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Abstract

Wood products that are subjected to sustained stress over a period of long du-
ration may weaken, and this effect must be considered in models for the long-term
reliability of lumber. The damage accumulation approach has been widely used for
this purpose to set engineering standards. In this article, we revisit an accumulated
damage model and propose a Bayesian framework for analysis. For parameter estima-
tion and uncertainty quantification, we adopt approximation Bayesian computation
(ABC) techniques to handle the complexities of the model. We demonstrate the ef-
fectiveness of our approach using both simulated and real data, and apply our fitted
model to analyze long-term lumber reliability under a stochastic live loading scenario.

Keywords: approximate Bayesian computation, duration of load, failure time distribu-
tion.



1 Introduction

The long-term reliability of lumber is an important consideration in the construction of
wood-based structures. That led Foschi| (1979)) to advance the development of a system for
setting lumber standards with an explicit role for probability models and return periods,
and other key concepts in the theory of reliability. There are challenges associated with the
application of structural reliability to wood products, as lumber has considerable inherent
variability and is susceptible to the “duration of load (DOL)” effect. The DOL effect was
first studied empirically by Wood| (1951)). Briefly, when a piece of lumber is subject to
a sustained stress over a period of long duration, the stress may cause it to first deform
(known as creep) and then eventually to fail (known as creep rupture). Thus for structural
engineering applications, the DOL effect has to be taken into consideration when calculating
safety factors. |[Foschi et al.| (1989)) conduct an in-depth study of this nature and present
the reliability assessment results for structural usage of lumber, where the stress on an
individual piece may be a combination of random (e.g. from snow or owner occupancy)
and constant (e.g. from the dead weight of structure) loadings over time.

The time to failure of lumber products with a long intended life span (e.g. 30 or more
years) cannot be measured for practical reasons, so instead various accelerated testing
methods have been developed to study the DOL effect (Barrett and Foschi| [1978). These
tests are described in terms of the load applied over time 7(¢), ¢ > 0. Two such commonly
used loading patterns are the ramp load and constant load. For a ramp load test the load is
applied at a linearly increasing rate 7(t) = kt until the piece breaks, where k is the selected
loading rate in psi (pounds per square inch) per unit of time. One particular ramp loading
rate k, is set for calibration purposes, corresponding to the way the short-term strength of
the piece 7 is defined: letting random variable T denote the breaking time of the piece
when ramp load rate k; is used, then 7, = k,T. In contrast, the constant load test is based
on applying a constant load 7. over time: the procedure begins with an initial ramp loading
phase that increases the load to the preset level 7., after which the test continues under
that constant load. The test ends when either the piece breaks, or the piece has survived a
specified time period without breaking. For practical purposes, the time period after which
a constant load test is truncated is usually a few months to a few years.

To model the DOL effect and project the results obtained from accelerated tests to
longer time periods, the damage accumulation approach has received substantial attention
(e.g., [Foschi and Yao| |1986; (Gerhards and Link, |1987; Rosowsky and Ellingwood, 1992;
Hoffmeyer and Sgrensen, 2007; Svensson, 2009; Li and Lam)|, [2016]). In this context, a(t)
denotes the damage state of the piece as a function of time, such that a = 0 indicates
no damage and a = 1 indicates failure. While «(t) is generally a latent function and
not directly measurable — as we only observe a(0) = 0 and «a(T) = 1 where T is the
piece-specific random failure time — the construction of theoretical models for «(t) has
nonetheless served as a useful device for fitting experimental data. A key feature of these
models is that they provide a corresponding theoretical damage accumulation curve «(t)
for any input loading profile 7(¢) desired.

Accumulated damage models (ADMs) express the rate of damage accumulation in terms
of a differential equation that involves 7(t) and 75. Various functional forms of ADMs have



been proposed. For example, the ‘US model’ was introduced by (Gerhards (1979)) and
slightly modified by [Zhai (2011), which specifies

%a(t),u — exp (—A 4 BT(t)>

Ts

where A and B are random effects for each specific piece of lumber, and p is a constant
with units ‘time’ to ensure dimensional consistency. The ‘Canadian model” was introduced
by |[Foschi and Yao (1986), and we consider the modified version with a reparametrization
to ensure dimensional consistency,

%Oé(t)u = [(ar)(7(t)/7s = 00)+]" + [(er) (7(8) /7 — 00)4]"(t) (1)

where a, b, ¢, n, og are piece-specific random effects and (x), = max(z,0). Here, oy serves
as the stress ratio threshold in that damage starts to accumulate only when %) > 0g. The
Canadian model was previously shown to provide a good fit to experimental data in [Foschi
et al. (1989). Hence our reparametrized Canadian model (Equation [1)) will be the main
focus of this article, and to facilitate comparability with Foschi’s results we set ;1 = 1 hour
and use ‘hours’ as our time unit.

