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Abstract

Classification problems are commonly seen in practice. In this paper, we aim to develop classifiers 

that can enjoy great interpretability as linear classifiers, and at the same time have model 

flexibility as nonlinear classifiers. We propose convex bidirectional large margin classifiers to fill 

the gap between linear and general nonlinear classifiers for high dimensional data. Our method 

provides a new data visualization tool for classification of high dimensional data. The obtained 

bilinear projection structure makes the proposed classifier very interpretable. Additional shrinkage 

to approximate variable selection is also considered. Through analysis of simulated and real data 

in high dimensional settings, our method is shown to have superior prediction performance and 

interpretability when there are potential subpopulations in the data. The computer code of the 

proposed method is available as supplemental materials.
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1 Introduction

Classification is a typical supervised learning problem in machine learning and statistics. For 

classification, one needs to identify a decision rule based on a training dataset which consists 

of input variables and their corresponding class labels. Once the rule is obtained, a 

classification rule can predict the label for a new instance using information of the input 

variables. Many classification algorithm or methods can be viewed as large margin 

classifiers (Hastie et al., 2001). This ranges from classical ones such as perceptron algorithm 

and logistic regression, to modern machine learning techniques such as Boosting (Freund 

and Schapire (1997), Freund et al. (1999); Schapire et al. (1998)) and the Support Vector 

Machine (SVM; Vapnik (1998)). For an overview of large margin classifiers, one can refer to 

Bartlett et al. (2003); Liu et al. (2011).
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The development of classification methods mainly focuses on two aspects: One is to find a 

classification rule which can correctly identify the true class, that is a rule with high 

classification accuracy; The other is to get an interpretable or meaningful model, for 

example, whether we can recognize important features and understand their contributions to 

the classifier.

Using a linear combination of the variables, linear classifiers are one of the most widely 

used classification tools. Training and testing procedures for linear classifiers are relatively 

efficient compared with nonlinear ones, especially in high dimensional spaces. Moreover, 

due to the simple linear form, the corresponding interpretation can be straightforward. 

Despite its simplicity, however, a linear classifier may fail to handle classification problems 

with nonlinear boundaries and thus the prediction performance can be suboptimal.

To overcome linearly nonseparable data in the input feature space and get more accurate 

results, linear classifiers can be extended to nonlinear ones by mapping variables into higher 

dimensional feature spaces. A well known technique is the kernel trick used in the SVM to 

capture the nonlinear patterns of the data. In general, nonlinear classifiers are more flexible 

than linear ones and it can achieve better prediction performance when the underlying true 

classification boundary is nonlinear. However, compared with linear ones, nonlinear 

classifiers in general do not provide intuitive interpretation about the difference between 

classes based on the input variables. For example, it can be hard to explain the effect of each 

input variable for a nonlinear classifier. In addition, its training and testing procedures may 

not be as efficient as linear ones, especially for high dimensional problems, and the model is 

more likely to overfit due to the use of multiple tuning parameters.

Our proposed work is motivated by the limitations of both linear and nonlinear classifiers. 

Our goal is to design a classifier with interpretability similar to linear ones, but with much 

more flexibility. In the literature, there exists some work on simplifying nonlinear classifiers 

such as Bach (2009); Lin et al. (2006); Bertsimas et al. (2012). However, most of them focus 

on variable selection on nonlinear classifiers. Huang et al. (2012) proposed to use multiple 

linear functions to achieve the goal, but the corresponding computation is nonconvex. In this 

paper, we propose the Convex Bilinear large margin Classifier (CBC), which maintains the 

great interpretability of linear classifiers and also keeps accurate prediction performance 

especially when sub-group structures exist in the data.

An important characteristic of our proposed CBC method is that it can be computed through 

convex optimization, and meanwhile automatically provide a new way to visualize high 

dimensional data. The CBC method can construct an effective low dimensional subspace for 

classification of data with subpopulation structures via bilinear projection. Unlike 

unsupervised learning, the CBC makes use of both input variables and label information to 

construct a low dimensional space to retain most informative structure in the data for 

classification. Comparison with the principal component analysis (PCA) shows that our 

CBC method can be also used as an useful visualization tool for high dimensional 

classification problems.
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In order to further enhance the interpretability of our approach, we implement an additional 

one-step shrinkage for our CBC method to approximate variable selection. In particular, we 

propose a weighted CBC method by using the weighted l2 penalty to shrink variables and 

achieve approximate sparsity with efficient computation for the projection. In this way, we 

can not only identify a low dimensional subspace for high dimensional data, but also 

discriminate the most important features that contribute to the projection. This further 

strengthens the interpretability of our proposed methods.

The rest of this article is organized as follows. In Section 2, we introduce our CBC method 

and its related properties. In Section 3, we discuss the variable selection procedure for the 

CBC method. In Section 4, the computational algorithm is provided. In Section 5, we 

compare our method with related work via simulation studies and a real data application. We 

conclude this paper with some discussion in Section 6.

2 Bilinear Large Margin Classification Framework

In supervised learning, we are given a set of training data {(xi, yi) : i = 1, 2, · · ·, n}, where 

xi ∈ ℛp represents a p dimensional input vector including the intercept and yi is an output 

label. We consider the standard binary classification problem with yi ∈ {1,−1}. One 

important goal of classification is to find a classifier from the training data, so that one can 

predict the class label y for any given new instance x.

In this article, we mainly focus on large-margin classifiers. Specifically, a margin-based 

classifier tries to obtain a function f(x), mapping from ℛp to ℛ, and use sign(f(x)) as the 

classification rule. According to the classification rule, yf(x) decides the classification result 

on the point (x, y). Correct classification happens if and only if yf(x) > 0. The quantity yf(x) 

is usually referred as the functional margin and used for many large-margin classification 

techniques.

