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Abstract

Motivated by the problem of detecting changes in two-dimensional X-ray diffraction data, we 

propose a Bayesian spatial model for sparse signal detection in image data. Our model places 

considerable mass near zero and has heavy tails to reflect the prior belief that the image signal is 

zero for most pixels and large for an important subset. We show that the spatial prior places mass 

on nearby locations simultaneously being zero, and also allows for nearby locations to 

simultaneously be large signals. The form of the prior also facilitates efficient computing for large 

images. We conduct a simulation study to evaluate the properties of the proposed prior and show 

that it outperforms other spatial models. We apply our method in the analysis of X-ray diffraction 

data from a two-dimensional area detector to detect changes in the pattern when the material is 

exposed to an electric field.
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1 Introduction

X-ray diffraction (XRD) is a powerful technique to characterize the atomic structure of a 

material. There are nearly 300,000 structures cataloged in the International Center for 

Diffraction Data (Thomas, 2012; Editorial, 2014). For example, we analyze the XRD pattern 

of lead zirconate titanate (PZT). PZT is a useful functional material known as a 

piezoelectric. As a piezoelectric, PZT changes shape when an electric field is applied, 

making it useful for actuation, positional control and energy conversion. The material we 

investigate in the present study is a commercially available PZT polycrystalline ceramic 

material known by the tradename K350 (Piezo Technologies). This material has been 

studied previously under varying temperature, electric field, pressure and deformation, 

making it an established material (e.g., Katrusiak, 2008; Dutta and Singh, 2011; Gorfman et 

al., 2011; Esteves et al., 2015) that is suitable for the present investigation. The data in the 

present experiment are acquired using a two-dimensional area detector that measures 

diffracted intensity; this method can be referred to as 2-D XRD. The data are shown in 
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Figure 1 and described in detail in Section 2. In a 2-D XRD image, each pixel represents the 

z-score under an electric field relative to several baseline images. There are few z-scores 

absolutely greater than two, and these pixels tend to cluster in rings indicative of atomic 

structure. Therefore, we analyze these data using sparse spatial signal detection methods. 

Our objective is to develop a more powerful statistical method for detecting and quantifying 

structural changes in 2-D XRD patterns under different experimental conditions.

The statistical problem of identifying spatial regions affected by an experimental factor has 

many applications, including epidemiology, neuroscience and materials science. As a result, 

there is a rich literature on the topic. The spatial scan statistic (Naus, 1965; Kulldorff, 1997; 

Costa and Kulldorff, 2009; Liao et al., 2017) searches for regions with different means than 

the background, but does not estimate the signal and is not well suited for large images with 

many significant subregions. The two-dimensional fused lasso (Friedman et al., 2007), the 

graphical lasso (Friedman et al., 2008) and the smooth-sparse decomposition method (Yan et 

al., 2017) are penalized regression methods that account for spatial structure in the signal 

using penalties to encourage spatial smoothness. Yan et al. (2017) incorporates denoising 

and signal detection into one step for images with a smooth background and facilitates to 

keep sharp boundaries which is not achieved in traditional two-step procedures (Qiu and 

Yandell, 1997; Bradley and Roth, 2007; Sollie, 2013). Spatial wavelet shrinkage methods 

impose a threshold on coefficients in the wavelet domain to recover a sparse signal (Donoho 

and Johnstone, 1994; Taswell, 2000; Jansen, 2001; Yadav et al., 2014; He and Wang, 2017). 

These regularization methods can be applied to high-dimensional data, but require presetting 

the tuning parameters via cross validation (Mallick and Yi, 2013) and fail to account for all 

sources of uncertainty.

