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Abstract

De facto, signal processing is the interpolation and extrapolation of a sequence of observations
viewed as a realization of a stochastic process. Its role in applied statistics ranges from scenarios
in forecasting and time series analysis, to image reconstruction, machine learning, and the degra-
dation modeling for reliability assessment. This topic, which has an old and honourable history
dating back to the times of Gauss and Legendre, should therefore be of interest to readers of Tech-
nometrics. A general solution to the problem of filtering and prediction entails some formidable
mathematics. Efforts to circumvent the mathematics has resulted in the need for introducing more
explicit descriptions of the underlying process. One such example, and a noteworthy one, is the
Kalman Filter Model, which is a special case of state space models or what statisticians refer to
as Dynamic Linear Models. Implementing the Kalman Filter Model in the era of “big and high
velocity non-Gaussian data” can pose computational challenges with respect to efficiency and
timeliness. Particle filtering is a way to ease such computational burdens. The purpose of this
paper is to trace the historical evolution of this development from its inception to its current state,
with an expository focus on two versions of the particle filter, namely, the propagate first-update
next and the update first-propagate next version.

By way of going beyond a pure review, this paper also makes transparent the importance and
the role of a less recognized principle, namely, the principle of conditionalization, in filtering and
prediction based on Bayesian methods. Furthermore, the paper also articulates the philosophical
underpinnings of the filtering and prediction set-up, a matter that needs to be made explicit, and
Yule’s decomposition of a random variable in terms of a sequence of innovations.
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1 Antecedents to Signal Processing and Smoothing

It is fair to state that the genesis of signal processing is the work in 1795 of an 18 year-old Gauss on

the method of least squares. The motivation for Gauss’ work was astronomical studies on planet

motion using telescopic data. Though this work was formally published only in 1809, Gauss laid

out a general paradigm for all that has followed. In particular, he recognized that observations are

merely approximations to the truth, that such errors of measurement call for more observations than

the minimum required to determine the unknowns, that one needs to invoke dynamic models (such

as Kepler’s laws of motion) for estimating the unknowns, and that a minimization of a function of

the residuals leads to their most accurate assessment. More importantly, Gauss also addressed the

matter of suitable combination of observations that will provide the most accurate estimates. The

above in turn gave birth to the design of filters as a linear or non-linear combination of observables.

On page 269 of his Theoria Motus Corporum Coelestium (1809), Gauss predicted that his principle of

least squares could spawn countless methods and devices by means of which numerical calculations

can be expeditiously rendered. This opened the door for approaches like the Kalman Filter to thrive

and to survive. Thus, in effect, the Kalman Filter is an efficient computational device to solve the least

squares problem, and the particle filter enhances the efficiency of such computational algorithms by

speeding them up and by allowing them to be applied in non-Gaussian contexts. But the journey

from the ideas of Gauss to the currently popular particle filtering took over 200 years to complete,

with the likes of Kolmogorov, Wiener, Bode, and Shannon in the driver’s seat. Indeed, as suggested

by a referee, a more appropriate title of this paper should have been ”From Least Squares to Particle

Filtering,” but doing so could have detracted the attention of control theorists and signal processors

who may view the topic of least squares as being predominantly statistical in nature.

It was almost 135 years after Gauss enunciated the key principles of estimation that Kolmogorov

in 1939 provided his solution to the problem of interpolation and extrapolation with minimal as-

sumptions. Specifically, Kolmogorov assumed that the underlying stochastic process is discrete in

time, is stationary, and has finite second moments. This set the stage for all that is to follow, includ-

ing Kolmogorov’s 1940 paper which embeds the problem scenario in a Hilbert space and reduces his

results of 1939 as a special case. Kolmogorov’s 1940 paper is a tour de force in elegance and mathe-

matical genius comprising of just 9 pages. One may wonder as to why problems of interpolation and

extrapolation continue to persist despite its closure brought about by the above works. However, an

examination of Kolmogorov’s results, overviewed in Section 2 of this paper, reveals their formidable

nature, and the difficulty in putting them to work.
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At about the same time as Kolmogorov, circa 1942, Wiener working on the World War II problem

of where to aim anti-aircraft guns at dodging airplanes arrived upon the continuous time formula-

tion of the interpolation and extrapolation problem, now known as ”signal processing.” Here, inter-

polation got labeled as “filtering” (or smoothing) and extrapolation as ”prediction.“ Wiener’s work,

presumed to be done independently of that by Kolmogorov, was for the National Defense Research

Council, and remained classified until 1949, when it was reprinted as a book [Wiener (1949)]. Like

Kolmogorov’s work, Wiener’s work was also mathematically formidable involving the notoriously

famous Wiener-Hopf equation. In Section 3 we give an outline of Wiener’s work leading up to the

above mentioned equation (which does not arise in the discrete case of a signal plus noise model).

A noteworthy feature of Section 3, is Section 3.1, wherein the philosophical underpinnings of the

Kolmogorov-Wiener setup are articulated, especially as they relate to the spirit and the excitement

of the early 1920’s and 1940’s, namely quantum theory. It behooves those interested in filtering, ex-

trapolation and machine learning, to be cognizant of what is it that spawned the models they engage

with.

The material of Sections 2 and 3 gives the reader an appreciation for the need to develop efficient

computational devices like the Kalman filter and the particle filter, which can now be seen as a com-

putational device overlaid on another computational device in order to generalize and speed up the

former. The remainder of this paper is organized as follows: Section 4 pertains to the genesis of the

state space models via the works of Bode and Shannon (1950), and of Zadeh and Ragazzini (1950),

based on electrical circuit theory. The important role played by these works in the development of

the statistical theory of dynamic models seems to be unappreciated. Section 5 pertains to the Kalman

Filter Model as prescribed by Kalman in 1960, and its (relatively less appreciated) relationship to

Yule’s random innovations and the Box-Jenkins approach it spawned, and to Doob’s conditional ex-

pectation. Section 6 continues with the theme of Section 5 by providing an outline of the Bayesian

prior to posterior iteration which is the essence of Kalman’s filtering algorithm. Whereas the material

of Section 6 is well known (to most statisticians and signal processors), it is presented here to set the

stage for the material of Section 7 on particle filtering whose exposition, albeit cursory, is a part of the

objectives of this paper. Section 6 also highlights the routinely invoked, but less recognized, principle

of conditionalization, implicit to Kalman filtering. Section 8 concludes the paper with some conjectures

about the path forward.

The value of this paper rests on its expository character, vis a vis tracing the historical devel-

opment from signal processing to particle filtering, articulating the principle of conditionalization,

the philosophical underpinnings of the Kolmogorov-Wiener setup and the relationship between the
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Kalman filter model and Yule’s (1927) statistically motivated notion of random innovations, also

known as ”random shocks”.

2 Kolmogorov’s Interpolation and Extrapolation of a Sequence

Specifically, for a random variable X(t), with t an integer and −∞ < t < +∞, suppose that E[X2(t)] <

∞, and that the sequence {X(t);−∞ < t < +∞} is stationary. Without loss of generality set

E[X(t)] = 0, and note that B(k) = E[X(t + k)X(t)] = B(−k), the autocorrelation at lag k, will not

depend on t, for any integer k ≥ 0. The problem of linear extrapolation is to select for any n > 0 and

m > 0, real coefficients ai, for which

L = a1X(t − 1) + a2X(t − 2) + · · ·+ anX(t − n)

gives the closest approximation to X(t + m). As a measure of accuracy of this approximation, Kol-

mogorov (1939) leans on the Gaussian paradigm of minimizing the error sum of squares and consid-

ers σ2 = E[(X(t + m)− L)2] to seek values of ai for which σ2 is a minimum. If this minimum value is

denoted by σ2
E (n, m), then Kolmogorov shows that σ2

E (n, m) has a limit, and he uses this limit to find

the minimizing ai’s.

For the interpolation part, the estimation of X(t) using X(t ± 1), X(t ± 2), · · · , X(t ± n) is consid-

ered, so that if

Q = a1X(t + 1) + · · ·+ anX(t + n) + a−1X(t − 1) + · · ·+ a−nX(t − n),

then the problem boils down to minimizing σ2 = E[(X(t) − Q)2]. If σ2
I (n) denotes this minimum,

then σ2
I (n) cannot increase in n and so its limit, σ2

I , exists, and Kolmogorov finds this limit. In both

of the above cases, Kolmogorov uses formidable mathematics pertaining to the spectral theory of

stationary processes. This underscores the point made before that interpolation and extrapolation

are difficult tasks.