It is well known that many large-margin classifiers can be fit into the regularization 

framework of loss + penalty. The loss term controls the model fitting of the data and the 

regularization term is used to prevent overfitting. In general, the regularization formulation 

of binary large-margin classification can be expressed as follows:

min
f ∈ ℱ

1
n ∑

i = 1

n
L yi f xi + τJ( f ), (1)

where ℱ refers to some function class, L is a loss function on the margin yf(x), J(f) is the 

regularization term and τ is a non-negative tuning parameter to balance the two terms. A 

natural choice of the loss function in (1) is the 0–1 loss with L = 𝟙(yf(x) ≤ 0), which assigns 

the loss of 1 for misclassification and 0 otherwise. However, since the 0–1 loss is a non-

convex and non-smooth function that is difficult to optimize, many convex surrogate loss 

functions have been proposed. For example, the SVM uses the hinge loss L(yf(x)) = max (0, 

1 – yf(x)). Other popular loss functions include the binomial deviance loss for penalized 
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logistics regression (Lin et al. (2000)), the exponential loss for AdaBoost (Freund and 

Schapire (1997)), and the Huber loss for robust classifiers (Rosset and Zhu (2007)). Figure 1 

compares different loss functions on yf(x). Recently, Liu et al. (2011) proposed a family of 

large margin classifiers to unify many large-margin machines.

Among various large margin classifiers, according to the functional class ℱ in (1), one can 

divide them into two major groups: linear or nonlinear classifiers. The comparison between 

linear and nonlinear classifiers in the introduction motivates us to propose a new method to 

combine the strengths of both methods. One possible approach is to use two linear 

hyperplanes to separate two classes. In this situation, the functional margin becomes 

yf1(x)f2(x) = y(xTw1)(xTw2) and can be further expressed as yxT Ax by replacing w1w2
T with 

a p × p matrix A. In order to get two linear hyperplanes, the rank of A should be equal to 1, 

which inspires us to propose the following bilinear optimization problem:

min
A ∈ ℛp × p

1
n ∑

i = 1

n
L yixi

T Axi ,

subject to rank(A) = 1.

(2)

Note that xi
T Axi = A, xixi

T , which is the inner product between two matrices. The (k, m)-th 

entry of matrix A, denoted as Akm, corresponds to the contribution of interaction between 

the k-th and m-th variables in the classification rule. Since xi includes the constant term, 

xi
T Axi covers both linear and quadratic terms. Our matrix representation can be viewed as a 

data-driven classification technique with rank-one approximation to the coefficient matrix A. 

Under the assumption that the coefficient matrix is of a low rank, we can further extend the 

constraint in (2) to rank(A) = r by Solving

min
Ur, Vr ∈ ℛp × r

1
n ∑

i = 1

n
Li yixi

T Axi ,

subject to A = UrVr
T,

(3)

where Ur and Vr form a matrix factorization for A and their own columns are orthogonal. 

Note that r needs to be decided in advance or be viewed as a tuning parameter similar to 

principal component analysis or k-means clustering.

For illustration, we consider some toy examples in Figure 2. We consider A as a size 5 by 5 

matrix. On the left panel, we let A = u1v1
T of rank 1, where u1 is a vector of length 5 with all 

entries 0 except the first entry being 1 and the entries for v1 are 0 except the last entry being 

1. On the right panel, we consider a rank-2 matrix A, where A can be expressed as 
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u1v1
T + u2

Tv2
T with u1v1 as the left panel, and u2 is a vector of length 5 with all entries 0 

except the second entry being 1 and the entries for v2 are 0 except the fourth entry being 1.

To further illustrate the idea, we consider the classifier in the form of sign((xTw1)(xTw2)) in 

(2), where w1 = (0,1,0) and w2 = (0,0,1). The corresponding classification boundary is 

shown in Figure 3. Based on this plot, we can see that a decision boundary using two cross 

lines identifies the class structure. Note that the decision function in the form of (xTw1)

(xTw2) can be quite general. It covers linear classifiers if xTw2 is estimated to be a constant. 

Moreover, if each class contains subpopulations such as a mixture of multiple Gaussian 

components, such a decision function can capture the classification structure by constructing 

two hyperplanes. Classification problems with within class subpopulations can be 

commonly seen in practice. For example, in cancer gene expression study of classifying 

cancer versus normal samples, the cancer class may have multiple subtypes due to the 

disease heterogeneity (Tibshirani et al. (2002)).

Although problems (2) and (3) have clear motivations, the corresponding optimization 

problems are non-covex due to the rank constraint. For example, for any matrix A1 and A2 

with rank r, the rank of λA1 + (1 − λ)A2 is not necessarily still r, where λ ∈ (0, 1). As a 

result, the rank constraint is not a convex set and thus the optimization problem can be 

difficult to solve. In Section 2.1, we propose a convex surrogate classifier to solve such 

problems.

2.1 Convex Bilinear Large Margin Classifier Framework

Before we introduce our CBC method, we first introduce notations to be used for the rest of 

this article. For a vector w ∈ ℛp, the Euclidean norm is denoted as ‖w‖ = ∑i = 1
p wi

2. For a 

matrix A ∈ ℛm × n, we denote the Frobenius norm as ‖A‖F = ∑i = 1
m ∑ j = 1

n Ai j
2 , where Aij 

denotes the (i, j)-th entry of A. If the rank of A is r, then the condensed singular value 

decomposition (SVD) of A can be expressed as A = UrΣrVr
T, where Ur ∈ ℛm × r and 

Vr ∈ ℛn × r satisfy Ur
TUr = Ir and Vr

TVr = Ir respectively, and Σr = diag(σ1(A), · · ·, σr(A)) 

with σ1(A) ≥ · · · ≥ σr(A) > 0. In addition, ‖A‖* = ∑i = 1
r σi(A) denotes the nuclear norm of A.