Our approach builds on Bayesian variable selection methods. This allows us to fully account 

for uncertainty in the posterior distribution and incorporate known atomic structure in the 

prior. An intuitive sparse prior is a two-component mixture (spike and slab) with one 

component concentrated near zero for the unimportant features and the other diffuse for the 

signals (Mitchell and Beauchamp, 1988; George and McCulloch, 1993; Yuan and Lin, 2005; 

Geweke, 1996; George and McCulloch, 1997; O’hara and Sillapää, 2009; Ročková and 

George, 2016). Two-component mixture priors can be extended to the spatial setting to 

identify subregions of interest (Goldsmith et al., 2014; Boehm Vock et al., 2015; Li et al., 

2015; Kang et al., 2018). However, the two-component construction is computationally 

challenging because posterior sampling requires a search over a considerable space of 

complex models and is plagued by slow convergence and poor mixing (Carvalho et al., 

2010; Johnson and Rossell, 2012; Mallick and Yi, 2013).

The computational difficulties of spike-and-slab priors are abated by continuous shrinkage 

priors (Carvalho et al., 2010; Griffin and Brown, 2010; Armagan et al., 2013; Bhattacharya 

et al., 2014; Bhadra et al., 2016b; Piironen and Vehtari, 2016). Rather than a discrete mixture 

over two components, these priors continuously mix over shrinkage parameters. For 

example, Carvalho et al. (2010) proposed the horseshoe prior that assumes a normal prior 

with mean zero and standard deviation that follows a half-Cauchy prior. The horseshoe prior 

has high concentration around zero for sparsity, heavy tails to avoid excessive shrinkage of 
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signals and attractive theoretical properties (Datta and Ghosh, 2013; van der Pas et al., 2014; 

Bhadra et al., 2016a; van der Pas et al., 2017; Zhang et al., 2017).

To our knowledge, we propose the first continuous shrinkage prior for spatial data. We 

extend the horseshoe prior to account for spatial dependence in the signal at nearby 

observations. We prove that the proposed spatial horseshoe prior has the univariate 

horseshoe prior marginally at each location, and that the induced joint distribution for pairs 

of nearby sites has higher concentration around zero and heavier tails compared to 

independent horseshoe priors. The form of the continuous shrinkage prior permits simple 

expressions for the gradients of the posterior, and thus we use the Hamiltonian Monte Carlo 

(HMC) algorithm (Neal, 1994) for efficient sampling in high-dimensions. A simulation 

study demonstrates that the proposed method is effective at identifying spatial signals. When 

applied to the 2-D XRD data, we find improved cross-validation performance compared to 

other methods.

The paper is organized as follows. We describe the data in Section 2. In Sections 3 and 4, we 

introduce the proposed shrinkage prior and show its theoretical properties. In Section 5, we 

evaluate the proposed prior through the simulation study. In Section 6, we apply our method 

to the 2-D XRD data and compare with other methods. We conclude with remarks and 

comments in Section 7.

2 Description of the 2-D XRD data

The 2-D XRD data were acquired using high-energy X-rays generated at a synchrotron 

source (Advanced Photon Source, Argonne National Laboratory). The beamline 11-ID-C 

was used with an energy of 105 keV. The sample was located in the X-ray beam and a 

silicon-based detector was placed in the transmitted direction, approximately 2 meters from 

the sample position. Electrical connections were made from a high voltage power supply to 

the top conductive electrode of the PZT sample. The bottom electrode was grounded. 2-D 

XRD patterns were measured at sequentially increasing and then decreasing electric field 

amplitudes from −2 kV/mm to 2 kV/mm. The objective is to examine if introducing electric 

field changes the structure of the PZT sample and to capture the diffraction pattern. The 

detector records data over time which yields images that are 2048 × 2048 pixel matrices. 

The intensity of the XRD measured in counts per second (cps) indicates the relative 

abundance at each pixel. In addition, we transform the image of size 2048 × 2048 into size 

1023 × 1023 by removing the first and last rows consisting of all zeros due to experimental 

setup and extracting all odd rows and columns. We surmise that this step is reasonable in 

that the intensity is close to the values nearby, and the diffraction pattern is still apparent. 

(See Supplementary Materials A for the data before and after this reduction.)