3 Wiener’s Theory: The Birth of Statistical Signal Processing

Whereas Kolmogorov’s approach is cast in the language of probability, Wiener [cf. Wiener (1949)]

casts his in the language of communications theory (and hence signal processing). More significantly,

Wiener considers the continuous case, and endows the set-up with additional structure than that
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of Kolmogorov’s. Specifically, an observable random sequence y(t) is decomposed as the sum of a

random signal s(t) and perturbing noise n(t), unrelated with s(t); that is, y(t) = s(t) + n(t). It is

desired to operate on the y(t)’s in such a way so as to obtain, as well as is possible, the signal s(t).

The act of operating on the y(t)’s, became known as filtering, and a filter is a precise specification of

the operation on y(t). Wiener also considers the combining of a filtering operation with prediction.

That is, operating on y(t) to obtain a good approximation to s(t + α), for some α >or < 0.

Underlying Wiener’s approach are three assumptions. These are: that the stochastic processes

generating the signal s(t) and the noise n(t) are stationary with finite second moments, that s(t) is

independent of n(t), that the criterion for the error of approximation is mean square discrepancy,

and that the operator on y(t) for filtering and prediction is to be linear on the available information

and be implementable (i.e. a computable function of the observed data assuming the availability of

the data). In the language of communication theory, the filter is to be linear (in the observed data)

and physically realizable (to be explained later). The available information is the past history of the

perturbed signal y(t). The assumptions of Wiener parallel those of Kolmogorov; the key differences

between the two being a discrete t versus a continuous t, and a decomposition of the observable y(t)

into the form of a signal s(t) and a noise n(t). Even so, the probabilistic architecture underlying the

two set-ups is identical.

3.1 Philosophical Underpinnings of the Kolmogorov-Wiener Setup

Predicting the future behavior of a signal based on a perturbed version of its present and past history

is grounded in philosophical issues pertaining to causality, induction, and the nature of physical law.

In general, prediction is based on the inductive premise that the observed patterns of the past will

continue to be so in the future. This in turn is an assumption which implies that the past is the cause

of the future. An assumption of causality like this one cannot be deduced mathematically. It can not

be established empirically either, because empirical verification using statistical techniques entails

the null hypothesis that the cause-effect relationship is true, and then an investigation to see if the

evidence causes a rejection of the hypothesis. Indeed, the notion that the past is a guide to the future

is a central postulate of all the empirical sciences. Classical physics attempted to describe the physical

world via a set of (deterministic) causal laws whose role was to relate the past to the future. Examples

are: Newton’s Laws, Kepler’s Law, Ohm’s Law, and so on. Quantum physics denied such laws, and

claimed them untenable for the microscopic world. Quantum physics claims that on an atomic scale,

the laws of physics are only statistical, and that the only meaningful predictions are statistical.
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The Kolmogorov-Wiener set-up adheres to the above quantum physics based view that all predic-

tions are statistical, and so is the causal relationship between the past and the future. This viewpoint

is asserted via two assumptions: stationarity, and the existence of second moments (i.e. correlations).

Prediction is based on the existence of a correlation between the future values of the signal and the

past values of the observables, and correlation is indeed the manifestation of a statistical relationship.

Kolmogorov’s requirement of a finite second moment of X(t) is an assertion of the above thesis. Fur-

thermore, the Kolmogorov-Wiener requirement that the filter be linear, is tantamount to the feature

that the only type of relationship that needs to be considered, is a linear, and this manifests itself as a

correlation.

To summarize, the routinely invoked Kolmogorov-Wiener assumptions of stationarity, finite sec-

ond moments, and filter linearity are dictated by the philosophical considerations underlying causal-

ity and predictivity. Making this matter explicit is a feature of this paper, and one which enhances its

expository character; also see Cox (1992).

3.2 Filtering, Prediction and the Wiener-Hopf Equation

We start with the Wiener-Hopf equation, and trace the steps that lead to it.

Suppose that ϕ(x) is an unknown function of x, 0 ≤ x < ∞, and K(·) and f (·) are known functions

with K(·) being monotone. Suppose that for x > 0,

ϕ(x) = −
∫ ∞

0
ϕ(y)K(x − y) dy + f (x), (3.1)

and it is required that the solution to this equation be of the form

ϕ(x) ≤ c < ∞, where lim x→∞ ϕ(x) = c.

(3.1) is the Wiener-Hopf equation, with equivalent representation:

ϕ(x) = −
∫ ∞

−∞
ϕ(x − y) dK(y) + f (x), 0 ≤ x < ∞. (3.2)

(3.2) has been notoriously difficult to solve in general (for processes whose spectral densities are not

rational), and attempts to get computationally efficient solutions have lead to approaches like the

Kalman Filter. This is the topic of the next section. For now we outline the steps which led to it. The

material here is abstracted from Davenport and Root (1958), p. 219.
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A filter, h(t), is a weighting function operating on y(t) to give

∫ ∞

−∞
h(t − τ) y(τ) dτ =

∫ ∞

−∞
h(τ) y(t − τ) dτ,

with the requirement of physical realizability, which means that h(t) = 0, for t < 0. One approach

towards advocating the efficacy of the filter is to require that h(·) be chosen so that E , the expected

mean square, is minimized. Here, s is the process to be estimated, and y is the observable process:

E = E
{[

s(t + α)−
∫ ∞

−∞
h(τ) y(t − τ) dτ

]2}
. (3.3)

Since s(t) and n(t) are stationary, independent, and have finite second moments, their auto and

cross-correlations exist, and are time invariant. Consequently,

E = E
[

s2(t + α)
]

− 2
∫ ∞

−∞
h(τ) E

[

s(t + α) y(t − τ)
]

dτ

+
∫ ∞

−∞

∫ ∞

−∞
h(τ)h(µ)E

[

y(t − τ) y(t − µ)
]

dτ dµ

= Bs(0)− 2
∫ ∞

−∞
h(τ) Bsy(α + τ) dτ +

∫ ∞

−∞

∫ ∞

−∞
h(τ)h(µ) By(τ − µ)dτ dµ;

where Bs(k) is the autocorrelation at k of the signal process, By(k) the autocorrelation of the observ-

able process, and Bsy(k) the cross-correlation at k of these processes.

It is shown [Davenport and Root (1958), p. 223-224] that a necessary and sufficient condition h(t)

must satisfy for E to be a minimum is

Bsy(τ + α) =
∫ ∞

0
h(µ) By(τ − µ) dµ, τ ≥ 0. (3.4)

The above is an integral equation which relates a cross-correlation with an autocorrelation, and

in the context of the philosophical material of Section 3.1, can be interpreted as a statistical law.

The solution to (3.4) will yield an optimum smoothing and prediction filter, and the challenge here

has been to find a solution. It has been shown that an exact solution to a realizable filter is based

on the requirement that Sy( f ), the Fourier transform of By(τ), be rational (so that it can be easily

factored), and the solution is expressed in terms of the factors of Sy( f ) and Sys( f ), the cross spectral

density of the y(t) and s(t). The solution therefore has been challenging to obtain, and this has

spawned derivations alternate to the above, the pioneering ones being those by Bode and Shannon

(April 1950) and by Zadeh and Ragazzini (July 1950). The underlying concept behind both the above
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Shaping Filter 

Series of Impulses  = Sum of Individual Responses 

r

Figure 1: Impulses and Response of the Shaping Filter.

approaches was to give a more explicit description of the signal by introducing an additional filter,

called the “shaping filter.” Whereas the statistics community (and possibly also the machine learning

community) is well aware of the Kalman filter model, the pioneering works of Bode and Shannon

and of Zadeh and Ragazzini which gave birth to state-space models, of which the Kalman filter is a

special case, appears to be less recognized by the above community (communities). A purpose of

this paper is to correct this possible skewness and highlight these overlooked historical footprints.

4 Precursors to Kalman Filtering: The Shaping and Matched Filters

The notion of introducing a shaping filter first appeared in Bode and Shannon (1950) whose aim was

to develop a simplified approach for smoothing and filtering under Wiener’s set up. The under-

pinnings of their approach, (which is a simple representation of white noise), was based on circuit

design, and their discussion was cast in the language of communications theory entailing the no-

tions of impulses and responses. Based on the first several readings of the Bode-Shannon paper, it

is difficult to see as to how the material therein gave birth to the Kalman Filter Model and the other

dynamic linear models which followed. But once the fog of terminology is cleared, the ideas become

more transparent.