Previous work by [Foschi and Yao| (1986) and (Gerhards and Link| (1987)) have proposed
non-linear least squares and regression-based methods to estimate the parameters in these
models based on constant load experimental data. The fitted models were then applied
with various stochastic loadings 7(¢) to simulate real conditions such as snow loads and
occupancy loads, to assess the reliability of pieces over long periods of time. Thus the esti-
mated ADM parameters have played a crucial role in the development of safety factors for
wood-based structures. However, due to computational complexities, appropriate statisti-
cal methods of parameter estimation have not been previously attempted for these models.
Such methods are necessary to better quantify the effect of uncertainty in parameter esti-
mates on reliability. The advances in modern statistical computation motivate us to revisit
this problem and develop the necessary foundations on which current engineering standards
can be evaluated and improved. We adopt a Bayesian approach for inference, as it pro-
vides a coherent way to account for parameter uncertainties in the posterior distribution
for future time to failure.

The remainder of the article is laid out as follows. In Section [2l we discuss the difficulties
encountered in parameter estimation for ADMs, and propose an adaptation of approximate
Bayesian computation (ABC) techniques to tackle this problem. In Section |3| we present
results of our estimation procedure on simulated data to assess its effectiveness. Analysis
of a real dataset is provided in Section [4] In Section [5] we review how the ADMs are used
for time—to—failure prediction under a live loading scenario, and apply our fitted model for
that purpose. We conclude the article with a brief discussion in Section [6]



2 Parameter Estimation for the Canadian ADM

The parameter estimation problem of primary interest here is the scenario where a random
sample of pieces is subject to the load profile

kt, fort < T
T(t) = ’ (2)
Te, fort>T1T

where 7, is the selected constant-load level, and Ty = 7./k is the time required for the load
to reach 7, under the ramp-loading rate k. For calibration purposes, the test is run with
k = kg to match the ramp-loading rate used to define the short-term strength of a piece
of lumber (see Introduction). The load profile in Equation ({2)) is the general constant—
load test, and includes the ramp—load test as a special case which is obtained by setting
T. = +00. We first construct the likelihood function of the model parameters based on the
observed data t,s for the failure times in the sample.

When we set k& = k, and 7. = 400 for a ramp-—load test, T, can be determined as a
function of the piece-specific random effects. For the Canadian ADM , T, can only be
solved numerically; it can be shown that T is determined by the solution to the equation
(see Appendix)

(akT,)" pln+ 1)\ WA
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This provides an implicit solution of T as a function of a, b, ¢, n, gy.
The constant-load test with the same ramp-loading rate k& = k, for the initial portion
(t < Tp) then has a failure time 7T, that can be expressed in terms of T and the piece-specific

random effects,
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Thus the complete solution for the constant-load failure time 7" is

. : (4)
T. if T, > T,

{TS if T, < T,

To model piece-to-piece variation, it is customary to assign distributions to the piece-
specific random effects a, b, ¢, n, g, either Normal or log-Normal. In this paper we specify
these as follows:

alpte, 04 ~ Log-Normal(p,,0,)
blpp, op ~ Log-Normal(uy, o)
c|pe, 0. ~ Log-Normal(u,, o.) (5)
n|pn, 0, ~ Log-Normal(u,,oy,)
n
77‘,“007 0oy ™ Log—Normal(,uao, 000) and set 0o = m

Therefore the parameter vector of interest is 0 = (ta, Ta, tb, O, Le, Tcy s Tny Piogs Tog )-
The likelihood contribution of one observation 7' = t would be

fr(t|0) = /---/p(t|a, b, c,n,00)p(a, b, c,n,o0|d) dadbdedn doyg
_ / / T (anemonyiiabenon—P(a: b, ¢, 1, 00|0) da db de dn do

where h is the implicit solution of T expressed in terms of a, b, ¢, n, gg. The set
{(a,b,¢,n,00) : h(a,b,c,n,00) = t} involves h which has no closed form. Therefore in
practice one cannot directly calculate the likelihood using this integral.

In addition, the constant-load test is truncated after a certain period of time for practical
reasons, so the likelihood of the observed data t,,s for one board would be

f(tobs|0) = fT(tobs|9>I[t§tc] + (1 - FT<tc|9)) ][t>tc} (6>

where ¢, is the censoring time and fr(:|0) and Fr(-|f) are respectively the density function
and the distribution function of 7" determined by the solution .