We compare the diffraction pattern of PZT with electric field to that without electric field 

and investigate the locations where changes occur. There are 100 baseline images recorded 

without electric field. We define the response Y(s) as the standardized intensity, 

Y(s) = X(s) − μ(s)
σ(s) , where X(s) is the intensity at pixel s, μ(s) is sample mean of the 100 

baseline images at pixel s, and σ(s) is sample standard deviation of the 100 baseline images 

at pixel s. The yellow rings in Figure 1 indicate the larger change of diffraction pattern at t = 
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20 seconds. We choose the image at time t = 20 seconds since this is when the maximum 

electric field is applied. The main features in Figure 1 are the rings centered on the middle of 

the image. We project the spatial shrinkage process into the polar coordinates similar to a 

Radon transform (Radon, 1986) to accommodate these annular features in Sections 3 and 6. 

The Radon transformation has been used successfully for image analysis problems related to 

motion detection (Carretero-Moya et al., 2009; Xu et al., 2011), deblurring (Cho et al., 2011) 

and classification (Kinoshita et al., 2008; Deepak and Sivaswamy, 2011; Acharya et al., 

2016).

3 Model description

3.1 The univariate horseshoe prior

Define Y as the response variable and β as the signal variable. The likelihood for Y with 

horseshoe prior for β is

Y β N β, σ2 , β λ N 0, τ2λ2 , λ C+(0, 1), (1)

where σ2 and τ2 are the error variances, and λ follows the standard half-Cauchy distribution 

on the positive reals. If σ2 = 1, the posterior mean is

E(β Y) = ∫
0

1
(1 − κ)YP(κ Y)dκ = [1 − E(κ Y)]Y , (2)

where κ = 1
1 + λ2  is the shrinkage coefficient. E(κ | Y) determines the amount of shrinkage 

towards zero. The name of the prior comes from the horseshoe-shaped Beta 1
2 , 1

2
distribution on the shrinkage coefficient κ that is induced by the half-Cauchy distribution on 

λ. The shape of the shrinkage density implies that the shrinkage coefficient is close to either 

zero or one with high probability which shrinks null signals towards zero and avoids 

shrinking the true signals. This property facilitates separating signals from the noise. 

Although marginally over λ this prior for β does not have a closed form of the probability 

density function, it enjoys nice theoretical properties including tight bounds, high 

concentration near zero and heavy tails (Carvalho et al., 2010).

3.2 The spatial horseshoe prior (SHP)

To extend the horseshoe prior to the spatial setting, define Y (s) as the real-valued response 

at a spatial location s = (s1,s2) E ℝ2 and β(s) as the true signal at s. For data observed at 

locations s1,..., sn, define Y = [Y (s1), ..., Y (sn)]T as the n × 1 response vector and β = 

[β(s1), ..., β(sn)]T as the signal vector. Extending (1), let

Y β N β, σ2In , β λ N 0, ΛΣβΛ , (3)

where σ2 is the error variance, In is the identity matrix of size n, Λ is diagonal with the 

diagonal elements λ = [λ(s1), ..., λ(sn)]T, and Σβ is a spatial covariance matrix. 

Independence of the response Y given the signals β is a strong assumption, but justified for 
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the 2-D XRD data where the distribution of photons should theoretically follow a Poisson 

process with independent counts across pixels. Physics dictates that the photons should 

follow a Poisson process so that the number of photons that land in disjoint regions are 

independent of each other. The photon detectors are identical and operate independently and 

so this assumption should carry through to the observed data.

Spatial shrinkage is induced by the spatial process model for λ(s). We propose a Gaussian 

copula model (Nelsen, 2006) that preserves the marginal half-Cauchy distribution and 

captures spatial dependence,

λ(s) = λ0l[θ(s)], (4)

where λ0 is a global scale parameter, θ(s) is a latent spatial Gaussian process with mean 

zero and variance one for all s, l( ⋅ ) = FC +
−1 [Φ( ⋅ )] is the half-Cauchy link function, FC +

−1 ( ⋅ ) is 

the inverse cumulative density function of the half-Cauchy distribution, and Φ(·) is the 

standard normal cumulative distribution function. The half-Cauchy link function provides a 

marginal half-Cauchy distribution for l[θ(s)] if E[θ(s)] = 0 and Var[θ(s)] = 1. We interpret 

l[θ(s)] as a local shrinkage parameter and λ0 as a global shrinkage parameter, respectively.