The starting point of the Bode-Shannon approach is a decomposition of a response s(t), not nec-

essarily the s(t) of y(t) = s(t) + n(t). This entails the introduction of a Shaping Filter, the inputs to

which are a large number of closely spaced short impulses over time; see Figure 1. The Shaping Filter

produces a response to each impulse, so that the response at time t spawned by impulse i is some

function si(t); see Figure 1. For a linear filter, the responses add up to produce s(t) = ∑i si(t), the

total response of the shaping filter.

The shaping filter is characterized by its response to a unit impulse impressed on it at time 0.

Thus, for example, if K(t) is the response of a shaping filter at time t > 0, to a unit impulse at time

0, then Y(ω), the transfer function of the shaping filter, is the Fourier transform of K(t); namely, the
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complex function

Y(ω) =
∫ ∞

−∞
K(t) e−j2πωt dt.

Conversely, K(t) is the inverse transform of Y(ω); see Figure 2. Thus

K(t) =
∫ ∞

−∞
Y(ω) ej2πωt dω.

Shaping Filter 

Response 

Unit Impulse 

r

Figure 2: Response of Shaping Filter to a Unit Impulse.

Motivated by this line of thinking, the response of the shaping filter to any continuous input, say

Z(t), is obtained by breaking up Z(t) into a large number of thin vertical slices and regarding each

slice as an impulse of strength Z(t)dt. An impulse of strength Z(t)dt impressed on the shaping filter

at time t will produce a response Z(t)dtK(t1 − t) at t1, so that g(t1), the total response of the filter is:

g(t1) =
∫ t1

−∞
Z(t)K(t1 − t)dt, or

=
∫ t1

−∞
Z(t1 − t)K(τ)dτ.

If realizability is a requirement, then K(τ) = 0, for τ < 0.

If the input function Z(t) is deterministic, then so will be its output g(t1) for t1 > 0. In Wiener’s

set-up, the signal s(t) is assumed to be a stationary random process. The shaping filter which is pre-

sumed to generate s(t) needs to have inputs that are impulses of random strength. To achieve the

above Bode and Shannon assume that the closely spaced short impulses are independent, and have

a common Gaussian distribution. The responses of these impulses add up to generate the stochas-

tic process s(t). It may be of interest to note that the Shaping Filter is merely a conceptual device

introduced by Bode and Shannon to structure the input signal s(t) of Wiener’s set-up. As such, the

Shaping Filter need not be realizable. The genesis of the Shaping Filter lies in circuit theory and

pertains to the effects of a resistor on an electrical input.

The work of Zadeh and Ragazzini (1950) builds on the Bode-Shannon theme by generalizing it

to assume that the signal s(t) entails two parts, a stochastic process s̃(t) on which is superimposed a
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deterministic part N(t) which is a polynomial in t of degree n, but with coefficients that are unknown.

Furthermore, Zadeh and Ragazzini require that h(t), the weighting function of the smoothing and

prediction filter vanish outside the range 0 ≤ t ≤ T, for a specified T.

To recap, the effect of the Bode-Shannon, and the Zadeh-Ragazzini work is to expand the scope

of Wiener set up by giving structure to the observed process via a shaping filter. As shown in Figure

3, the shaping filter (which is purely conceptual) precedes the desired filtering, and prediction filter,

and this set-up constitutes a foundation for what are known as state-space models.

Shaping 

Filter

Smoothing 

&

Prediction  

Filter

Gaussian Impulses 

Deterministic 

Input
Random Noise 

Filter Output Signal 

Observable 

y

Signal Recovery 

Signal Prediction 

Figure 3: Tandem Architecture of Shaping and Smoothing Filter.

Since the s(t)’s share the impulse inputs, denoted by a(t−) in Figure 3, they will be dependent,

and as a consequence, so will the y(t)’s. This is despite the fact that a(t−)’s are independent. It is

well known that a collection of dependent random variables can always be constructed by consid-

ering certain functions of a collection of independent variables; see for example, Singpurwalla et al.

(2016). A way to mathematically encapsulate the architecture of Figure 3, ignoring the presence of

the deterministic function N(t), and discretizing t, as t = 0, 1, . . ., is to write:

s(t) = F [s(t − 1)] + a(t), and (4.1.a)

y(t) = s(t) + n(t). (4.1.b)

Here F is some function of s(t), and the relationships above constitute the essence of a state space

model of which the Kalman Filter Model [Kalman (1960)], with equation (4.1.a) constituting the dy-

namic part, is a special case. Linear cases are those in which the relationship between y(t) and s(t) is

linear −as indicated in (4.1.b)− and so is the relationship between s(t) and s(t − 1). Otherwise, the

cases are nonlinear.

Preceding the work of Bode and Shannon (1950), and that of Zadeh and Ragazzini (1950), is the

unpublished work of North (1943), and the published work of van Vleck and Middleton (1946) on

what is known as ”matched filters” [cf. Turin (1960)]. Underlying the idea of a matched filter is the
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requirement that a signal s(t) be a deterministic and of known waveform, as opposed to a stochastic

process. When such is the case, the smoothing filter h(t) is easy to specify via an inverse Fourier

transform. Such a filter is known as a matched filter because it is matched to s(t), and its virtue is

an enhanced ability to detect the presence or the absence of a signal s(t). With s(t) fully specified,

the matched filter can be seen as a stepping stone to a structured stochastic process like the Kalman

Filter.

There are many scenarios in signal processing wherein matched filters arise naturally [see Section

VI of Turin (1960)]. They offer potential in non-signal processing applications, whenever a knowl-

edge of s(t) can be had either via the science of the scenario, or via empirical observations. A well

illustrated case in point is the detection of cracks in a material via vibrothermography, discussed in

good detail, by Li, Holland, and Meeker (2010). These authors consider the more complex scenario of

filtering in three dimensions, and the three-dimensional signal can be specified using heat-dispersion

theory, or via an empirical argument.

5 Relationship to Yule’s Innovations and Doob’s Conditional Expecta-

tions

Equation (4.1.a) of the Kalman Filter Model has a precedence and a parallel in the manner in which

Yule (1927) conceptualized the autoregressive and the moving average processes of time series anal-

ysis, developed and popularized by Box and Jenkins (1970). Yule proposed the notion that a highly

dependent series s(t) is generated by an innovation series a(t), where a(t)’s are independent and iden-

tically normally distributed with mean 0 and variance σ2
a . Yule’s causal linear filter transforms the

process a(t) to the process s(t) via the linear operation

s(t) = µ + ψ0a(t) + ψ1a(t − 1) + ψ2a(t − 2) + · · · · · · ,

where µ, ψ0, and the ψi’s are unknown constants. Setting µ = 0 and ψ0 = 1, it can be seen that

s(t) = a(t) + φ1s(t − 1) + φ2s(t − 2) + φ3s(t − 3) + · · · · · · ,

where the φi’s are related to the ψi’s. Thus s(t) is regressed on its previous values, and the resulting

process is an autoregressive process. If the coefficients ψi are so chosen that φi = 0 for i ≥ 2, then

the results is an autoregressive process of order one, which is equation (4.1.a). Observe the parallel
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between Yule’s construction and the Bode-Shannon set-up as encapsulated in Figure 3. Yule’s linear

filter is Bode and Shannon’s shaping filter; the latter has the advantage of time dependent weights

whereas the former does not. With the Kalman Filter Model, we go an additional step beyond Yule’s

construction towards a smoothing and prediction filter. In effect, the ψi’s of Yule’s linear filter capture

the essence of the shaping filter’s Y(ω).

5.1 Filtering with Conditional Expectations: Martingales

It has been recognized [cf. Kalman (1960)] that the Wiener problem can also be approached from

the point of view of conditional distributions and expectations. This perspective obviates the need

to engage with circuit theory, whitening filters, and the language of signal processing. All that is

needed is a knowledge of probability at the intermediate level, and a facility with manipulations that

are mathematically cunning. The rewards are plenty, because now one need not be restricted to linear

filters, and more importantly, one can lean on the powerful machinery of martingales.