Since (2) involves a non-convex optimization problem, it may be hard to solve when the 

dimension is large. Convex relaxation of the rank constraint using the nuclear norm has been 

shown to be successful in solving rank-constrained problems with some theoretical 

guarantees (Candès and Tao (2010)). Minimizing the nuclear norm can help to reduce the 

rank stably and perform shrinkage at the same time. This encourages us to reformulate (2) 

into the following convex minimization problem

min
A ∈ ℛp × p

F(A) = 1
n ∑

i = 1

n
L yi, xi

T Axi + τ‖A‖* . (4)

Qi and Liu Page 5

Technometrics. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Note that for a given τ, solving (4) does not necessarily give us an exactly rank r solution. 

One intuitive approach is to solve (4) using a series of τ to get a solution with rank r. 
However, replacing the rank constraint by the nuclear norm may lead to infinite solutions 

due to the special form xi
T Axi by the following theorem.

Theorem 1. For any matrix A ∈ ℛp × p and any τ ≥ 0, there exists a symmetric matrix Z 

such that F(Z) ≤ F(A). Furthermore, if an optimal solution A* to (4) is not symmetric, any 

convex combination of A* and A*T
 is also an optimal solution.

From Theorem 1, we know that there always exists a symmetric matrix A* optimizing 

problem (4). Since both xi
T Axi and ∥A∥* are invariant to the transpose operator, we need to 

add a symmetric constraint on matrix A in the optimization problem (4) as follows to make it 

meaningful:

min
A ∈ Sp

G(A) = ∑
i = 1

n
L yi, xi

T Axi + τ‖A‖*, (5)

where Sp denotes the class of p × p symmetric matrices. For problem (5) we can still control 

τ to get a solution with rank r. However, it may lead to unsatisfactory classifiers with useless 

prediction. For example, if we search a series of τ in problem (5) to get the solution with 

rank r = 1, the optimal A* can always be degenerated as A* = λ1‖u‖2
2 by spectral 

decomposition. In this situation, the classification rule will become 

sign λ1‖u‖2
2‖x‖2

2 = sign λ1  for any given new instance x, which means that the 

corresponding classifier will always assign a new instance to one class. In order to address 

this difficulty incurred by the symmetric constraint especially when our purpose is to get 

rank r = 1, Theorem 1 inspires us to search the solution with rank higher than r first and then 

find the equivalent best rank r solution. Here the equivalent best rank r solution means 

achieving the same objective value in (5) but without being symmetric. For example, if we 

want to get a solution with rank r = 1, we may search some τ’s to get the solution with r = 2 

first and then find the equivalent best rank 1 matrix.

Suppose A(τ) be an optimal solution to (5) with the tuning parameter τ. We assume that 

rank(A(τ)) is monotonely non-increasing in τ and there exists 0 = τ0 < τ1 < · · · < τp < τp+1 = 

∞ such that for τ ∈ [τk, τk+1), the corresponding rank of A(τ) is k. This assumption is 

reasonable because as τ increases, a large penalty on the nuclear norm of A is imposed, and 

consequently leads to smaller ranks in general. We have the following theorem.

Theorem 2. For any τ ∈ [τ2, τ3) with A(τ) as the solution for (5), there always exists a 
A*(τ) with rank r = 1 such that G(A*(τ)) = G(A(τ)). Furthermore, A*(τ) is also a global 
minimizer to
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min
A ∈ ℛp × p

∑
i = 1

n
Li yixi

T Axi + τ‖A‖*,

sub ject to rank(A) = 1,

(6)

where τ ∈ [τ2, τ3). Let two eigenvalues of A(τ) be λ1, λ2 with λ1 ≥ λ2 and their 

corresponding two eigenvectors be q1, q2. Then we can find A*(τ) = U1V1
T explicitly with

U1 = λ1 q1 + λ2 q2,
V1 = λ1 q1 − λ2 q2 .

(7)

Remark 1. Note that the rank 1 solution A*(τ) with U1, V1 can be interpreted as two linear 
hyperplanes to separate the input space. Two orthogonal eigenvectors q1, q2 could be used 
for supervised dimension reduction by projecting data into the corresponding two-
dimensional orthogonal space. This projection provides us a new way of data visualization 
for high dimensional data and can possibly help to detect subcluster structure within each 
class as we will demonstrate in Section 5. Figure 4 gives us one toy example. The dataset 
has four clusters and two for each class respectively. Their class label is decided by the first 
two features with additional 48 dimension noisy features, as seen in the left panel of Figure 
4. On the right panel, features are projected onto orthogonal directions q1, q2. Clearly this 
new data visualization approach captures the structure of two clusters in each class and their 
relative location by making use of both input features and label information.

Remark 2. For a higher rank-constrained problem, we can use a similar strategy as in 
Theorem 2. However, the corresponding computation may be more intensive since we do not 
have an explicit form as Equation (7) in Theorem 2. Although higher rank solutions may be 
able to identify more complicated classification structures, we may loss the interpretation of 
the corresponding classifiers.

For simplicity, we mainly consider how to get the rank r = 1 solution based on problem (5), 

although the higher rank setting can be extended directly. Note that the loss function L on 

the margin yf(x) can be general convex loss functions for theorems discussed so far. For an 

illustration, we use the smooth hinge loss function proposed by Rennie and Srebro (2005) 

that shares some similarity with the standard hinge loss and can be solved by gradient-

decent-type algorithms with L(z) = 1/2 − z if z ≤ 0, (1 − z)2/2, if 0 < z < 1, and 0 if z ≥ 1.