The latent shrinkage process θ(s) could follow another Gaussian process prior with mean 

zero, variance one and spatial correlation. We also consider a low-rank representation of the 

latent shrinkage process

θ(s) = ∑
j = 1

J x j(s)
∑ j = 1

J x j
2(s)

b j, (5)

where xj(s) is the jth basis function for location s and b j
iidN(0, 1). The spatial model gives the 

same marginal distribution as (1), but with spatial dependence both in the distribution for β | 

λ and the distribution for λ. We will elaborate on the properties of this model in Section 4.

4 Theoretical properties

4.1 Properties of the spatial horseshoe prior

In this section we study the properties of the SHP for a pair of spatial locations as a function 

of the distance between the locations. We compare the SHP with the simple model with the 

independent β and λ, namely, Σβ = I2 and λ1, λ2
iidC+(0, 1). The joint density of β in this 

special case is (Carvalho et al., 2010)

P0 β1, β2 = 1
2π3e

1
2 β1

2 + β2
2

E1
β1

2

2 E1
β2

2

2 , (6)

where E1 (·) is the exponential integral function. Next, we consider the joint shrinkage 

parameter λ = λ(s1) =λ(s2) ~ C+(0,1) and the covariance Σβ with the diagonal elements 1 
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and the spatial correlation ρβ which stands in for the distance between the two locations. 

Then we obtain (Supplementary Materials B.1) the joint density

P1 β1, β2 = 2
− 1

2π
− 3

2 1 − ρβ
2

1
2 β1

2 − 2ρββ1β2 + β2
2 − 1

2

− 2π −1 1 − ρβ
2

1
2e

1
2 β1

2 − 2ρββ1β2 + β2
2

er f c
β1

2 − 2ρββ1β2 + β2
2

2 ,
(7)

where erfc(·) is the complementary error function.

Figure 2 plots log[P0(β1,β2)] and log[P1(β1, β2)] for ρβ = 0, 0.5, 0.9. When ρβ = 0, the log 

density with a common shrinkage parameter has higher spike around zero and heavier tail 

than the log density with independent shrinkage parameters. Increasing the ρβ gives the 

higher concentration on the 45-degree line of the log density.

4.1.1 Concentration around zero—The densities P0(β1,β2) and P1(β1,β2) both have 

high concentration towards zero. It can be shown that limβ1, β2 0P0 β1, β2 = ∞ and 

limβ1, β2 0P0 β1, β2 = ∞. Moreover, we show that the density with joint shrinkage 

concentrates towards zero more than the density with independent shrinkage by proving that 

the ratio of P1(β1,β2) to P0(β1, β2) diverges as β1 and β2 approach zero. Let R be the ratio,

R =
P1 β1, β2
P0 β1, β2

= π
3
2e

− 1
2 β1

2 + β2
2 β1

2 + β2
2

2

− 1
2

E1
β1

2

2 E1
β2

2

2

−1

− π2
er f c

β1
2 + β2

2

2

E1
β1

2

2 E1
β2

2

2

.

(8)

We show that limβ1, β2 0R = ∞ with the divergence rate β1
2 + β2

2logβ1logβ2
−1

(Supplementary Materials B.2). This indicates that joint sparsity is achieved more rapidly in 

P1 (β1, β2) than in Po(β1, β2).

4.1.2 Tail behavior—We also investigate the capability to retain signals of large values 

through examining the tail densities with joint and independent shrinkage. In Figure 2, we 

observe that the tail density is lower in P0(β1,β2) than P1(β1,β2) and becomes larger when 

the spatial dependence is stronger. The higher tail density implies a better capability to avoid 

excessive shrinkage. Theoretically, it is shown that limβ1, β2 ∞P0 β1, β2 = ∞ with the 
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divergence rate 
β1

2β2
2

β1
2 + β2

2  (Supplementary Materials B.3). This result suggests the higher tail 

density with joint shrinkage and o its stronger power to incorporate large signals.