We start by focusing on (y(t) − y(t − 1)) the change experienced by the observable process y(t),

between (t− 1) and time t; assume for now that t is discrete. We then ask what is the “best” prediction

of (y(t) − y(t − 1)) ? A meaningful answer [cf. Kailath (1968)], it seems, would be the conditional

expectation

E[y(t) − y(t − 1)|y(1), . . . , y(t − 1)] = V(t). (5.1)

That is, V(t) is the predicted change in y(t) at time t; it is based on a conditional expectation. Next,

one considers the error in predicting y(t) using V(t). That is, the innovation

y(t)− E[y(t)|y(1), . . . , y(t − 1)]. (5.2)

Let U(t) = ∑
t
j=1 V(j), the sum of the predicted changes, and

M(t) =
t

∑
j=1

[

y(j)− E[y(j)|y(1), . . . , y(j − 1)]
]

,

the sum of prediction errors. It is now easy to see that

y(t) = U(t) + M(t). (5.3)

This means that the sum of all changes in the y(t)’s, namely y(t) itself, equals the sum of all

the predicted changes ∑
t
j=1 V(j) in y(t) plus M(t), the sum of all the predicted errors. To achieve
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some semblance with Wiener’s set-up, namely that y(t) = s(t) + n(t), we invoke the relationship of

equation (5.3) to write

y(t)− y(t − 1) = V(t) +
(

M(t)− M(t − 1)
)

. (5.4)

More about the quantity M(t) − M(t − 1) will be said later, but we first remark that equation

(5.3) is known as Doob’s decomposition of any observable process y(t). Simple as it may seem, Doob’s

decomposition has some powerful implications, the first of which is that it gives birth to a martingale

process.

Specifically, it can be verified−after some routine algebra−that E[y(t)|y(1), . . . , y(t− 1)] = M(t−

1), and this implies that M(t) is a martingale with respect to the process y(t). Furthermore, it can be

shown that

E
[

M(t)− M(t − 1)
]

= 0, and that (5.5a)

E
[(

M(t)− M(t − 1)
)(

M(t − 1)− M(t − 2
)]

= 0. (5.5b)

Thus if the martingale difference
(

M(t)− M(t − 1)
)

of equation (5.4) can be regarded as an error

term, then its essence is that the errors have zero mean and are uncorrelated (but not necessarily inde-

pendent). Equation (5.5b) is the orthogonal increments property of martingales, and is a weakening

of the independent increments property assumed in set-ups like classical regression.

Equation (5.3) is quite general and entails practically no assumptions, save for the existence of

conditional distributions and the thesis that conditional expectations are “reasonable” or “meaning-

ful” as predictors of unknowns. A dynamic statistical model builds upon the theme of equation (5.3)

by parameterizing the V(t) process. One such parameterization is to let V(t) = αy(t − 1), for some

constant α > 0. This parameterization states that the expected change in y(t), namely y(t)− y(t − 1)

is proportional to y(t − 1), with α > 0 as the constant of proportionality. With this in place it is easy

to see that

y(t)− y(t − 1) = αy(t − 1) +
(

M(t)− M(t − 1)
)

,

or that

y(t) = (1 + α) y(t − 1) +
(

M(t)− M(t − 1)
)

, (5.6)

an autoregressive process of order 1, with orthogonal errors having mean zero (the latter property is

known as colored noise). Note that y(t) is a stationary process only when −2 < α < 0.
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Since a simplified version of Kalman’s state space model of equation (4.1) is of the form

y(t) = s(t) + n(t), and

s(t) = s(t − 1) + a(t), (5.7)

a correspondence between the above and the model based on Doob’s decomposition−equation (5.3)−is

easy to identify. Specifically, iterating on equation (5.7), it is easy to see that for any n ≤ t,

y(t) = s(t − n) + n(t) +
t

∑
j=t−n+1

a(j),

so that for n = t,

y(t) =
(

s(0) + n(t)
)

+
t

∑
j=1

a(j).

The desired correspondence holds if
(

s(0) + n(t)
)

is identified with M(t), and a(j) identified with

V(j). It is assumed that at t = 0, the value of the signal s(0) is known.

There exists a continuous version of the Doob composition, known as the Doob-Meyer Decompo-

sition, which spawns a martingale process {M(t); t ≥ 0} with respect to the process {y(t); t ≥ 0}.

A consequence of the martingale process is an ability to use Levy’s Theorem [cf. Doob (1953), Theo-

rem 11.9], which asserts that a martingale process with variance t is a Brownian motion process (also

known as Wiener process). Results such as these, expand the scope of Wiener’s theory by enabling

filtering under more general Gaussian processes, non-Gaussian, and discontinuous processes. For ex-

ample, Kara, Mandrekar, and Park (1974) discuss recursive least-squares estimation when the noise

is a martingale, and Mandrekar and Naik-Nimbalkar (2009) consider estimation when the noise is a

fractional Brownian motion. The recent books by Mandrekar and Rudinger (2015), and Mandrekar

and Gawarecki (2015) outline the theory and provide a source of references.

Whereas all of the above is conceptually natural, implementation poses a challenge. As a conse-

quence, the filtering algorithm which bears Kalman’s name, continues to be used and discussed.

5.2 Antecedents to Kalman’s Filtering Algorithm

The algorithm proposed by Kalman (1960), even for a simplified linear version of the state-space

model, is cumbersome to describe. The essential features of this algorithm are: all data available

up to some time are employed to estimate the state parameter at that time; at any given time one

does not retain the whole record of all observations up to that time, their effect being encapsulated
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in the estimate of the state vector at that time; new data are optimally combined with the most recent

state vector. In Section 6 we overview a Bayesian prior to posterior iterative approach for addressing

the filtering, smoothing, and prediction as prescribed by equation (5.7). Many find the Bayesian

perspective easier to digest. But before doing so we outline below some antecedents that may have

lead Kalman to develop his algorithm [cf. Sorenson (1970)].

For the set-up of (5.7), a filter’s weighting function for signal s(t), can be easily developed via the

method of least squares based on n previous observations y(t). However, a new solution needs to

be generated for each new observation and this could be demanding. The idea that upon the receipt

of y(n + 1), an estimate of s(n + 1) can be based on an estimate of s(n) obtained via y(1), . . . , y(n),

is due to Folin in 1955 [cf. Bucy (1968), p. 129]. The notion of recursive filtering and prediction is

also present in the works of Swerling (Jan. 1958) and Blum (March 1958), though Swerling’s set up is

deterministic and there is no mention by him of state space models. Swerling’s work was motivated

by applications to estimating orbits of earth satellites and space vehicles. A comparison of Swerling’s

and Kalman’s formulation is in Swerling (1998). In the statistical sciences the method of stochastic

approximation by Robbins (1951) and by Kiefer and Wolfowitz (1952), were also being studied. Thus

it appears that the time was ripe for the recursive approach to state-space estimation proposed by

Kalman in 1960−albeit almost after 9 years since the works of Robbins and Kiefer and Wolfowitz.

According to Sorenson (1970), Swerling in 1968 wrote a letter to the AIAA Journal claiming priority

for the Kalman filter equations based on his 1958 work described in a RAND memorandum on orbit

determination.

Of noteworthy mention here is also the striking work (in the former USSR) of Stratonovich (1959,

1960a, 1960b). Stratonovich was the first to emphasize the importance of Markov processes in signal

detection in continuous time, and in the sequel, the development of the theory of Conditional Markov

Processes.

6 Bayesian Learning and (Kalman) Filtering

Bayesian learning via a prior to posterior iteration can be seen as an implementation of the con-

ditional expectation principle, which is the basis of Doob’s decomposition. When the underlying

distributions are assumed to be Gaussian (or more generally spherically symmetric) and admit a

state-space representation, the principle of least squares and conditional expectation yield identical

answers. To appreciate this and related matters, we find it convenient to re-cast the state-space model
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of equation (5.7) in a notation palatable to statisticians [eg. Meinhold and Singpurwalla (1983)] as:

Yt = θt + vt (6.1.a)

θt = θt−1 + wt, (6.1.b)

where θt is an unknown (dynamic) parameter whose value changes with t = 0, 1, 2, . . . , and vt and wt

are errors. The vt’s are assumed to be uncorrelated and identically normally distributed with mean

0, and variance σ2
v ; this is denoted as vt ∼ N (0, σ2

v ), with vt independent of wt, and wt ∼ N (0, σ2
w).