In Section 2.2, we discuss the close connection between (6) and the classification problems 

in Huang et al. (2012). This connection further motivates the idea of our proposed methods.

2.2 Properties and Related Literature

In Theorem 2, we conclude that U1 and V1 form a global solution to (6) for τ ∈ [τ2, τ3). 

Note that the optimization problem (6) controls both the nuclear norm and rank 
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simultaneously, which is closely related to the standard classification problem as shown in 

the following theorem.

Theorem 3. The solution to (6) with A = U1V1
T lies in the solution path of the following 

problem:

min
U1, V1 ∈ ℛp × 1

∑
i = 1

n
L yixi

TU1V1
Txi + τ

2 ‖U1‖
F
2 + ‖V1‖

F
2 . (8)

We observe that the problem is exactly to find two linear hyperplanes similar to the usual 

classification framework. In this setting, (8) is the same to the bidirectional discrimination 

proposed by Huang et al. (2012), where in their paper they use the standard hinge loss and 

didn’t include the constant term inside the features x to be regularized. They used the block-

coordinate decent algorithm to solve (8) by iteratively fixing U1 or V1 to solve the other via 

standard quadratic programming. However, (8) is a non-convex problem with possibly 

undesirable local minimums. In contrast, our method for rank r = 1 solves a series of convex 

optimization with guarantee of global solutions for different tuning parameters τ within a 

specific range decided by problem (5). Thus our CBC method has the potential of more 

accurate performance as we will demonstrate through our numerical examples.

In Section 3, we propose a weighted CBC method to approximate variable selection. This 

extension can be useful when there are a lot of noise variables, especially under high 

dimensional settings. In particular, we consider to modify the optimization problem (8) by 

adding a weighed L2 penalty and transform it back into nuclear norm minimization 

problems. This can further improve the interpretability of our method by identifying 

important variables.

3 Weighted CBC in Bilinear Large Margin Classifiers

For high dimensional classification problems, there is a high risk of model overfitting. 

Therefore, it is desirable to perform further shrinkage in order to improve the prediction 

accuracy and model interpretation.

From the statistical function estimation perspective as we discussed before, large margin 

classifiers, for example the SVM, can be viewed in the regularization form of loss + L2 

penalty (Hastie et al., 2001). It is well known that applying the L2 regularization has the 

effect of shrinking the coefficients toward zero, while reducing variances by sacrificing 

unbiasedness. The same L2 regularization is used in ridge regression for regression 

problems. However, the L2 penalty does not produce exactly 0 solutions for coefficients and 

thus it may be difficult to interpret the model. Using a similar idea from LASSO (Tibshirani, 

1996) in linear regression, the L1-SVM was proposed to both increase the prediction 

accuracy and automatically shrink some coefficients to exact 0 (Bradley and Mangasarian, 

1998). In addition, efficient algorithm has also been proposed to compute the whole solution 

path (Zhu et al. (2004)). However, for highly correlated features, L2 regularization may yield 
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better prediction power than the L1 because the L1 regularization tends to select only a few 

among highly correlated variables and remove the rest. In addition, the total number of 

selected features is bounded by the sample size.

In our bidirectional large margin framework, in order to implement variable shrinkage, we 

start from problem (8). In order to get sparse solutions, we could apply similar ideas as in 

the L1-SVM (Zhu et al. (2004)). However, introducing the L1 regularization may make the 

optimization problem challenging. In particular, unlike the transformation of convex 

optimization when the L2 penalty is used, we do not have such convex transformation 

anymore when the L1 penalty is used. As a result, it can be more difficult to solve. 

Therefore, in order to achieve further shrinkage and avoid nonconvexity, we propose the 

weighted CBC to approximate variable selection by using the weighted L2 penalty as 

follows:

min
U1, V1 ∈ ℛp × 1

∑
i = 1

n
L yi, xi

TU1 V1
Txi + τ

2(
U1
α1

2
+

V1
α2

2
), (9)

where the division is element-wise and α1, α2 are data driven weights. We can use the 

solution U1, V1 in (7) as weights. Although our weighted L2 penalty cannot produce exact 

sparse solutions, it can be viewed as an approximation of the L0 regularization, where 

L0 U1 = ∑i = 1
p 𝕀 U1i > 0 . The L0 regularization corresponds to the best subset variable 

selection technique. For our weighted penalty, if one of α1i is large, the corresponding U1i 

will have a small penalty for being non-zero. On the other hand, a small α1i will yield a 

large penalty on U1i not being zero, shrinking it towards 0. We can iteratively optimize (9) to 

get a nearly sparse solution. In our numerical study, we find that our one-step weighted CBC 

performs well.

Note that optimization problem (9) can be rewritten as

min
U1, V1 ∈ ℛp × 1

∑
i = 1

n
L yi, xi • α1

TU1V1
T xi • α2 + τ

2 ‖U1‖2 + ‖V1‖2 , (10)

which is similar to problem (8). Basically, (10) is the weighted solution of (8). But the key 

difference between (10) and (8) lies in that, in (10), we consider the modified or weighted 

covariates xi ·α1 and xi ·α2. This motivates us to develop a different approach to handle it, 

using the following corollary.

Corollary 3.1. The following nuclear norm minimization problem is equivalent to (9):
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min
A ∈ ℛp × p

∑
i = 1

n
L yi, xi • α1

T A xi • α2 + τ2‖A‖*

subject to rank(A) = 1,

(11)

where • denotes the element-wise product.

In order to solve the problem (11), we no longer need to search a series of τ to get the rank 2 

solution first and transform the rank 2 solution into rank 1 solution. This is because (xi • α2) 

no longer equals to (xi • α1) and Theorem 1 does not apply anymore. In this situation, by 

controlling τ2 for rank 1 solutions, we can solve it directly.

