — — 
 — — — + — — — + — —  +
 — — + — — —   — — + —
 — — + + — — + + — — + +
 — — — — — — — — — — — 
 — — — + — — — + — —  +
 — — + — — —   — — + —
 — — + + — — + + — — + +
 —  — + —  — + —  — —
 —  — + —  — + —  — +
 —   — —  + — —   —
 —  +  —  + — —  + 
 —  — + — + — — — + — —
 —  — + — + — — — + — +
 —   — — + + + — +  
 —  +  — + + + — + + +
 — + — —  — —  — + — —
 — +    —  + — + — +
 — + + —  — + — — +  
 — + + +  — + — — + + —
 — + — —    —  — — —
 — +      —  — — +
 — + + —   +   —  —
 — + + +   +   — + 
  + —   + —    — +
  +  +  + —     —
  + + —  +  +   + 
  + + +  + + —   + 
  + —  +  — +  + — 
  +  + +  — +  +  +
  + + — +     + + —
  + + + +     + + +
 + — — — + — — — + — — —
 + — — + + — — + + — — +
 + — + — + — + — + — + —
 + — + + + — + + + — + +
 + — — — + — — — + — — —
 + — — + + — — + + — — +
 + — + — + — + — + — + —
 + — + + + — + + + — + +
 + + — — + + — — + + — —
 + + — + + + — + + + — +
 + +  — + + + — + + + —
 + + +  + + + + + + + +
 + + — — + + — — + + — —
 + + — + + + — + + + — +
 + +  — + + + — + + + —
 + + +  + + + + + + + +

NOTE: � : the criteria used for designing were DS in the first stratum and (DP)S in the second stratum.
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Table . Skeleton ANOVA of designs for Example  in  whole plots with  subplots,  HS, and  ES three-level factors.

Design

Stratum Source CCD BB DS MSSD (DP)S (DP)�S CP

Whole plot Treat:       
Second order +† +†     
Lack of Fit       

PE       
Total WP       

Sub plot Treat:       
Second order −† −†     
Lack of Fit       

PE       
Total       

NOTES: � : the criteria for designing were DS in the first stratum and (DP)S in the second stratum. † : information worth one degree of freedom for the model in the lower
stratum comes completely from the higher stratum (a linear combination of the quadratic effects of X3 and X4 is completely confounded with whole plot effects).

For comparison we show the properties of these designs, the
MSSD optimum design published in Trinca and Gilmour (2015)
and theDS optimum design from Jones and Nachtsheim (2009).
As shown in Table 6, even for reasonably abundant resources
optimum designs based on a single variance property lack PE
degrees of freedom.With a compound criterion, we get a highly
efficient design with a decent number of PE degrees of freedom
and ample degrees of freedom to add higher order terms to the
model in case of need. In this case, using the (DP)S criterion in
both strata gives more PE degrees of freedom in the whole plots
stratum than using DS in the whole plots stratum and (DP)S in
the subplots stratum. The efficiencies of these designs are shown
in Table 4. Although some price is paid in terms ofDS efficiency
to ensure sufficient PE degrees of freedom, this price is quite low,
with all designs constructed having DS efficiency greater than
93% though, in one case, the AS efficiencies are lower. The con-
trast with Example 1 is due to having considerablymore residual
degrees of freedom in this case. This allows a large number of
replicates to be included without damaging the estimation effi-
ciency too much. The compound optimum design is again suc-
cessful at ensuring reasonably high efficiencies for all criteria.

3.3 Example 3: A Split–Split-Plot Design

Jones andGoos (2009) constructed aD optimum split–split-plot
design for six two-level factors, 2 VHS, 1 HS, and 3 ES, using
eight whole plots each with two subplots each of size 2, con-
sidering all linear and linear by linear interaction effects. The
design did not allow PE degrees of freedom and one interaction
term of ES factors was fully estimated in stratum 2. It is clear that
for proper inference we need a larger design. For illustration,
we added four whole plots to the layout and again, to compare
different design strategies, we constructed designs following six
approaches: DS (fixing all ratios of variance components to be
1), MSSD, (DP)S, (DP)�S , that is, DS in the two higher strata
and (DP)S in the lowest stratum, and two compound optimum
designs, CP using the same weight pattern in all strata and
CP† using DS in the first two strata and CP in the last stratum.
They are shown in Supplementary Table B and Tables 7 and 8.
Here, we see that the main replication is of complete subplots
in different whole plots, the designs in Tables 7 and 8 having
9 (subplots 2&4&6, 3&5, 7&9, 10&12, 13&15, 14&16, 19&21,
20&24, with whole plots 7&8 and 2&3 completely replicated),