Since fr(t|0) is intractable, so is the likelihood f(t.s|0). To bypass the intractability
of the likelihood calculation, one brute-force approach that can achieve any required level
of approximation accuracy is to generate a large number of T’s using given 0. The
density can then be approximated based on the simulated T’s, for example, using kernel
density estimation. This poses no conceptual difficulty since it is simple to generate a,
b, ¢, n, oy from and then with these random effects, we can solve for T using
numerically. However, a parameter estimation procedure, if we wish to maximize the
likelihood, will require many probability density evaluations which makes this approach
impractical. Analytical gradient-based or convex optimization methods are also unavailable
for this likelihood function, which rules out the possibility of direct maximization.

The estimated parameters will finally be used in the context of constructing time—to—



failure distributions under simulated live loadings. To propagate uncertainty in the param-
eter estimates to those distributions in a statistically coherent way, we adopt a Bayesian
approach for inference on 6 based on Markov Chain Monte Carlo (MCMC) simulation.
MCMC is also an appealing approach for exploring the parameter space without requir-
ing gradients. Nevertheless, a vanilla MCMC algorithm also requires repeated likelihood
computation at each iteration. In what follows, we adopt the approximate Bayesian com-
putation (ABC) technique as a likelihood-free version of MCMC, which only requires the
ability to generate data from the model; thus, this allows us to sample € in an efficient
way. In Section 2.1 we briefly review ABC as based on the MCMC algorithm described
in |[Fearnhead and Prangle (2012)). In Section we propose suitable modifications to the
algorithm to handle the censoring in our data. Some implementation details are provided

in Section 2.3

2.1 Review of ABC-MCMC

Let 0 be the parameter vector of interest and y,,, be the n-dimensional observed data. The
key step in ABC is the approximation of the posterior

T(01Yops) = Tanc(0]Sons) o< w(0)p(Sons|0)

where Sy = S(y,,) for some summary statistics S(-). Then p(sqs|f) is defined via a
further approximation step,

D(500s]6) = / T (Y10)K5(S(y) — 50ps)dy

where K;(-) is a density kernel with bandwidth 6 > 0 (Fearnhead and Prangle, [2012)). Hence
an MCMC sampling algorithm for this ABC posterior is given in Algorithm [I} where g is
a specified proposal distribution.

1. Generate ¢ from g(6|6y,)
2. Generate y from f(y|#’) and find s = S(y)

3. Calculate

a(0/,01) = min <1 Ks(s = 801, (0')g(6'|6) )

" K5(8k — Sobs)T(01)g(0k]0")
4. Accept ¢ and s with probability a (¢, 0); otherwise 041 = ) and s1 = i

Algorithm 1: ABC-MCMC sampling algorithm of |[Fearnhead and Prangle| (2012)



2.2 Modified ABC-MCMUC for censored data

From previous research (e.g. Joyce et al.| (2008); Fearnhead and Prangle (2012); Beaumont
et al.[(2002)), the choice of summary statistics plays a crucial role in the success of an ABC
algorithm. Ideally, if the summary statistics S(-) are sufficient for 6, then the ABC posterior
is identical to the true posterior. For most real applications it is impossible to find such a
sufficient statistic, and so S(-) would be chosen to contain as much information about 6 as
possible while being of fairly low dimension. In our model, the number (or proportion) of
censored observations is certainly an informative statistic, but on a different scale than other
summary statistics such as means or quantiles. This problem could potentially be solved by
designing an appropriate metric that combines statistics computed from the censored and
uncensored observations. But here we can instead exploit a feature special to our context
and factorize the likelihood to reduce the scope of the density kernel approximation to the
uncensored observations.

Based on the likelihood @, the joint likelihood of the n-dimensional observation ¢,,s of
an iid sample is

f(obsl0) = fr(to,|0) [1 — Fr(t0)]™ (7)

[n—nc

= H fT(t/obs,i‘e)

= fT( obszw)
- R

[1 = Pr(t|0)]"™

[FT(tc|0)]n_nc [1 - FT(tCW)]nC

where by exchangeability n. is the number of censored pieces in the observed data and

is the uncensored part of the observed data. Since / T((ﬂfa)) 0 <t <t.is anormalized

/
obs
n—nm ! 9
density, the density kernel approximation when applied to [ ;" %

scaling for any choice of summary statistics on t/,_. This yields the posterior

T(Otops) o< f(tons|0)m(0)
- [H FTOZSre
o< m(0[ty,) [Fr(tel0)]" ™ [L — Fr(t.|0)]™
~ mapc(0|su) [Fr(t0)]" " [1 — Fr(t|0)]™

where s/, = S(t.,,), and Fr(t.|0) can be estimated consistently by Fir(t.|0) = =" 321 i, 1]
using the simulated ¢; from f7(¢|6) that will already be generated as part of an ABC-MCMC
algorithm.