To summarize the relationship among different formulations, problem (9) is a weighted 

version of (8). Since (10) is equivalent to (9), (10) can be viewed as a weighted version of 

(8) as well. The key difference between (10) and (8) lies in that we consider modified (xi 

•α1) and (xi •α2) in (10).

4 Computational Algorithm

In this section, we present our algorithm for solving the nuclear norm minimization problem 

(5). To that end, we first introduce an important lemma.

Lemma 1. Suppose we have X ∈ ℛp × p, then the unique solution to the optimization 
problem:

minimize
Y ∈ ℛp × p

1
2‖X − Y‖F

2 + τ‖Y‖*

is Y = Sτ (X), where Sτ (X) = UΣτVT, U and V are left and right singular vectors of X, and 
Στ = diag((σ1(X) − τ)+, · · ·, (σp(X) − τ)+), where the function m+ = max(m, 0).

Algorithm 1

basis estimation algorithm

1: procedure BASIS ESTIMATION ALGORITHM

2:          Given τ1 > τ2 > · · · > τk and Initialize Alast by random

3:          Alast = Alast + AlastT
2

4:          while rank Aτk
≤ 2 do

5:              δ = 1

6:              while δ > 𝜖 do
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7:                  
∂L
∂ A Alast = ∑i = 1

n L′ yi, xi
T Alastxi yixixi

T

8:                  Anext = Stτk
Alast − t ∂L

∂A Alast

9:                  δ =
‖Alast − Anext‖F

max(1, ‖Alast‖F)

10:                  Alast = Anext

11:              end while

12:              Aτk
= Alast

13:          end while

14: end procedure

This operator Sτ (X) is known as soft-thresholding and proofs can be found in Cai et al. 

(2009) and Mazumder et al. (2010). The closed form solution in Lemma 1 motivates us to 

use the proximal gradient decent method.

4.1 Proximal gradient algorithm for subspace estimation

In order to solve (5), by using the proximal gradient decent method, we compute a series of 

solutions with different τ in a decreasing order and the previous solution can be a warm start 

for the next solution. Algorithm 1 provides the details. After getting a series of solutions of 

Aτi, we pick all the rank 2 solutions. Note that there are potential multiple rank 2 solutions 

based on pre-specified τ. We choose the best rank 2 solution by cross validation discussed in 

Section 4.3.

We set the starting point to be symmetric and all the steps of the computation will keep our 

solution always be symmetric. Thus the constraint is always satisfied. The assumption 

behind line 3 in Algorithm 1 is that the rank of solution A is non-increasing with respect to 

τ. For line 7 we perform the proximal operator following Lemma 1 and the step size t can 

either be a Lipschitz constant or decided by the line search. Many types of line search work 

and here we use the simple one proposed in Beck and Teboulle (2009b). Within the inner 

loop, the sequence of solution {A} will converge to the optimal solution with rate O 1
k , 

where k is the number of iterations, as discussed in Parikh and Boyd (2014). Since the 

proximal gradient algorithm only shares a sublinear global rate of convergence, Beck and 

Teboulle (2009a) proposed Fast Iterative Shrinkage Thresholding Algorithm (FISTA) to 

improve the rate to O 1
k2 . For our specific problem, we modify our algorithm following the 

spirit of FISTA. See Algorithm 2 for details.
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Algorithm 2

basis estimation algorithm

1: procedure BASIS ESTIMATION ALGORITHM USING FISTA

2:          Given τ1 > τ2 > · · · > τk and Initialize Alast by random

3:          Alast = Alast + AlastT
2

4:          while rank Aτk
≤ 2 do

5:              δ = 1, θ1 = 1, Blast = Alast

6:              while δ < ϵ do

7:                  
∂L
∂ A Alast = ∑i = 1

n L′ yi, xi
T Alastxi yixixi

T

8:                  Bnext = proxtτi
(Aold − t ∂L

∂A Aold) = Stτi
(Aold − t ∂L

∂A )

9:                  θ2 =
1 + 1 + 4θ1

2

2

10:                  Anext = Bnext + (
θ1 − 1

θ2
)(Blast − Bnext)

11:                  δ =
‖Alast − Anext‖F

max 1, ‖Alast‖F

12:                  θ2 = θ1, Alast = Anext, Blast = Bnext

13:              end while

14:              Aτk
= Alast

15:          end while

16: end procedure

For algorithms 1 and 2, the most time consuming step is the proximal operator 

Stτi
(Aold − t ∂L

∂ A ) in each iteration. This requires to compute the truncated SVD of a possibly 

low rank matrix especially when we use the previous low rank solution as the warm start. 

There is a large literature regarding SVD in numeric algebra such as Golub and Van Loan 

(1996) for general SVD. However, in order to handle large datasets, truncated SVD could be 

computed efficiently by Krylov subspace projection methods (Saad, 1992). Note that 

although Algorithm 2 has a faster convergence rate than Algorithm 1, Algorithm 1 may not 

perform worse than Algorithm 2 in terms of actual computational time due to the truncated 

SVD in each iteration. In particular, in line 8 of Algorithm 2, the next step is decided by the 

extrapolation of two previous stages and it is not necessarily a low rank matrix and may cost 

more time in computation than Algorithm 1 when performing SVD.
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4.2 Algorithm for Weighted CBC

In order to solve weighted CBC, we can use a similar algorithm as in Section 4.1. However, 

in this situation the while condition in line 4 of both algorithms becomes rank(A) ≤ 1. After 

obtaining the best rank one solution A* to (9) by cross validation, we need to transform the 

solution γ1, γ2 in (9) back to U1, V1 by SVD.