8 (subplots 1&3, 2&4, 7&17, 9&11, 10&12, 13&15, 14&16,
21&23, with whole plots 1&2, 5&6, and 7&8 completely repli-
cated), 4 (subplots 1&3, 4&6, 9&11, and 20&23) and 3 (subplots
7&9, 10&12, and 14&16), respectively. The construction steps
of our method are (in all phases the candidate set is a two-level
factorial):

1. Generate a random nonsingular design for X1
and X2, using N = 12 units. The model includes
four parameters, the intercept, two linear and
one linear by linear interaction effects. Let X1
be the design-model matrix for the latter three
parameters;

2. Optimize, according to the criterion function chosen,
the design X1 in Step 1 by performing point exchanges.
For inference criteria, treatment labels are assigned to
the rows of X1 to calculate PE degrees of freedom, the
implicit model being based on the full treatment effects
matrix T1. For inference criteria, we use both models
(in this specific case these are identical) to optimize the
design, otherwise we use just X1;

3. The rows of the matrices X1 and treatment labels are
replicated twice to form the 12 whole plots each of size 2;

4. With X1 fixed, generate a nonsingular random blocked
initial design for X3. The whole plots act as blocks and
thus the number of blocks is b = 12. The approximating
model has block effects plus the linear effect of X3, plus
X1 × X3 and X2 × X3. The total number of parameters
in this model is b+ p− 1 with p− 1 = 3. Let X2 be the
design-model matrix for these three parameters;

5. Optimize, according to the criterion function chosen, the
design X2 in Step 4 by performing point exchanges. For
PE degrees of freedom the model has block effects plus
T2 (the full treatment effectsmatrix forX3) plus the inter-
actions T1 × T2;

6. The rows of the matrix [X1 X2] and treatment labels are
replicated twice to form the 24 subplots each of size 2;

7. With X1 and X2 fixed, generate a nonsingular random
blocked initial design for X4, X5, and X6. The num-
ber of blocks is now b = 24. The model includes blocks
plus linear effects and two-factor interactions involving
X4, X5, and X6, plus two-factor interactions between the
groups of factors X1, X2, X3 and X4, X5, X6. The total
number of parameters in this model is b+ p− 1 with
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Table . (DP)S and (DP)�S designs for Example  with  whole plots of size  and  subplots of size ,  VHS,  HS, and  ES two-level factors.

(DP)S (DP)�S

WP SP X1 X2 X3 X4 X5 X6 X1 X2 X3 X4 X5 X6

  — — — — — — — — — — — +
  — — — — + + — — — + + —
  — — + — — + — — + — — —
  — — + + + — — — + + + +
  — — — — + — — — — — — +
  — — — + + + — — — + + —
  — — + — — + — — + — — —
  — — + + + — — — + + + +
  — — — — + — — — — + + +
  — — — + + + — — — + + +
  — — + — — + — — + — + —
  — — + + + — — — + + — —
  — + — — — + — + — — + +
  — + — + + — — + — + — +
  — + + — + + — + + — + +
  — + + + — + — + + + + —
  — + — — — + — + — — — —
  — + — + + — — + — + + +
  — + + — — — — + + — — +
  — + + + + + — + + — + —
  — + — + — — — + — — — —
  — + — + + + — + — + + +
  — + + — — — — + + — — +
  — + + + + + — + + — + —
  + — — — — — + — — — — —
  + — — + — + + — — + + +
  + — + — + — + — + — — +
  + — + + + + + — + + + —
  + — — — — — + — — — — —
  + — — + — + + — — + + +
  + — + — + — + — + — — +
  + — + + + + + — + + + —
  + — — — — + + — — — + +
  + — — + + — + — — + — +
  + — + — + + + — + — — —
  + — + + — — + — + — — —
  + + — — — — + + — — — +
  + + — — + + + + — + + —
  + + + — — + + + + — + —
  + + + + — — + + + + — +
  + + — — — — + + — — + —
  + + — — + + + + — + — —
  + + + — + + + + + + — —
  + + + + + — + + + + + +
  + + — — + — + + — — + —
  + + — + — + + + — + — —
  + + + — — + + + + — — —
  + + + + — — + + + — + +

NOTE: � : the criteria for designing were DS in the first two strata and (DP)S in the third stratum.

p− 1 = 15. LetX3 be the design-model matrix for these
15 parameters;

8. Optimize, according to the criterion function chosen, the
design X3 in step 7 by performing point exchanges. For
PE degrees of freedom, the model has block effects plus
T3 (the full treatment effects matrix involving X4, X5,

and X6) plus the interactions T1 × T3, T2 × T3, and
T1 × T2 × T3.