This provides an approximation of the Metropolis-Hastings (M-H) acceptance ratio. We
present Algorithm [2 as a modified version of Algorithm [T} which we use throughout this

paper.

will have correct

[Er(tel0)]" " [1 — Fr(t|)]™ = (6)




1. Generate ¢ from g(6|6y)

2. Generate t = (ty,...,t,) from fr(¢|¢') and truncate the data with the censoring level

te

3. Calculate s = S(t') and the censored proportion py, =n~' Y 1" | Ii;<r,) where ¢’ is
the uncensored part of the simulated data

4. Calculate

(', 0;) = min (1 K5(8 = 81,)7(0")9(6"[61) < 1—p, >"—nc (p_t) n)

P Ks(sk— 80, )m(0k)g(0k16") \1 — i Dok

5. Accept (¢, s, pr.) with probability a(#', 0y); otherwise
(9k+1> Sk+17ﬁtc7k+1) = (Qk, Skaﬁtc,k)

Algorithm 2: ABC-MCMC sampling algorithm for censored data

2.3 Choice of summary statistics, kernel and bandwidth ¢

To implement Algorithm , we need to first choose the summary statistic S(-), the kernel
function K(-) and the bandwidth 0. For our model, there is clearly no natural sufficient
statistic for . Hence, for implementation we choose 19 equally spaced quantiles from 5%
to 95% as the summary statistics for the uncensored part and a Normal kernel; the use of
quantiles as summary statistics was previously suggested in |Allingham et al. (2009). To
determine the bandwidth 0, we run several short simulations with different values of  and
choose the smallest one that attains a 1% acceptance rate as suggested by [Fearnhead and
Prangle| (2012).

3 Simulated Examples

In this section, we set up simulation studies to illustrate the proposed Algorithm [2| First,
we choose the following fairly diffuse prior distributions for most of the parameters in
0, which will be used for both the simulated examples as well as the following real data
analysis,

fas Hbs Hey ftn ~ N (0,20)
02,04,02,00,00 ~ Inv-Gamma(0.01,0.01).
The exception is fi,,, for which we set the more informative prior p,, ~ N(0,1) to corre-
spond with the a priori belief that on average no damage accumulates on a piece of lumber
until the stress level exceeds 50% of its short-term strength 7, (Smith et al., 2003, p.181).
The two simulation scenarios we demonstrate here are (i) fitting one constant-load
dataset, and (ii) fitting two datasets with different constant-load levels simultaneously.

8



Throughout these two simulation scenarios, the procedure is as follows: we draw a sam-
ple with size N which is chosen to be close to the real data sample size. The pro-
posal density g(0'|6x) for the random-walk Metropolis-Hastings is N (0, ), where ¥ =
diag{0.01,0.01,0.01,0.01,0.2,0.01,0.01,0.01,0.1,0.01}. We generate N observations with
0 = (—7.50,0.50,3.20,0.20, —22.00, 0.30, —1.00, 0.20, 0.15,0.05). These parameter values
produce data that are somewhat similar to the real data. We then run Algorithm [2] to
obtain 500 posterior draws of § with 100,000 burn-in iterations and thining interval 10,000.
To explore the effect of §, we run simulations for 30 different values of § equally spaced
between 0.1 and 3 and choose the one with the acceptance rate closest to 1% as our choice
of 4.

To evaluate the quality of the sampled 6’s, we can perform an approximate log-likelihood
calculation on a small subset of the samples from the MCMC run, such as our thinned list
of 500 posterior draws. To do so, we generate 100,000 failure times for each given 6 and
use kernel density estimation to calculate the log-likelihood for t,s. Recall that it is not
practical to calculate the log-likelihood in this way during the MCMC for computing the M-
H ratio, as to obtain an accurate estimate of the density we need to generate a large number
of observations (e.g. 100,000), which is time-consuming. In contrast, for our algorithm we
only need to generate the same number of observations as in the data at each MCMC
iteration and hence runs very efficiently for exploring the parameter space.