To solve problem (11) without the rank constraint, we use the equivalent problem (11). Thus 

we use a similar idea in Section 2 and the algorithm remains the same except that we stop 

our algorithm when the rank of solution is higher than 1. Furthermore, as we include the 

intercept term in the input variables, we also include it in the regularization term. In order to 

remove the regularization on the intercept term, we use a similar idea as in the weighted 

CBC by setting the first elements of both α1 and α2 in (11) to be large so that the 

corresponding penalties to be small.

4.3 Choice of Rank-based Tuning parameters τ and τ2

For the two algorithms in Section 4.1, we pre-specify a series of decreasing values τ in order 

to get rank two solutions. Basically we consider an equal spaced grid of τ between [τmin, 

τmax]. However, there may have multiple τ corresponding to rank 2 solutions, and cross 

validation is used to choose the best tuning parameter. Specifically, we use 5-fold cross 

validation and repeat 10 times to find the one with the lowest out of sample test error. For τ2 

in weighted CBC, we use a similar strategy. Since we have weights already, the range of the 

pre-specify τ2 should be relatively small. We recommend to choose τ2
max = τ, which is 

selected in the unweighted CBC.

5 Numerical Results

In this section, we use both simulated and real data to compare CBC with other methods.

5.1 Simulation Study

Using simulation, we compare our proposed CBC and weighted CBC methods with the 

BDD method in Huang et al. (2012), the linear SVM, quadratic SVM, Gaussian Kernel 

SVM, generalized additive model (GAM) from Chouldechova and Hastie (2015), one 

hidden layer with one-node neural network (1–1-NN), and one hidden layer with two-node 

neural network (1–2-NN) (Hansen and Salamon (1990)) based on the prediction 

performance and model interpretability. For data visualization, we compare CBC with PCA.

In order to demonstrate that our method can identify sub-clusters within each class, we first 

simulate three bilinear examples shown in Figure 5. Within each class, the subclusters are 

generated from shifted bivariate normal distributions with parameter μ. The details are 

provided below.

1. Example 1 is a four-cluster-twisted case shown in the left panel of Figure 5, 

which includes four clusters and two for each class respectively. The first two 

features of each cluster are shifted by bivariate normal with means (μ, μ), (−μ,
−μ), (−μ, μ), (μ,−μ) correspondingly and variance equal to 1. Other dimensions 
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are just standard white noise. In this case, linear classifiers may be difficult to 

find a good classifier. The perfect classifier has a quadratic form as sign(x1×2). 

Thus we expect CBC to estimate two linear hyperplanes such as f1 = x1 and f2 = 

x2 up to some constant.

2. Example 2 is a four-cluster-straight case shown in the middle panel of Figure 5, 

which includes four clusters and two for each class respectively but at the same 

side. The first two features of each cluster are shifted by bivariate normal with 

means (μ, μ), (μ,−μ), (−μ, μ), (μ, μ) correspondingly and variance equal to 1. 

Other dimensions are also just white noise. In this case, linear classifiers are 

expected to perform well. The perfect classifier is a linear form as sign(x1). Thus 

we expect our CBC method to estimate two linear hyperplanes such as f1 = x1 

and f2 = 1 up to some constant.

3. Example 3 is a three-cluster-triangle case shown in the right panel of Figure 5, 

which includes three clusters, two for one class and the rest for the other. The 

first two features of each cluster are shifted by bivariate normal with means (μ, 
0), (−μ, 0), (0, μ) correspondingly and variance equal to 1. Other dimensions are 

white noise. Similar to Example 1, this is also challenging for linear classifiers. 

The perfect classifier has a quadratic form as sign((x1 + x2)(x1 − x2)). Thus we 

expect our CBC method to estimate two linear hyperplanes such as f1 = x1+x2 

and f2 = x1 − x2 up to some constant.

4. In Example 4, we use the same generation scheme as in Example 1, but different 

for the last two features, which are generated by the 2-dimensional Gaussian 

mixture model with 4 cluster components. Each component follows bivariate 

normal with means (μ, μ), (−μ,−μ), (−μ, μ), (μ,−μ) and variance equal to 1. Note 

that the last two features are useless for classification. The perfect classifier is the 

same as Example 1.

We evaluate our method on both low dimensional cases with dimension p = 50 and high di-

mensional cases with p = 1000. Both settings have the training sample size n1 = 100 and 

testing sample size n2 = 1000. In the low dimensional case, we set the shifted mean μ to be 

5. For the high dimensional case, we maintain an appropriate signal to noise ratio by letting 

μ to be p
8 . The experiments are repeated for 100 times.

Tables 1 and 2 summarize prediction errors for different methods. The last column gives the 

estimated Bayes errors for each example. Both CBC and weighted CBC achieve the smallest 

misclassification rates among all these methods in all examples, and weighted CBC 

approximates the best performance. Note that BDD performs significantly worse in Example 

4 and the corresponding standard error is large because of the difficulty of finding a good 

initial solution. In contrast, our convex CBC methods are robust to initial points and perform 

well in all these cases.

For variable selection, since the rank 1 solution of CBC and weighted CBC can be 

decomposed into U1, V1 in Theorem 2, we compare both methods with BDD for Example 1. 

In this example, the perfect classifier is the sign of the product of the first two features. In 
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Figure 6, we observe that compared with other methods, our weighted CBC can successfully 

select the first two variables and keep the other coefficients extremely small.