4.2 Properties of the spatial horseshoe posterior

Let the error variance σ2 be 1, then the posterior mean can be expressed as E(β | Y, λ) = (I2 

— K)Y, where the shrinkage matrix K = I2 − I2 + Ωβ
−1 −1

 and Ωβ = Λ Σβ Λ. To examine 

the joint shrinkage induced by the SHP, we consider the one-number complexity summary 

(Efron, 2004)

df = tr (I − K) =
2 1 − ρβ

2 λ1
2λ2

2 + λ1
2 + λ2

2

1 − ρβ
2 λ1

2λ2
2 + λ1

2 + λ2
2 + 1

. (9)

If λ1 = λ2 = λ, then

df =
2 1 − ρβ

2 λ4 + 2λ2

1 − ρβ
2 λ4 + 2λ2 + 1

. (10)

In this special case with ρβ = 0, df = 2λ2

λ2 + 1
, and thus its prior distribution is under the SHP 

resembles the horseshoe Beta 1
2 , 1

2  density scaled by 2. Figure 3 plots the density of df. The 

SHP with common shrinkage has spikes at zero and two corresponding to joint shrinkage. 

This property encourages noises to be shrunk to zero and signals to be retained at the 

original values. The density of df with independent λ has a spike around one which 

corresponds to shrinking only one of β1 and β2, instead of shrinkage or non-shrinkage for 

both variables. This characteristic even holds when ρβ = 0.9 which is contradictory to the 

expectation that a high correlation between two variables leads to similar shrinkage 

behaviors.

5 Simulation Study

We investigate how the SHP performs in detecting sparse signals compared with other 

methods using a simulation study.

5.1 Data generation

We consider the two true surfaces:
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1.β0(s) = 6I s1 − 10 2 + s2 − 12 2 ≤ 1

+ 5I s1 − 10 2 + s2 − 12 2 > 1and s1 − 10 2 + s2 − 12 2 ≤ 4

+ 4I s1 − 10 2 + s2 − 12 2 > 4and s1 − 10 2 + s2 − 12 2 ≤ 16

+ 3I s1 − 10 2 + s2 − 12 2 > 16and s1 − 10 2 + s2 − 12 2 ≤ 36

and

2. β0(s) = 6I s1 − 10 2 + s2 − 12 2 ≤ 1

+ 5I s1 − 10 2 + s2 − 12 2 > 1and s1 − 10 2 + s2 − 12 2 ≤ 4

+ 4I s1 − 10 2 + s2 − 12 2 > 4and s1 − 10 2 + s2 − 12 2 ≤ 16

+ 3I s1 − 10 2 + s2 − 12 2 > 16and s1 − 10 2 + s2 − 12 2 ≤ 36

+ 4I s1 − 28 2 + s2 − 30 2 ≤ 4

+ 3I s1 − 28 2 + s2 − 30 2 > 4and s1 − 28 2 + s2 − 30 2 ≤ 16 .

The observations are generated with Y(s) β0(s)indepN β0(s), σ2  on a 40 × 40 grid of n = 1, 600 

locations. The proportion of signals with nonzero β0(s) is 7.06% and 10.13% in the two 

surfaces. In addition, we vary the error variance σ2 = 0.52,12, 22. For each combination of 

true surface and σ2, we generate N = 100 data sets. Figure 4 shows the two surfaces and a 

representative simulated data set for each surface.

5.2 Models

Although the SHP can accommodate other covariance structures, we use the conditionally 

autoregressive prior (CAR, Carlin and Banerjee, 2003) for Σβ. The CAR covariance is Σβ = 

(M − ρβA) −1, where M is the diagonal matrix with the elements m1, ...,mn indicating the 

number of neighbors for locations s1, ..., sn, ρβ is the spatial dependence parameter, and A is 

the adjacency matrix with Aij = 1 if locations si and sj are neighbors and Aij = 0 otherwise. 