Scenario 1: 4500/1Y In this scenario, we generate N = 300 observations with 7, = 4500
and the duration of the test being one year and fit this dataset with Algorithm [2]

In Figure[l], we have plotted these log-likelihoods for 6 from three different ¢ values. It is
clear that the choice of § affects the quality of the simulation and goodness of the likelihood
approximation. While small values of § theoretically provide the best approximation, the
extremely low acceptance rate renders 6 = 0.1 to be useless in practice. For large values
of 9, the approximation is too crude which makes the accepted draws of # unreliable from
the likelihood perspective. The results show that 0 = 0.4 indeed works well, with both a
reasonable acceptance rate and good approximation to the likelihood.

Table (1] shows five sampled parameter vectors that produce the closest log-likelihood
values to that of the true 6. These parameter vectors are quite different yet their log-
likelihoods (and log-posteriors, since the priors are mostly diffuse) are very similar. This
indicates some of the model parameters are quite uncertain and the likelihood is flat over a
wide range of values. Indeed, this shows that our ABC-MCMC algorithm is able to traverse
the parameter space to find parameter vectors that can fit the observed data well, and so
the high level of uncertainty is not a difficulty in practice for the algorithm. Figure 2| shows
that the estimated densities fr(t) based on kernel smoothing for these parameter vectors
are almost indistinguishable.

Scenario 2: 4500/1Y and 3000/4Y In practice, multiple test samples with different
constant—load levels are used to help calibrate the parameters. So we simulate such a
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Table 1: Five sampled parameter vectors, log-likelihoods, and log-posteriors for the simu-
lated data in Scenario 1. The true value of 6 is shown in the top row.

fa  Oa Mo Ob fhe Oc [ On  [lgg Og Z log-post
0 |-750 050 3.20 020 -22.00 0.30 -1.00 0.20 0.15 0.05|-393.96 | -418.27
0, |-8.22 045 399 0.10 -42.88 0.12 -1.57 0.34 -1.54 0.71|-389.71 | -417.46
0, | -7.44 043 3.39 0.62 -30.22 055 -1.40 0.32 0.17 0.20 | -389.78 | -416.29
05 | -7.85 044 3.64 0.38 -3824 0.18 -1.52 0.50 -0.48 0.11 | -389.84 | -415.97
6, |-8.02 043 391 058 -13.92 0.15 0.13 042 -0.79 0.24 | -390.02 | -415.26
05 | -7.44 044 3.26 040 -30.67 0.62 -1.37 0.27 0.23 0.28 | -390.14 | -416.51
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Figure 2: Histogram of simulated data and estimated densities for the parameter vectors
in Table [Tl
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scenario as well to see how the estimation can improve. For this purpose, we generate a
second independent dataset with N = 200 observations, 7. = 3000, and a test duration of
four years. We then fit this dataset together with the dataset in Scenario 1. In order to fit
D > 1 datasets at the same time (in this scenario, D = 2), we apply the ABC approximation
to Equation for each dataset separately. So a corresponding minor change in the M-H
acceptance ratio is needed. Using the proposal €', we generate the multiple datasets with
the different settings (i.e. IV, 7., and the test duration) and calculate the summary statistics
and the censored proportions. To calculate the M-H acceptance ratio, we multiply together
the parts involving the summary statistics and the censored proportions, i.e.

@ _p(d
9’ 0’16 D K (d) _ (d) 1— A(d) ¢ ~(d)
a(@/’ ek) — min 17 7T( )g( | k?) H 5(8 Sobs) Dy, Py,

T(0k)g(O]6") 1% Ks(si” — s'D) \1 - ﬁgi)k

i

where the superscript (-)(? denotes the values for the dth simulated dataset, d =1, ..., D.

For this simulation, we chose 6 = 1.1 which gave an acceptance rate of 1.18%. The
results are shown in Table[2and Figure[3] To see how the estimation improves, we examined
the standard deviations of the posterior draws of  and the range of their log-likelihoods.
Indeed, the posterior standard deviations in Scenario 2 are smaller than those in Scenario
1; as well, 95% of the log-likelihoods in Scenario 1 lie in the range (—494.77,—389.71)
while 95% of the log-likelihoods in Scenario 2 lie in the tighter range (—1072.76, —1035.25),
indicating that incorporating the additional dataset makes the estimation and our ABC
algorithm more stable.