If Yt = (Y1, Y2, . . . , Yt), then the prediction problem boils down to assessment of P(Yt|Yt−1), the

conditional distribution of a future Yt, were (supposing that) Yt−1 be known. Note the emphasis on

the word “were.” By contrast Wiener’s prediction problem boils down to an assessment of P(Yt|yt−1),

the distribution of a future Yt having actually observed yt−1 = (y1, . . . , yt−1), where yτ is an observed

realization of Yτ; note the emphasis on the word ”actually.” The distinction between P(Yt|Yt−1) and

P(Yt|yt−1) is philosophical and subtle. The mechanics leading to an assessment of both could be the

same, but this need not be so; see Section 6.2. Similarly with filtering and smoothing, which entail

assessments of P(θt|Yt) and P(θj|Yt), respectively, for any j = 1, 2, . . . , (t − 1). What follows next is

merely an application of the calculus of probability to achieve the desired assessments. Specifically:

P(Yt|Yt−1) =
∫

θt

P(Yt|θt, Yt−1) P(θt|Yt−1) dθt =
∫

θt

P(Yt|θt) P(θt|Yt−1) dθt , (6.2)

by law of total probability, and assuming Yt independent of Yt−1.

From (6.1.a), (Yt|θt) ∼ N (θt, σ2
v ), so that to complete the assessment of P(Yt|Yt−1) we need to

know P(θt|Yt−1). By extending the conversation to θt−1, and then assuming, given θt−1, θt indepen-

dent of Yt−1

P(θt|Yt−1) =
∫

θt−1

P(θt|θt−1) P(θt−1|Yt−1) dθt−1. (6.3)

To obtain P(θt|θt−1), we lean on (6.1.b) to assert that (θt|θt−1) ∼ N (θt−1, σ2
w). With the above

in place, suppose that P(θt−1|Yt−1) is governed by (θt−1|Yt−1) ∼ N (mt−1, Ct−1), then by the prop-

erties of the Gaussian distribution, (θt|Yt−1) ∼ N (mt−1, Ct−1 + σ2
w). Using an analogous argument

P(Yt|Yt−1) of equation (6.2) is governed by N (mt−1, Ct−1 + σ2
w + σ2

v ).

Were we to receive the next observation Yt, then we would be required to assess P(Yt+1|Yt), and

to do so we would need to know P(θt|Yt). By Bayes’ Law,

P(θt|Yt) = P(θt|Yt, Yt−1) ∝ L(θt; Yt)P(θt|Yt−1), (6.4)
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where L(θt ; Yt) is the likelihood of θt with Yt fixed (and assumed to depend on Yt alone). The last

term is (θt|Yt−1) ∼ N (mt−1, Ct−1 + σ2
w). Assuming that the likelihood L(θt; Yt) is induced by the

feature that (Yt|θt) ∼ N (θt, σ2
v )−equation (6.1.a)−it follows from routine Bayesian prior to posterior

calculations that (θt|Yt) ∼ N (mt, Ct).

Wiener’s problem of smoothing boils down to an assessment of θt, were we to know Yt+1. For

this we assess P(θt, θt+1|Yt+1) and integrate out θt+1. However, P(θt, θt+1|Yt+1) can be obtained as

a conditional distribution of P(θt, θt+1, Yt+1|Yt), and this can be assessed via P(θt|Yt), P(Yt+1|Yt),

and P(θt+1|Yt), all of which we are able to obtain via the discussions of the previous paragraphs.

Smoothing pertains to making revised probabilistic assessments of θt given all the currently observed

information. The intuition here is that better estimates of θt are obtained when data subsequent to Yt

is also at hand.

Thus under the simple set-up of equation (6.1), Wiener’s filtering, smoothing and prediction prob-

lems can be solved in closed form via the principle of conditional expectation, implemented via the

mechanics of Bayesian learning. The process of predict and update provides an optimal Bayesian so-

lution for the linear Gaussian state-space model. Matters become computationally challenging when

the error distributions are non-Gaussian, have non-constant variances, are correlated, or when (6.1)

entails non-linearities. When such is the case, one resorts to Gibbs sampling which is a Markov Chain

Monte Carlo (MCMC) method; it is outlined in Section 6.1. The efficacy of MCMC depends on the

convergence of a Markov Chain to an equilibrium distribution. The essence of the Gibbs sampling

as applied to a linear Gaussian state-space model (the Kalman filter model) is described below. Our

aim is to set the stage for a discussion of the particle filtering algorithm as an alternative to the Gibbs

sampling. But before doing so, it may be helpful to remark that if the observed process is ”invertible”

in the sense of Box and Jenkins (1970), then a naive approach for overcoming the obstacle of a grow-

ing dimension is to filter out (i.e. eliminate) observations that have occurred in the remote past. When

the process is not invertible, then the naive approach will lead to misleading answers. An archetypal

example of a non-invertible process is a moving average process of order one, whose coefficient is

greater than or equal to one in absolute value. Non-invertibility can arise due to over differencing;

see for example, Abraham and Ledolter (1983, pp. 233- 236).

Prior to the advent of Gibbs sampling, the matter of nonlinearity (i.e. an inability to write the

evolution of the state variable and/or the observed process as a linear model) was treated by vari-

ants of the procedure described above, via what is known as an extended Kalman Filter (EKF). This

entailed a local linearization of the nonlinear equations by a Taylor series approximation [cf. Ander-

son and Moore (1979)]. Since Swerling’s (1959) original formulation included the nonlinear case as
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well, it may be claimed that the EKF is the original Swerling filter. However, the EKF was found

to be credible only under scenarios wherein the underlying nonlinearities were almost linear, and

thus an alternative, namely, the unscented Kalman filter (UKF) was proposed by Julier and Uhlmann

(1977); also see van der Merwe et al. (2000). The UKF which is not restricted to the requirement of

Gaussian distributions is based on the intuition that it is easier to approximate a Gaussian distribu-

tion than it is to approximate an arbitrary nonlinear function. Accordingly, a set of points that are

deterministically selected from the Gaussian approximation to P(θt|Yt) are propagated through the

underlying nonlinearity, and the points thus propagated used to obtain a Gaussian approximation to

the transformed distribution [cf. Arulampalam, Maskell, Gordon and Clapp (2002)]. If the underly-

ing density is bimodal or heavily skewed, then a Gaussian will not approximate it well spawning the

need for robustifying the Kalman filter using influence functions or thick tailed distributions, such as

the Student’s−t [cf. Meinhold and Singpurwalla (1989)], or by Monte Carlo based approaches such

as Gibbs sampling or particle filtering.

6.1 The Gibbs Sampling Algorithm for Kalman Filtering

As mentioned in the previous section, the Gibbs sampling algorithm for Kalman filtering becomes

germane under non-Gaussianity and non-linearity of the Kalman filter model for which a closed form

solution exists when otherwise. A fundamental step in the Kalman filter algorithm is the recursive

transitioning from P(θt−1|Yt−1) to P(θt|Yt). This operation entails a likelihood and an application of

Bayes’ law. The specifics of the operation were outlined in the paragraph following (6.4). There is an

important aspect of this operation, which is germane to particle filtering. Specifically, to transition

from P(θt−1|Yt−1) to P(θt|Yt), one first propagates from θt−1, to θt via (6.1.b), and then brings in the

effect of Yt via the likelihood and Bayes’ Law. An exercise like this is legislated by a factorization of

the form

P(Yt+1, θt+1|θt) = P(Yt+1|θt+1)P(θt+1|θt),

assuming that given θt+1, Yt+1 is independent of θt. Thus with conventional filtering, the motto is:

“propagate first−update next,” a meaningful thing to do when a real time decision is to be made at t,

based on knowledge about θt at time t; for example, in automatic control. Here all that matters is

P(θt|Yt).

However, were the scenario be such that a decision based on knowledge about θt can be delayed

until time (t + 1) with Yt+1 at hand, then a smoothed assessment of θt based on Yt+1 would be

preferable to one based on Yt alone. Such delayed decision scenarios arise in the context of statistical
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inference. Such an exercise is legislated by the factorization

P(Yt+1, θt+1|θt) = P(θt+1|θt, Yt+1)P(Yt+1|θt),

where the motto would be to: “update first−propagate next.” This motto does not entail any assump-

tion of conditional independence. Either motto can be implemented in both the Gibbs sampling

algorithm, or the particle filter mechanism (discussed in Section 7). The expression P(Yt+1, θt+1|θt)

which arises in the context of transitioning from P(θt|Yt) to P(θt+1|Yt+1) will be motivated in Section

7.1.