For data visualization, CBC can provide us a new way to visualize the data in a lower 

dimensional space. The main difference with PCA is that we also make use of the class label 

information. The top two panels of Figure 7 are 2-D projection plots generated by PCA and 

CBC for Example 1. Both methods can preserve the true structure of the data in the 2-D 

space compared with the raw data in the first plot of Figure 5. However, for Example 4, as 

shown in the bottom two panels of Figure 7, PCA fails to identify the within-class subcluster 

structure, while CBC can still identify the structure very clearly. In addition, in Figure 8, we 

also compare our proposed methods with BDD via projection of test data on two directional 

coefficients for Example 4 when p = 50. BDD performs worse than our proposed CBC 

methods. One potential reason is that the Gaussian mixture noise variables in this example 

make the optimization problem more challenging for BDD.

The advantage of our methods over BDD comes from several aspects. The main reason is 

that BDD solves a non-smooth and non-convex optimization problem (8) by using 

alternative minimization methods, which can not provide any guarantee of convergence to 

even a local solution (See examples in Powell (1973) and Razaviyayn et al. (2013)). In 

contrast, our proposed methods solve a series of more robust convex optimization 

subproblems. Second, using a smooth hinge loss instead of the standard hinge loss can avoid 

potential data pilling issues, especially for high dimensional low sample size applications 

(Marron et al. (2007)). In addition, using approximate variable selection, our weighted CBC 

can further improve the classification performance by strengthening the signals and reducing 

the effect of noise features.

5.2 Real Data Analysis

In this section, we apply our CBC and weighed CBC to the prostate cancer dataset, available 

at ftp://stat.ethz.ch/Manuscripts/dettling/prostate.rda, to detect whether there exists sub-

clusters in each class. Prostate cancer is one of the most common cancers among men. The 

dataset contains 52 patients and 50 normal people with expression values for 6033 genes.

For illustration, we only keep the top 200 genes based on largest absolute values of the two 

sample t-statistics. We randomly split data into 80% for training and 20% for testing. Within 

the training data, we use 5-fold cross validation for tuning parameter selection. We repeat 

this procedure for 120 times. Table 3 summarizes the misclassification error rates. Our 

weighted CBC achieves the lowest error rate among all these methods. Furthermore, there 

appears to have potential subtypes in normal-like samples as shown in Figure 9. To explore 

further on whether these clusters indicate potential new subtype for the prostate cancer, we 

perform k-means clustering and select 3 clusters according to the elbow method. The results 

indicate that the finding of subtypes behind normal-like samples may be worthwhile to 

investigate further. Finally, Figure 9 shows the effective variable selection of our W-CBC 

method.
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6 Conclusion

In this paper, we propose a convex bidirectional large margin classifier framework for high 

dimensional classification. Our method not only enjoys high predictive accuracy but also has 

good interpretability. In addition, our method provides a new data visualization tool by 

making use of class label information. It can be a useful tool to discover potential 

subclusters within each class as we demonstrate using both simulated and real data 

applications.

Appendix

Proof of Theorem 1

The first statement is just a special case of the latter one. Thus, it is sufficient to prove the 

second statement. Suppose an optimal solution A* is not symmetric, then let Z = αA* + (1 − 

α)A*T, which is a convex combination of A* and A*T. Since (4) is a convex function, 

according to the definition of convexity, we have F(Z) ≤ αF(A*)+(1−α)F(A*T ) = F(A*). 

The last equality holds because F(A*) = F(A*T ). The first statement is true when α = 1
2 .

Proof of Theorem 2

Since A(τ) is an optimal solution with rank r = 2 to (5), by spectral decomposition, 

A(τ) = UrΣrUr
T. Let zi = xiUr, where zi ∈ ℛr, then we can rewrite the objective value as 

G(A(τ)) = ∑i = 1
n L yi, xi

TUrΣrUr
T xi + τ‖UrΣrUr

T‖* = ∑i = 1
n L yi, zi

TΣrzi + τTr Σr , where 

Tr(X) is the trace norm function over square matrices.

In order to find a A*(τ) with rank k = 1, we claim that the space of A*(τ) is formed by Ur. 

Thus we want to find two matrices V1, V2 ∈ ℛr × k such that A*(τ) = UrV1V2
TUr

T. Since we 

need G(A(τ)) = G(A*(τ)), we have the following equation:

∑
i = 1

n
L yi, zi

TΣrzi + τTr Σr = ∑
i = 1

n
L yi, xi

TUrV1V2
TUr

T xi + τ‖UrV1V2
TUr

T‖*

= ∑
i = 1

n
L yi, zi

TV1V2
T zi + τ‖V1V2

T‖* .

In order to get the equality for every zi ∈ ℛr, we need to solve the following two equations:

V1V2
T + V2V1

T

2 = Σr (1)

‖V1V2
T‖* = Tr Σr . (2)

Qi and Liu Page 16

Technometrics. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Then we can check that the following V1, V2 satisfy the equation above:

V1 = ( λ1 , λ2 )
V2 = ( λ1 , − λ2 ),

(12)

where λ1, λ2 are the diagonal values of Σr.

Proof of Theorem 3

We first introduce the following lemma:

Lemma 2. For any matrix A ∈ ℛm × n with r = rank(A) < min(m, n), we have the following 
equation:

‖A‖* = min
U, V, A = UVT

1
2 ‖U‖F

2 + ‖V‖F
2 ,

where the minimum is attained at a factor decomposition A = UrVr
T

Proof. See the proof in Lemma 6 of Mazumder et al. (2010).

Note that (8) can also be represented as:

minimize
A ∈ ℛp × p

∑
i = 1

n
L yixi

T Axi + τ
2 ‖Ur‖

F
2 + ‖Vr‖

F
2

subject to A = UrVr
T .

By using Lemma 2, we get the following equivalent problem:

minimize
A ∈ ℛp × p

∑
i = 1

n
L yixi

T Axi + τ‖A‖*

subject to A = UrVr
T .