Table 2: Five sampled parameter vectors, log-likelihoods, and log-posteriors for the simu-
lated data in Scenario 2. The true value of 6 is shown in the top row.

fa  Oa Mo Oy fle  Oc  fln  On [l Ogy i log-post
0 |-750 050 320 0.20 -22.00 0.30 -1.00 0.20 0.15 0.05 |-1040.83 |-1065.14
0, |-8.09 0.52 348 041 -3856 0.70 -1.21 0.53 -0.98 0.21 | -1035.25 | -1063.41
0, | -7.88 048 348 025 -17.33 024 -029 046 -0.39 0.20 | -1035.31 | -1060.06
05 | -7.88 0.41 3.47 048 -11.08 0.11 042 0.21 -043 0.79 | -1035.52 | -1060.64
0, |-8.04 045 358 026 -2459 027 -0.73 041 -0.87 0.65 | -1035.94 | -1062.29
05 | -7.57 0.45 328 044 -11.55 0.07 026 019 0.08 0.11|-1036.02 | -1059.60

4 Data analysis

The illustrative real data example comes from a duration—of-load experiment performed
on visually graded 2x6 Western Hemlock, which was first analyzed in [Foschi and Barrett
(1982). The experimental data consists of three groups, and the standard ramp-loading
rate ks = 388440psi/hour was used throughout:

12
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Figure 3: Histograms of simulated data and estimated densities for the parameter vectors
in Table . The top panel is the simulated 3000/4Y dataset and the bottom panel is the
simulated 4500/1Y dataset.
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1.

A set of 300 pieces was subject to a constant-load test with 7, = 4500psi for a duration
of 1 year. In total, 56 pieces failed during the initial portion of the test, 98 failed
during the 1-year constant-load period, and 146 survived to the end of the 1-year at
which point the test was truncated.

. A set of 198 pieces was subject to a constant-load test with 7. = 3000psi for a duration

of 4 years. In total, 4 pieces failed during the initial portion of the test, 42 failed
during the 4-year constant-load period, and 152 survived to the end of the 4-years at
which point the test was truncated.

. A set of 139 pieces was subject to the ramp-load test, i.e. 7. = 400 in Equation (2)).

The sample mean of short-term strength 7, in this set was 6936psi, and sample SD
2833psi.

To analyze the data, we followed the same procedure as described in Section |3| for
multiple datasets and chose § = 1.3, which gave an overall ABC-MCMC acceptance rate
of 0.88%. To set starting values for the algorithm, we used the NLS estimates from [Foschi
and Yao (1986) as guidance, modified according to our parametrization. Table |3| shows
the five parameter vectors with the highest log-likelihood values. The histogram and the
empirical cumulative distribution function (ecdf) of the data, along with the corresponding
smoothed densities and CDFs for the parameter vectors from Table |3 are shown in Figure
and Figure )| The results show that these parameter vectors indeed provide a very good
fit of the data, and capture the variability in the individual parameters.

Table 3: Five sampled parameter vectors, log-likelihoods, and log-posteriors for the real

data.
Ha Oq Hb Op He Oc Hn On Hayg Ogy I log-post
él 776 048 3.21 0.18 -21.96 0.29 -1.00 0.20 0.15 0.07|-1120.37 | -1144.36
ég -7.68 044 3.23 0.10 -22.12 0.10 -0.99 0.15 0.29 0.16|-1122.37 | -1145.56
ég -798 049 3.29 0.14 -27.05 0.13 -1.10 0.32 -0.15 0.20 | -1123.51 | -1147.81
é4 -7.88 042 3.33 0.11 -17.72 0.19 -0.39 0.26 -0.13 0.19 | -1123.76 | -1147.29
é5 -7.66 045 345 0.07 -1646 1.12 -0.56 0.08 0.31 0.18|-1123.81 | -1148.49

5 Assessing long-term lumber reliability

5.1 Reliability analysis for live loads

The key application of the fitted ADM is the assessment of the long-term reliability of
a piece of lumber under stochastic loadings. The key element in this assessment is the
performance equation

14

G=C-D

(8)
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Figure 4: Histograms of the real datasets and estimated densities for the parameter vectors
in Table [3| The top panel is the 3000/4Y dataset and the bottom panel is the 4500/1Y
dataset.
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Figure 5: Empirical CDF of the real data, and CDFs computed from the parameter vectors
in Table [3| The top panel is the 3000/4Y dataset and the bottom panel is the 4500/1Y
dataset. The gray area is the 95% posterior interval of the estimated empirical CDF's.
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where both the future demand to be made on a random piece of lumber D and its capacity
to meet that demand C' depend on a random vector of random design variables that after
a suitable transformation have a standard multivariate normal distribution. A Laplace
approximation yields the probability of failure

pr=P(G<0)=1-9(p)

where 3 is called the reliability index. See Madsen et al.| (2006) for more details.

The random future load to which that piece will be exposed is the sum of two random
components, the dead load Dy and the live load D;. For illustrative purposes, we adopt
the generative model of future loads for 7(¢), ¢ > 0 presented in [Foschi et al.| (1989)). We
briefly review the stochastic models with which the future loads are simulated and how
those load levels are used to construct plots for reliability assessment.