As a synopsis of the Gibbs sampling algorithm for the model of (6.1), we focus attention on the

case t = 2, and suppose that Y1 and Y2 are observed as y1 and y2, respectively. Consider the 4-tuple

(θ1, θ2, y1, y2). The set of 2 conditional distributions spawned by this 4-tuple have the distributions:

(θ1|θ2, y1, y2) ∼ (θ1|θ2, y1)

(θ2|θ1, y1, y2) ∼ (θ2|θ1, y2).

Setting θ
(0)
1 and θ

(0)
2 as starting values of θ1 and θ2, we update θ

(0)
2 to θ

(1)
2 by generating a sample

(indeed, a particle) from (θ2|θ
(0)
1 , y2). To do so, we note that

P(θ2|θ
(0)
1 , y2) ∝ P(y2|θ2, θ

(0)
1 ) P(θ2|θ

(0)
1 ) = P(y2|θ2) P(θ2|θ

(0)
1 ),

and the last two probabilities are specified by the assumed structure of (6.1).

Next, we generate θ
(1)
1 from P(θ1|θ

(1)
2 , y1) ∝ P(θ

(1)
2 |θ1, y1)L(θ1; y1) P(θ1) = P(θ

(1)
2 |θ1)L(θ1; y1) P(θ1),

where L is the likelihood. The θ
(1)
1 is an update of θ

(0)
1 .

The above process repeats, so that after k iterations we have

(θ
(0)
1 , θ

(0)
2 ), (θ

(1)
1 , θ

(1)
2 ), (θ

(2)
1 , θ

(2)
2 ), . . . , (θ

(k)
1 , θ

(k)
2 )

based on the starting values θ
(0)
1 and θ

(0)
2 , and given values y1 and y2. Under some mild regu-

larity conditions, as k → ∞, the distribution of (θ
(k)
1 , θ

(k)
2 ) converges to the posterior distribution

P(θ1, θ2| y1, y2); see Gelfand and Smith (1990). Alternatively, samples from the posterior distribu-

tion P(θ1, θ2| y1, y2) can also be generated using the forward filtering backward sampling algorithm; see

Fruhwirth-Schnatter (1994), and Carter and Kohn (1994).

Cleary, each new observation increases the size of the tuple by two, and calls for the generation

of a new set of k variates. This is computationally burdensome which the particle filter avoids. But
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first some words about the caveat of conditioning.

6.2 Filtering, Smoothing, and the Principle of Conditionalization

An important, but underemphasized, point pertains to be the subjunctive nature of the discussion up

until now. This has to do with the feature that all of probability, to include conditional probability and

Bayes’ Law, is in the subjunctive mood. That is, the discussion up until now is based on the premise

that “were Yi to be observed as yi, i = 1, 2, . . . , t,” and not on the premise that Yi is actually observed

as yi. The above difference is encapsulated in the claim that all of probability is in the irrealis (or

subjunctive) mood, whereas with actual data at hand, inference has to be in the indicative mood;

see, for example, Singpurwalla (2016). The development of Section 6.1 and the ensuing histograms

therein are meaningful for some assumed value yi of Yi. What happens to this development if when

the yi’s are the actual observed values of Yi’s ?

Our answer is that everything that has been said before continues to be valid, but only if the

philosophical principle of conditionalization is adopted [cf. Diaconis and Zabell (1982), or Singpurwalla

(2007)]. This means that underlying the current practice in signal processing, forecasting, and control

theory, there is an implicit adherence to the principle of conditionalization. Making this point explicit

to the engineering and the statistical communities is a feature of this paper which goes beyond a

mere review. The principle of conditionalization is best exposited via a subjectivistic interpretation

of probability.

Suppose that for two uncertain events A and B, one is able to specify the conditional probabil-

ity P(A|B). In the subjectivistic context P(A|B) denotes a two-sided bet on the occurrence of event

A, under the supposition that event B has occurred. Under the principle of conditionalization, the

above bet must continue to hold even when one is informed that event B has actually occurred. In

other words, under conditionalization, one’s disposition towards betting on event A is indifferent

as to whether B is supposed to have occurred or has actually occurred. Several individuals starting

with Ramsey (1931) have questioned the universality of this principle. They have claimed that the

actual occurrence of B could change one’s disposition to bets on event A made under the supposition

that event B has occurred. In statistical inference, using Bayes’ Law, the principle of conditionaliza-

tion manifests itself whenever the likelihood is specified by interchanging the roles of parameters

and the variables in an assumed probability model. This practice is so routinely followed that its

philosophical underpinnings are almost forgotten.

Were the principle of conditionalization not adopted, then the likelihood of (6.4) would not nec-
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essarily be induced by the feature that (Yt|θt) ∼ N (θt, σ2
v ), and the commonly used Kalman filter

equations for filtering, smoothing, and extrapolations would not follow ! Under such circumstances,

the likelihood−which is a weighting function−will be an arbitrary function, specified via judgmental

considerations, and the ensuing relationships different from those used in current practice.

7 The Particle Filter

As stated, a closed form solution to the Kalman Filter Model assuming that the underlying distribu-

tions are Gaussian entails the inversion of matrices whose size grows with the number of observa-

tions. This, in the current era of big data can be forbidding. Gibbs sampling can come to the rescue

here, but the Gibbs sampler can be computationally burdensome and its success rests on the conver-

gence of the underlying Markov Chain to an equilibrium distribution [cf. Smith and Roberts (1993)].

By contrast the particle filter mechanism mimics the Bayesian prior to posterior learning step by step,

and leans on the law of large numbers to ensure convergence. Indeed, the particle filter (also known

as a genetic Monte Carlo algorithm) better exploits the Markovian nature of equation (6.1.a) than the

Gibbs sampling algorithm, and in so doing it:

i) Circumvents the computational burden spawned by the growing size of the MCMC tuple−see

section 6.1, and

ii) Obviates the need for large storage memory by not requiring that all observations prior to the

current yt be retained. This feature of particle filtering truly embodies the essential spirit of recursive

estimation as enunciated by Folin in 1955. But as will be pointed out later, the particle filter is not

without its drawbacks.

Particle filters (PF) work online and use a discrete set of values called particles, each with a weight,

to represent the distribution of a state at time t, and to update this distribution at each subsequent

time by changing the particle weights according to their likelihoods. There are several versions of

the PF, and several surveys and tutorials about it, one of the most comprehensive one being that

by Arulampalam, Maskell, Gordon, and Clapp (2002), and one of the most recent one being that

by Doucet and Johansen (2011). Also noteworthy is the exhaustive treatise by Chen (2003), and the

expository set of lecture notes by Pollock (2010) and by Turner (2013). Chen’s (2003) paper is all

inclusive with a very thorough set of references; it is written from the perspective of a control theorist

with an emphasis on engineering mathematics which statisticians may find challenging to decipher.

The current paper may serve as a good prelude to Chen’s paper for those who are interested in

digesting the material therein.
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Importance sampling (IS) and its variants are the key tools which drive the PF; thus it seems appro-

priate to give below a broad based overview of the essentials of IS.

7.1 Importance Sampling and its Variants

IS was originally introduced in statistical physics as a variance reducing technique. The essence of the

idea here is that a mathematical expectation with respect to a target distribution is well approximated

by a weighted average of random draws from another distribution called the importance distribution.

That is, if a random variable θ has a probability density p(θ), then

µ f = Ep[ f (θ)] =
∫

f (θ)p(θ)dθ,

and if q(θ) is some other probability density of θ, with the property that q(θ) > 0, whenever f (θ)p(θ) 6=

0, then µ f = Eq[ω(θ) f (θ)], where ω(·) = p(·)/q(·). The presumption here is that it is possible to sam-

ple from q(θ) but not from p(θ).

Thus, if we draw a sample θ(1), . . . , θ(m) from q(θ), then ∑
m
i f (θ(i))ω(θ(i)) will (by the strong law

of large numbers) converge almost surely to µ f .