9. As there are replicates of treatments at whole plot and
subplot levels, it may be possible to further optimize the
design found in Step 8 by swapping sub plots among
whole plotswith the same levels ofX1, X2, andX3, always
using the criterion of choice. Thus, a constrained inter-
change algorithm is applied in which the blocking sys-
tem is b = 12 blocks of size four and the model has pure

linear effects of X3, X4, X5, X6 and all two-factor inter-
actions except X1 × X2, that is, p− 1 = 18.

For the degrees of freedom from the designs compared
(Table 9), we observe the same pattern as shown in the previ-
ous examples, that is, point estimation criterion designs allow-
ing no PE degrees of freedom in strata 2 and 3. The (DP)S opti-
mum design allows 7, 2, and 9 PE degrees of freedom in strata
1, 2, and 3, respectively, but it does not support fitting higher
order terms in the lowest stratum. Using the (DP)S criterion
only in the lowest stratum again gives a slightly different alloca-
tion of degrees of freedom, which might seem preferable. As in
most multi-stratum designs, some terms which are estimable in
a lower stratum are also estimable in higher strata, due to inter-
block information. We refer to this as inter-whole-plot or inter-
subplot information depending on which stratum it appears in.
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Table . CP andCP† designs for Example  with  whole plots of size  and  subplots of size ,  VHS,  HS, and  ES two-level factors.

CP CP†

WP SP X1 X2 X3 X4 X5 X6 X1 X2 X3 X4 X5 X6

  — — — — — — — — — — — —
  — — — — + + — — — — — +
  — — + — — + — — + — + +
  — — + + + — — — + + — +
  — — — — — — — — — — — —
  — — — — + + — — — + + +
  — — + — + + — — + — — +
  — — + + — + — — + + — —
  — — — — + — — — — — — +
  — — — + + + — — — + + +
  — — + — + + — — + + — +
  — — + + — + — — + + + —
  — + — + — + — + — — — +
  — + — + + — — + — + + —
  — + + — — + — + + — — —
  — + + + — — — + + — + +
  — + — — + + — + — — — +
  — + — + — + — + — + + —
  — + + — + — — + + — + —
  — + + + — — — + + + + +
  — + — — + + — + — — + —
  — + — + + — — + — + — —
  — + + — — — — + + — + —
  — + + + + + — + + + + +
  + — — — — + + — — — — +
  + — — — + — + — — + + —
  + — + — — — + — + — — —
  + — + + + — + — + + + +
  + — — — — + + — — — + —
  + — — + — — + — — + — —
  + — + — — — + — + — — —
  + — + + + + + — + + + +
  + — — — + — + — — — + —
  + — — + — — + — — + + +
  + — + + + — + — + — + +
  + — + + + + + — + + + —
  + + — — — — + + — — — —
  + + — + + + + + — + — +
  + + + — + + + + + — + —
  + + + + — + + + + + — —
  + + — + — + + + — — — —
  + + — + + + + + — — + +
  + + + — — + + + + — — +
  + + + + + — + + + — + —
  + + + — + + + + — — + +
  + + + + — + + + — + — +
  + + — — — — + + + — — +
  + + — + — + + + + + — —

NOTE: † : the criteria for designing were DS in the first two strata andCP in the third stratum.

The extra treatment degrees of freedom shown for all designs in
stratum 1 are inter-whole-plot information for terms that come
from the factors at lower strata and only one degree of freedom
in stratum 2 could be used for augmenting the model in that
stratum. The candidate set design points we use do not support
fitting higher order terms for X1 and X2, and in stratum 2 the
only higher order term that could be fitted is X1 × X2 × X3. The
compound optimum design (CP) distributes the PE and lack of
fit degrees of freedom more equally and shows good properties
in terms of efficiencies (Tables 10 and 11).