At the basis of the model are certain specified constants called design values, which
are in the National Building Code of Canada (NBCC) standards document CAN/CSA-
086: d,q and d,,;. The design values for the dead and live loads are then modelled as the
constants dy = agd,q and d; = ayd,,;, respectively for specified parameters oy = 1.25 and
a; = 1.5. The design load is the constant d; + d;.

The corresponding constant for capacity C' is based on the characteristic value R, for a
given lumber population, which in our example will be the fifth percentile of the strength
distribution of a hemlock species R, = 2722 psi. The design capacity is then ¢'R, for some
constant ¢, with corresponding design performance ¢'R, — (dq + d;). The design capacity
will equal or exceed the design demand if ¢’ is set at the ¢ for which

OR, — (dg + d)) = 0. (9)

Another design value of importance is the dead to live load ratio v = d,,4/d,;, which is
typically 0.25. A little algebra then shows

PR,

dp = ————.
Yo + o

(10)

The parameter ¢ is called the performance factor and like 3 plays a fundamental role
in reliability modelling. For a strong species it will be small while for a weak species it will
be large. Clearly g and ¢ must be related since a large value of the former would mean a
small chance of failure, which in turn would mean a strong population and a small value
of ¢.

However in reality the dead and live loads are random and their distributions must now
be specified. This is done by using the design values as a baseline and normalizing the
loads as Dy = Dy /d,q and D, = D, /dni. We will confine our analysis in this article to live
residential loads, which is one of the many cases explored in [Foschi et al. (1989). Hence we
adopt their stochastic load specifications, by first assuming that Dy ~ N (1,0.01), which is
constant for the life of the structure.

The live loads are modelled as a sum of loads from two independent processes: sustained
and extraordinary. The sizes of the loads are modelled using gamma distributions G(k, 6)
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where k and 6 represent the shape and scale parameters. The random times between and
during live load events are modeled using exponential distributions Exp(\) with mean A\ 7!
Parameters for these models were previously fitted using survey data (Corotis and Doshi,
1977; |Chalk and Corotis, |1980; Harris et al., [1981). Hence the normalized live load at
time ¢ is given by the stochastic process Dj(t) = Dy(t) + D.(t), where D, and D, are the
normalized sustained and extraordinary loads respectively.

The process Ds(t) consists of a sequence of successive periods of sustained occupancy
each with iid duration T, ~ Ezp(1/0.1). During these periods of occupancy Dj, ~
(G(3.122,0.0481) iid. The process D.(t) consists of brief periods of extraordinary loads, sep-
arated by longer periods with no load T, ~ Exp(1.0) of expected duration one year. When
extraordinary loads occur, they last for iid periods of random duration 7}, ~ Exp(1/0.03835).
The normalized loads D, during these brief periods are iid with gamma distribution
Dy ~ G(0.826,0.1023).

The combined normalized dead and live loads are then converted to actual load levels
7(t). Applying Equation it is easily shown that

Dy + D,(t) + D.(t
T(t):(bRo/y d+ S()+ e().
Yog + Oy

(11)

An example of a simulated 30-year load profile according to these settings is shown in
Figure [6]
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Figure 6: An example residential load profile with ¢ = 1.
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For a reliability analysis, the required service time for a piece of lumber is assumed to be
30 years. To simulate the damage accumulation process for a single random specimen, its
random effects are sampled along with a realization of 7(¢). Then according to the ADM,
the specimen is deemed to have failed if for some ¢t < 30, 1 < «a(t) and the associated
survival time would be the smallest ¢ for which that is true. Based on a large number of
replications, the estimated probability of failure after 30 years is obtained, p;. From that
estimate we compute R

B=—2""(py)

where ® is the standard Normal CDF. By repeating this procedure for successive values of
¢, the functional relationship between 8 and ¢ can be estimated.

5.2 Analysis Results

The Canadian model cannot be solved analytically for an arbitrary loading profile 7(t), so
we obtain its solution using the odeint in C++ Boost library. This library provides a wide
range of ODE solvers and we use the five-step Adams-Bashforth method for the sake of
efficiency.

Based on our Bayesian framework, the posterior distribution of the future time-to-failure
Ty can be estimated using the MCMC samples 6; of 0,

tf’tobs lep tfleuTz]

11]1

~ Zzp tfla'ma Zj)cljanl]aO—OZ]77—Zj(t))

=1 j=1

where each 7;;(¢) is an independent realization of the stochastic load profile, and
a;j, bij, cij, mij, 004; are independent draws of the piece-specific random effects condi-
tioning on 6;.