The merit of IS is clearly apparent in a Bayesian context wherein the posterior, p(θ|y) ∝ L(θ; y)q(θ),

is known only up to a normalizing constant, so that it is possible to sample from the prior q(θ) but

not from p(θ|y). When such is the case, an estimate of µ f =
∫

θ
f (θ; y)p(θ|y)dθ is given by

µ̂ f = ∑
i

f (θ(i); y)ω(θ(i)),

where ω(θ(i)) = L(θ(i);y)

∑j L(θ
(j);y)

and θ(1), θ(2), . . . is a random draw from q(θ).

In state-space models θ is high dimensional and p(θ) leads to a chain like decomposition of θ. This

enables the sequential construction of the importance density, and now one is able to sequentially

update the posterior density at some time t, without modifying the previously simulated states. This

is the idea behind sequential importance sampling (SIS) discussed by Liu (2001). A common problem

encountered with SIS is the degeneracy phenomenon, where after few iterations all but a few particles

will have negligible weights. Indeed it is shown by Liu (2001) that the weight sequence forms a

martingale leading to the feature that the variance of the importance weights increase over time.

Consequently, a very small portion of the draws carry most of the weight making the SIS procedure

computationally inefficient. Details about the above matters are given in Kong, Liu, and Wong (1994),

who among other things propose an approach for overcoming the problem of degeneracy.
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Resampling is another approach by which the effects of degeneracy can be reduced. The idea

here is to eliminate particles having a small weight and concentrate on particles with a large weight

by picking a particle with a probability proportional to its weight. Such a particle filtering process

was proposed by Gordon, Salmond, and Smith (1993) in their classic and ground breaking paper;

it is known as sampling importance resampling (SIR). Whereas the SIR filter resamples particles at the

end of an iteration, say at time (t − 1) before an observation yt at t is taken, the auxiliary particle filter

(APF) introduced by Pitt and Shephard (1999), employs the knowledge about yt before resampling

at (t − 1). This ensures that particles that are likely to be compatible with yt have a good chance of

surviving, and in so doing makes the particle filtering process computationally efficient.

Collectively, the process of using a discrete set of weighted particles to represent the distribution

of a state, and to update this distribution by changing the particle weights, as is done under the

SIS, SIR, and APF algorithms is also known as sequential Monte Carlo (SMC), a term coined by Liu

and Chen (1998). The PF methods mentioned above suffer from the ”curse of dimensionality” [cf.

Bengtsson, Bickel, and Li (2008)]. This happens when p− the dimension of the state space, and q−

the dimension of the observation vector are very large in relation to n, where t = 1, 2, . . . , n. When

such is the case, which arises in the context of climate modeling, dimension reduction techniques

which entail a decomposition of the state and observation vectors into many overlapping patches,

are invoked. The ensemble Kalman filter (EnKF), which is a combination of SMC and the Kalman filter,

works under the decomposition scheme mentioned above, whereas the PF does not [cf. Lei and

Bickel (2009)].

7.2 Architecture(s) of the Particle Filter Algorithm

Figures 4 and 5 encapsulate the architecture of two versions of the particle filtering mechanism, the

former subscribing to the motto of propagate first−update next, and the latter to that of update

first−propagate next; see Section 6.1. These figures can be construed as a graphical appreciation of

the particle filter mechanism. The essential import of the mechanism of Figures 4 and 5 pertains to

the process of transitioning from the distribution of (θt|Yt) to the distribution of (θt+1|Yt+1) upon the

receipt of new data. For convenience and ease of exposition, we assume that (θt|Yt) ∼ N (mt, Ct);

the notation used here is that of Section 6. The mechanics of the particle filter algorithm is general

enough to accommodate distributions other than the Gaussian, and that is another virtue.

As a matter of historical note, even though the recent impetus in particle filtering has been trig-

gered by the 1993 paper of Gordon, Salmond and Smith, the core of the underlying idea goes back to
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Galton (1877) [cf. Stigler (2011)].

To discuss the transitioning from a specified P(θt|Yt) to a P(θt+1|Yt+1) upon receipt of Yt+1, we

start by considering P(θt+1|Yt+1) = P(θt+1|Yt, Yt+1) ∝ P(θt+1, Yt+1|Yt), and observe that

P(θt+1, Yt+1|Yt) =
∫

θt

P(θt+1, Yt+1|θt, Yt)P(θt|Yt)dθt .

Since P(θt|Yt) is assumed known as N (mt, Ct), we focus attention on P(θt+1, Yt+1|θt, Yt) to see

how it could be simplified by factorization. There are two factorizations of this joint conditional

distribution each leading to a protocol for updating. The first factorization leads to the protocol of

propagate first - update next; the second to the update first - propagate next protocol; see Section 6.1.

7.2.1 The Propagate First−Update Next Protocol

The entity P(θt+1, Yt+1|θt, Yt) of the equation above can be factored as P(Yt+1|θt+1, θt, Yt)× P(θt+1|θt, Yt).

If Yt+1 is assumed independent of θt and Yt given θt+1, and θt+1 assumed independent of Yt given θt,

then this factorization simplifies as:

P(θt+1, Yt+1|θt, Yt) = P(Yt+1|θt+1)P(θt+1|θt). (7.1)

Equation (7.1) is the basis of the ”propagate first-update next” protocol. By this it is meant that in

moving from the right to left of this equation, one starts by propagating θt to θt+1 via equation (6.1.b),

and then upon the receipt of Yt+1 updates θt to θt+1 [using the expression (7.2) given below].

Plugging the simplified factorization of equation (7.1) in the expression for P(θt+1|Yt+1) discussed

before, we have

P(θt+1|Yt+1) ∝

∫

θt

P(Yt+1|θt+1)P(θt+1|θt)P(θt|Yt)dθt. (7.2)

The essence of particle filtering under this propagate first-update next protocol is an implementation

of equation (7.2), via a simulation exercise, wherein one starts by generating a sample of size N from

the distribution of (θt|Yt), which for purposes of discussion has been assumed Gaussian, and works

one’s way from right to left. Denote these generated values, known as particles, by θ
(i)
t , i = 1, . . . , N;

these particles get propagated to θ
(i)
t+1 via the mechanism driving P(θt+1|θt), namely, equation (6.1).

With Yt+1 observed as yt+1, P(Yt+1|θt+1) gets replaced by L(θt+1; yt+1) = P(yt+1|θt+1), the ”filtering”

likelihood of θt+1 under an observed yt+1. The rest follows from the schematics of Figure 4, with

equation (7.2) in perspective. The importance weights w
(i)
t+1 =

P(yt+1|θ
(i)
t+1)

∑
N
j=1 P(yt+1|θ

(j)
t+1)

modulate the propagated

particles θ
(i)
t+1 by emphasizing those which are meaningful, and diffusing those which are skewed (i.e.
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outliers); these importance weights add to 1. Despite the introduction of these modulating weights,

there remains the possibility of degeneracy, because the generated particles could be concentrated

around a few values causing a collapse of the process. As mentioned, this is a drawback of all such

simulation exercises. Recall, the importance weights sum to one, and each weight is proportional to

the likelihood of the θ
(i)
t+1 which spawns it [cf. Carvalho et al. (2010)]. Observe that the flow of actions
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Figure 4: Particle Filtering under propagate First−Update Next Protocol.

depicted in Figure 4 mimics the architecture of equation (7.2) as one moves from its right to its left.

The one open question pertains to N the number of cycles that the algorithm needs to execute.

Barring the prospect of degeneracy, the law of large numbers will, for large N, ensure convergence to

a stationary distribution. This stationary distribution represents the updated (posterior) distribution

N (mt+1, Ct+1) in our assumed case.

7.2.2 The Update First−Propagate Next Protocol

The entity P(θt+1, Yt+1|θt, Yt) of the previous section has an alternate factorization, and this factor-

ization forms the basis of the ”update first−propagate next protocol” for the particle filter. Thus,

the two protocols of particle filtering discussed here are motivated by the two factorizations of

P(θt+1, Yt+1|θt, Yt). Specifically, P(θt+1, Yt+1|θt, Yt), can also be factored as follows:

P(θt+1, Yt+1|θt, Yt) = P(θt+1|θt, Yt+1, Yt)P(Yt+1|θt, Yt) = P(θt+1|θt, Yt+1)P(Yt+1|θt, Yt), (7.3)
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if θt+1 is assumed independent of Yt, given θt and Yt+1.