That is

minimize
A ∈ ℛp × p

∑
i = 1

n
L yixi

T Axi + τ‖A‖*

subject to rank(A) = r .
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Note that r = 1 is a special case of Theorem 3. Thus we have the conclusion that the solution 

to (6) lies in the solution path of (8).
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Figure 1: 
A plot of different loss functions, including the hinge loss, logistic binomial deviance loss, 

exponential loss for AdaBoost and Huber loss. The horizontal axis represents the margin yf.
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Figure 2: 
Illustration of the coefficient matrix A with size 5 by 5. The coefficients are either 1 (gray) 

or 0 (white). The left panel shows a matrix of rank 1, which represents interaction between 

the first and the last features. The right panel shows a matrix with rank 2 with an additional 

interaction between the second and the fourth features.
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Figure 3: 
Illustration of the decision function (xTw1)(xTw2), where w1 = (0, 1, 0) and w2 = (0, 0, 1). 

Noe that the two classes can be separated by two hyperplanes.
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Figure 4: 
(a) is a 4-cluster twisted example with 50 input features, whose class labels are decided by 

the sign of first two features x1, x2. (b) is 2-D visualization plot by projecting all the 

features into 2 orthogonal directions estimated by our CBC method.
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Figure 5: 
The first panel shows a two-class-twisted example, the middle one corresponds to a two 

class-straight example, the right panel contains a 3-cluster-triangle example and their 

corresponding decision boundaries.
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Figure 6: 
Coefficient estimation for the two directions for Example 1. All the coefficients have been 

normalized. The results show that the weighted CBC works the best, followed by CBC, and 

BDD performs the worst.
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Figure 7: 
The top two panels are 2-D visualization plots of Example 1 by PCA and CBC. The bottom 

two corresponding to Example 4 by PCA and CBC. In the normal setting in Example 1, both 

methods can capture sub-cluster structure. However, in Example 4 where there are 

uncorrelated but clustered noise features, CBC can still capture the classification structure 

correctly but PCA fails to do so.
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Figure 8: 
Plots of the projection of testing data of Example 4 on two directional coefficients to get f1 

and f2 by using BDD, CBC and weighted CBC, respectively. Note that BDD fails to 

correctly classify some instances while both CBC and weighted CBC work better. In 

addition, weighted CBC has slightly more accurate boundary than CBC.
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Figure 9: 
The 2-D visualization plot of the prostate cancer data by our CBC method. There are 

potential two clusters within normal patients which are located at top left and bottom of the 

plot.
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Figure 10: 
The plot of two directional coefficients. We can see several genes play an important role in 

both directions.
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Table 1:

Comparison of test errors (%) among different classifiers in four simulated examples (p = 50) and the 

corresponding standard errors (%) in parenthesis.

Method Example 1 Example 2 Example 3 Example 4

W-CBC 2.46 (0.00) 1.34 (0.36) 11.05 (1.06) 2.51 (0.45)

CBC 3.47 (0.00) 1.83 (0.46) 12.51 (1.17) 3.97 (0.72)

BDD 5.68 (0.02) 2.98 (0.97) 16.04 (2.61) 9.61 (8.45)

Linear-SVM 49.9 (0.04) 2.17 (0.74) 18.5 (2.13) 49.74 (2.08)

Quad-SVM 7.22 (0.01) 21.71 (1.86) 20.57 (1.62) 10.52 (1.29)

Gaussian-SVM 43.36 (0.10) 13.62 (10.08) 44.42 (6.71) 45.07 (2.35)

GAM 50.00 (0.11) 1.39 (0.03) 14.80 (0.13) 50.03 (0.08)

1–1-NN 50.00 (0.14) 2.87 (0.01) 25.96 (0.22) 50.18 (0.14)

1–2-NN 47.00 (0.5) 3.18 (0.1) 24.73 (0.27) 48.65 (0.31)

Estimated optimal 2.46 (0.00) 1.34 (0.36) 10.79 (0.95) 2.50 (0.44)
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Table 2:

Comparison of test errors (%) among different classifiers for four simulated examples (p = 1000) and the 

corresponding standard errors (%) in parenthesis.

Method Example 1 Example 2 Example 3 Example 4

W-CBC 0.01 (0.03) 0.00 (0.02) 1.15 (0.85) 0.01 (0.03)

CBC 0.25 (0.21) 0.26 (0.39) 5.80 (0.88) 0.39 (0.24)

BDD 0.32 (0.18) 0.22 (0.16) 9.33 (9.39) 2.92 (5.60)

Linear-SVM 49.86 (1.60) 0.20 (0.15) 15.68 (1.32) 49.92 (1.40)

Quad-SVM 3.80 (1.66) 44.77 (1.63) 25.65 (3.67) 7.27 (2.07)

Gaussian-SVM 45.02 (4.73) 32.63 (16.04) 45.66 (5.26) 44.34 (4.34)

GAM 49.92 (0.12) 0.00 (0.00) 2.85 (0.06) 49.88 (0.10)

1–1-NN 49.89 (0.15) 1.18 (0.46) 27.39 (0.19) 49.94 (0.15)

1–2-NN 50.00 (0.15) 0.52 (0.22) 26.81 (0.26) 50.00 (0.15)

Estimated optimal 0.01 (0.03) 0.00 (0.02) 0.52 (0.22) 0.01 (0.03)
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Table 3:

Comparison of test errors (%) among different classifiers for the prostate cancer dataset and the corresponding 

standard errors (%) in parenthesis.

W-CBC CBC BDD Linear-SVM Quad-SVM Gaussian-SVM GAM 1–1-NN 1–2-NN

7.30 (5.34) 7.74 (5.38) 12.2 (6.72) 11.94 (7.36) 7.86 (5.15) 8.02 (5.24) 8.56 (4.81) 7.48 (5.32) 7.52 (4.97)
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