Hence our simulation procedure is as follows: for each of the n; = 500 draws of 6 in
Section , we generate a, b, c,n, o using . Then we solve the Canadian ADM for the
time-to-failure 7y with this a,b,c,n,00 and a randomly generated load profile with
the given ¢. We replicate this n; = 100,000 times for each draw of §. For example, the
posterior distribution of the time-to-failure T’ given the data ¢, with a ¢ = 3 load profile
is shown in Figure[7] Note that there is a small peak at the bottom of the histogram; these
correspond to the weakest pieces of lumber that do not survive the initial loads under this
scenario.

This procedure provides the estimated probability of failure p; by the end of 30 years
and the associated reliability index ﬁ To quantify the DOL effect, we also calculate the
reliability index assuming there is no DOL effect. When there is no DOL effect, a piece of
lumber breaks if the maximum load exceeds its short-term strength 7, during the 30-year
period. The result is shown in Figure . We also replicate the result in [Foschi et al.| (1989)
by generating a, b, ¢, n, oy using their estimates and parametrization. Then for a fixed S,
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Figure 7: Histogram of the posterior distribution of time-to-failure with a ¢ = 3 load
profile, for failures that occur within the first 100 years.

we can measure the DOL effect by taking the ratio of the two corresponding performance
factors ¢; and ¢, as indicated for § = 3 in Figure . Foschi et al.| (1989)) define this ratio
as the adjustment factor Kp, i.e.

P2

¢’
where ¢; and ¢, are the performance factors corresponding to the specified value of 8 when
DOL effect is absent and present, respectively. The result is shown in Table For our
method, we are also able to calculate the 95% posterior interval for Kp using the MCMC
samples. The point estimates shown for our approach are the posterior means.

Kp

Table 4: The adjustment factors Kp for ABC-MCMC and Foschi’s estimates.
ABC-MCMC Foschi

o o1 Kp 95% Interval | oo o Kp

g=25|137 193 0.71 (0.56,0.81) | 1.42 1.88 0.76

f=30|108 153 0.71 (0.53,0.81) | 1.14 1.52 0.75

f=35]086 1.23 0.70 (0.49,0.82) [0.91 1.22 0.75

We find that our approach provides a more conservative estimate of reliability, while
the result of Foschi et al. (1989) is well within the range that would be expected due to
uncertainty from parameter estimation.
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Figure 8: ¢ — 3 relationship for ABC-MCMC and Foschi’s estimates.

6 Discussion and conclusions

In this article, we presented a Bayesian framework for estimating the parameters and
quantifying the uncertainty in the parameters for the Canadian ADM. We adapted an ABC
algorithm to handle the computational challenges. Using the fitted model, we presented
an application to reliability analysis using the posterior distributions of the parameters.

Our approach provides posterior probability intervals that quantify the DOL effect,
in particular the important adjustment factor Kp; such interval estimates could not be
obtained by the approach in [Foschi et al.| (1989)). Future work can extend this Bayesian
framework to other forms of ADMs and exploring alternative or reduced parametrizations
that can still fit the data well, since some of the parameters are highly uncertain in the
posterior. Other forms of future live loads can also be added to the analysis — such as snow,
wind, and earthquakes — so as to obtain more realistic different stochastic load patterns for
T(t).

Our work also shows that ABC-MCMC indeed is a promising approach for complicated
models. In this case, for a subset of sampled parameter vectors it is possible to directly
assess and verify the goodness of the ABC approximation with a brute-force likelihood
computation. Hence, our adapted version of ABC-MCMC for censored data can be seen
here as a useful computational device that helps to efficiently explore the parameter space
and sample good candidates of the parameter vector.
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A Appendix: Canadian model derivation

For a ramp load test using the standard loading rate ks, then we have 7(t) = kyt, 7, = kT,
and
d b n
Ea(t)u = [akTs(t/Ts — 00)+]” + [ckTs(t/Ts — 00)+|"a(t).

Define the integrating factor

Then

Liayo) = - 110 [t (L - )|

— | =—- akTy | — — .

dt 1 T, o0
No damage is accumulated until ¢ = 0(T}, so integrating we obtain

o q " b
a(Ts)H(Ts) — a(ogTs)H (00Ts) = / — - H(t) {akTs (— — 00)} dt.
ooTs M Ts

Finally the change of variables u = —log H(t) yields Equation (3)), where we then rec-
ognize the integral to be the lower incomplete Gamma function, which can be evaluated
numerically using standard mathematical libraries.
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