Incorporating the factorization of (7.3) into the relationship

P(θt+1|Yt+1) ∝

∫

θt

P(θt+1, Yt+1|θt, Yt)P(θt|Yt)dθt

given before, we have

P(θt+1|Yt+1) ∝

∫

θt

P(θt+1|θt, Yt+1)P(Yt+1|θt , Yt) P(θt|Yt)dθt, (7.4)

where

P(Yt+1|θt, Yt) =
∫

θt+1

P(Yt+1|θt+1, θt, Yt)P(θt+1|θt, Yt)dθt+1

by law of total probability, by conditioning on θt+1. Assuming θt+1 is independent of Yt given θt, and

Yt+1 is independent of θt and Yt given θt+1, we have

P(Yt+1|θt , Yt) =
∫

θt+1

P(Yt+1|θt+1)P(θt+1|θt)dθt+1 = P(Yt+1|θt).

Thus, (7.4) simplifies as:

P(θt+1|Yt+1) ∝

∫

θt

P(θt+1|θt, Yt+1)P(Yt+1|θt)P(θt|Yt)dθt. (7.5)

Equation (7.5) parallels (7.2) and is an alternate to it. It encapsulates the ”update first-propagate

next” protocol. Note that the key difference between (7.2) and (7.5) pertains to the feature that

the former entailed P(Yt+1|θt+1) whereas the latter entails P(Yt+1|θt). With Yt+1 observed as yt+1,

P(Yt+1|θt+1) spawns the filtering likelihood L(θt+1; yt+1) whereas P(Yt+1|θt) spawns the smoothing like-

lihood L(θt; yt+1) = P(yt+1|θt). An advantage of the smoothing likelihood over the filtering likeli-

hood is that were yt an outlier but yt+1 not, then a consideration of a likelihood based on yt+1 would

diminish the ill effects of yt.

Filtering under the update first-propagate next protocol is an implementation of equation (7.5)

via a simulation starting with the generation of N particles θ
(i)
t , i = 1, . . . , N from the distribution of

(θt|Yt) and using each θ
(i)
t to specify a smoothing likelihood L(θ

(i)
t ; yt+1) and the ensuing importance

weights w
(i)
t+1 ∝ L(θ(i)t ; yt+1). Proceeding as above, going from right to left of (7.5) we have

P(θt+1|Yt+1) ≈
N

∑
i=1

P(θ
(i)
t+1|θ

(i)
t , yt+1)w

(i)
t+1,
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where P(θ
(i)
t+1|θ

(i)
t , yt+1) is evaluated via Bayes’ Law as

P(θ
(i)
t+1|θ

(i)
t , Yt+1) ∝ P(Yt+1|θ

(i)
t+1)P(θ

(i)
t+1|θ

(i)
t ),

assuming that Yt+1 is independent of θ
(i)
t given θ

(i)
t+1. Thus with Yt+1 observed as yt+1, we have

P(θ
(i)
t+1|θ

(i)
t , yt+1) ∝ L(θ

(i)
t+1; yt+1)P(θ

(i)
t+1|θ

(i)
t ).

The schematics of Figure 5 illustrates the above operations. Before closing this sub-section, it is

appropriate to cite the recent paper by Sukhavasi and Hassibi (2013) which describes the mechanics

of filtering when the observation space (as opposed to the state-space) is quantized by particles.
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Figure 5: Particle Filtering under Update First−propagate Next Protocol.

8 Summary, Conclusions, and the Path Forward

This paper has been primarily written for an audience of applied statisticians, applied probabilists,

econometricians, engineers, and time-series analysts, many of whom are familiar with state-space

models, but who may not be fully cognizant of the genesis, the evolution and the mathematical un-

derpinnings of such models. The several references citing the work of Mandrekar and his colleagues

are given here to provide the reader some sense of what appeals to theoretical probabilists in this
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arena. Control theorists may find little that is new to them. An exception could be the material of

Section 3.1 on the philosophical basis of the Kolmogorov-Wiener setup in the context of quantum

theory, and the material of Section 6.2 on the role of the less recognized principle of conditionaliza-

tion on the commonly used results in filtering. An adherence to this principle is philosophically not

mandatory, and when not adhered to, it could fundamentally change the nature of some well known

results and the algorithms which produce these.

Besides the philosophical material of Sections 3.1 and 6.2, what distinguishes this paper from

other surveys and reviews on filtering is its encompassiveness. Rather than focussing solely on com-

putational or simulation issues, the paper gravitates towards the underlying ideas, and traces the

key mileposts of the subject which constitute the core of its foundations. See Figure 6 whose title is

inspired by term ”the quark jungle of particle physics.” It starts with the work of Gauss, who laid

out a general paradigm for all that is to follow, and then moves on to that of Kolmogorov who put

forth a mathematical framework to operationalize Gauss’ paradigm. Wiener enters the picture, pre-

sumably independently of Kolmogorov, and ends up adding some structure to Kolmogorov’s very

general setup. But this was not enough; ease of implementation continued to be a problem. This

first motivated North to propose the ”matched filter,” which in turn was followed up by Bode and

Shannon, and Zadeh and Ragazzini to push the envelope further by adding structure to Wiener’s

setup, so that now Kolmogorov’s setup had an enhancement in two tiers, the first due to Wiener, and

the second due to North, Bode-Shannon, and Zadeh-Ragazzini. These have paved the path towards

development of hidden Markov and state-space models. Whereas Shannon and Zadeh have been

acknowledged as the originators of information and fuzzy set theory, respectively, the signal role

played by them in the development of state-space models warrants a more emphatic recognition.

The dates shown in Figure 6 are accurate to the best of our knowledge.

Not to be forgotten is the role of statisticians like Robbins, Kiefer, and Wolfowitz in the enhance-

ment and development of state-space models. Noteworthy is the landmark paper of Lindley and

Smith (1972), who gave Kalman’s algorithm a Bayesian prior to posterior interpretation, and in so

doing opened the floodgate for statisticians to join the party. This has been a fortuitous development,

because statisticians and applied probabilists have developed powerful computational and simula-

tion tools that have advanced the state of the art of filtering by increasing its efficiency. In exchange,

state-space models and filtering techniques enhanced the scope of regression models by making them

dynamic, and have enhanced the scope of statistical modeling vis a vis graphical modeling and causal

analysis. A recent paper by Smith and Freeman (2011) provides a striking perspective on this recip-
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Filtering Forest

Figure 6: The Journey: From Least Squares to the Filtering Forest.

rocal relationship.

Traditionally, state-space models have primarily been used in signal processing, image analysis,

target tracking, astronomical studies, and time series analysis. The era of big data has opened the

door to other applications as well, and this is what we mean by path forward. An inkling of this

possibility is the work of Li, Holland, and Meeker (2010), which pertains to a problem in reliability.

Big data tends to be high dimensional because it is often generated by an array of sensors that are

spatially placed and which generate volumes of information in real time. In the application by Li

et al. (2010) filtering is done in three dimensions via a matched filter, and the challenge of doing so
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is addressed by the Fast Fourier Transform. It has often been claimed that the future of reliability

and maintainability will be driven by an ability to anticipate failure and to take timely preventive

measures by the real time tracking of degradation and wear; see, for example, Lu and Meeker (1993).

Sentiments such as these have spawned efforts such as those by Qian and Yan (2015) for using the

particle filter to predict useful life of bearings, by Wang, Miao, Zhou, and Zhow (2015) for gear, by

Sun, Zou, Wang, and Pecht (2012) for gas turbines, and by Zio and Peloni (2011) for tracking fa-

tigue crack growth. An overview of prognostics based on particle filter methods is given by Jouin,

Gouriveau, Hissel, Pera and Zerhouni (2016). More recently, with the advent of self driving cars

and airplanes such as the ”Dreamliner”, filtering techniques have been used to predict the residual

lifetimes of rechargeable batteries. Here, degradation is often described by a Brownian motion pro-

cess with an adaptive drift, and is tracked by a particle filter; see, for example, Wang, Carr, Xu, and

Kobbacy (2011), Dalal, Ma, and He (2011), Xing, Ma, Tsui, and Pecht (2013), and Si (2015).

With big data, one may also need to engage with stochastic processes in high dimensions. The

theoretical foundation for doing the above was initiated by Wiener and Masani (1957,1958), and by

Masani (1960). The material there is technically demanding, and is mentioned here mainly for sake

of historical completeness.
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