4. Discussion

Restrictions to settings of factor levels often occur in practical
experiments. Sometimes experimenters are unaware of the con-
sequences for the analysis and change the randomized order of

treatments initially planned to meet the practical requirements
(Jensen and Kowalski 2012). So, it is important to offer method-
ology for designing good experiments taking into account
the constraints that arise in practice. We have shown that the
standard approach for optimal designs does not allow valid
inference in the analysis, in the classical sense that no unbiased
estimators of variance components are available in the case of
uncertainty about the fixed effects model. Other alternatives,
such as equivalent estimation designs, do not use resources effi-
ciently. In contrast, the stratum-by-stratum approach together
with a careful choice of the criterion can produce designs
that are very good in practice even with fairly small run sizes.
This approach does not require prior values of the variance
components and can be used with point exchange algorithms
because its stratum-by-stratum nature does not usually face the
problem of excessively large candidate sets. This is especially
important for inference criteria since there is an extra cost for
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Table . Skeleton ANOVA of designs for Example  in  whole plots with  subplots and  sub-subplots,  VHS,  HS, and  ES two-level factors.

Designs

Stratum Source DS MSSD (DP)S (DP)�S CP CP†

Whole plot Treat:      
X1, X2, X1 × X2      
Inter-WP Info.      

PE      
Total WP      

Sub plot Treat:      
X3, X1 × X3, X2 × X3      
Lack of Fit      
Inter-SP Info.      

PE      
Total SP      

Sub-sub-plot Treat:      
X4, X5, X6, X1 × X4, . . . , X5 × X6      
Lack of Fit      

PE      
Total      

NOTES: � : the criteria for designing were DS in the first two strata and (DP)S in the third stratum. † : the criteria for designing were DS in the first two strata andCP in the
third stratum.

Table . DS- and AS-efficiencies, relative to theDS optimum design, of split–split-plot designs in Example  with  whole plots with  subplots and  sub-subplots,  VHS,
 HS, and  ES two-level factors.

Designs

Criterion η1 η2 DS MSSD (DP)S (DP)�S CP CP†

DS   . . . . . .
  . . . . . .
  . . . . . .

  . . . . . .
  . . . . . .
  . . . . . .

AS   . . . . . .
  . . . . . .
  . . . . . .

  . . . . . .
  . . . . . .
  . . . . . .

NOTES: ∗ : the criteria for designing were DS in the first two strata and (DP)S in the third stratum. † : the criteria for designing were DS in the first two strata andCP in the
third stratum.

Table . (DP)S efficiencies, relative to the (DP)S optimum design, of split–split-plot designs in Example .

Designs

Stratum η1 η2 DS MSSD (DP)S (DP)�S CP CP†

   . . . . . .
  . . . . . .
  . . . . . .

  . . . . . .
  . . . . . .
  . . . . . .

   . . . . . .
  . . . . . .
  . . . . . .

  . . . . . .
  . . . . . .
  . . . . . .

   . . . . . .
  . . . . . .
  . . . . . .

  . . . . . .
  . . . . . .
  . . . . . .

NOTES: ∗ : the criteria for designing were DS in the first two strata and (DP)S in the third stratum. † : the criteria for designing were DS in the first two strata andCP in the
third stratum.
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calculating them after each exchange made in the design. With
the point exchange algorithm, we can label the treatments in
the candidate set and bring these forward as the design keeps
changing in the optimization procedure. We have shown results
for just one type of compound criterion, but these criteria are
very flexible. Other weights and other combinations of criteria
can be developed and used to produce attractive designs for
practice.

In most experiments, it is desirable to use designs which
have many good properties and those produced here using
compound criteria seem very attractive. This begs the question
of which weights should be used to produce compound opti-
mum designs. In the examples presented here, equal weight was
given to each part of the compound criterion and the designs
produced seem quite reasonable. However, in practice, when-
ever time allows, we would recommend experimenters to try
out various weights and study all the properties of the designs
produced. Likewise, we would recommend trying different
strategies in terms of which criteria are used in the higher
strata, to produce more designs for detailed consideration.
This can be a very useful contribution to the discussion among
the experimental team about what the real priorities for the
experiment are.

SupplementaryMaterials

suppMSPE.pdf a pdf file containing tables showing the designs obtained,
which are not in the main article, and the algorithm for Example 2.
codeMSPE.rar a zipped folder containing R code for all of the examples
given in the article.
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