Note that while ρβ ∈ (0,1) determines the strength of spatial dependence, it is not a 

correlation parameter as in Section 4. The CAR prior is a natural choice for data on a 

discrete grid as discussed in Cressie (2013) and Gelfand (2010). This is an intuitive prior 

specification and has the advantage of a sparse inverse covariance matrix which leads to a 

dramatic computational savings. For our analysis of over a million pixels, a prior that did not 

give a sparse inverse covariance would require approximation and/or prohibitively long run 

times. Computational details are given in Supplementary Materials C.

We fit five models for β(s) to each simulated dataset. The first four are versions of the spatial 

horseshoe differentiated by their flexibility in modeling the shrinkage process λ(s). The fifth 

method is soft-thresholded Gaussian process (STGP) model of Kang et al. (2018) that places 

prior mass exactly at zero.

Gaussian: λ(s) as a constant across space, λ(s) = λo which leads to 

β λ0 N 0, λ0
2 M − ρβA −1

 The error variance σ2 and the scale parameter λ0
2 follow 
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uninformative inverse gamma prior IG(0.1, 0.1), and the spatial dependence parameter ρβ 
follows a beta prior Beta(10,1). This is the usual Gaussian CAR model.

SHS_quad: Low-rank representation using the half-Cauchy link function with quadratic 

basis expansions, λ si = λ0l θ si , where l[·] is the half-Cauchy link function, 

θ(s) = ∑ j = 1
J x j(s)

∑ j = 1
J x j

2(s)
b j, priors b j

iidN(0, 1), 

x1 si = 1, x2 si = si1, x3 si = si2, x4 si = si1
2 , x5 si = si2

2  and x6(si) = si1si2 for i = 1, ..., n.

SHS_B-spline 1: Low-rank representation using the half-Cauchy link function with the B-

spline basis expansions with five degrees of freedom for each coordinate, λ(si) = λ0l[θ(si)], 

where l[·] is the half-Cauchy link function, θ si = ∑ j = 1
100 x j si b j, priors b j

iidN(0, 1) and xj (si) 

is the jth product of B-spline bases at location si.

SHS_B-spline 2: Same structure as the model SHS_B-spline 1, but with ten degrees of 

freedom for each coordinate.

STGP: Soft-thresholded Gaussian process prior for β(s). Let β(s) follow a multivariate 

normal distribution with zero mean and CAR covariance with first-order neighborhood. 

Then β(s) = gκ[β(s)], where gK is the soft-thresholding function to map β(s) near zero to exact 

zero and thus gives a sparse prior,

gκ(x) = 0 if x ≤ κ
sign (x)( x − κ) if x > κ

.

The thresholding parameter κ follows a uniform prior U(0,10) and controls the degree of 

sparsity.

5.3 Evaluation metrics

We compare methods in terms of root mean squared error (RMSE), coverage probability, 

Type I error and power. For simulated data set k, let βk(s) be the posterior mean and 

[lk(s),uk(s)] be the 95% credible interval of β(s). We list the formulae of the measures as 

follows:

RMSE = 1
Nn ∑

k = 1

N
∑

i = 1

n
βk si − β0 si

2

Coverage  = 1
Nn ∑

k = 1

N
∑

i = 1

n
I β0 si ∈ lk si , uk si
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Type I error  = 1
N ∑

k = 1

N ∑i = 1
n I P βk si > 0 > 0.95 ⋅ I β0 si = 0

∑i = 1
n I β0 si = 0

Power = 1
N ∑

k = 1

N ∑i = 1
n I P βk si > 0 > 0.95 ⋅ I β0 si ≠ 0

∑i = 1
n I β0 si ≠ 0

.

5.4 Results

The results are given in Tables 1 and 2. RMSE decreases as the number of basis functions in 

the spatial shrinkage process λ(s) increases since a larger number of basis functions 

enhances the flexibility in λ(s). RMSE in the SHS_B-spline 2 model drops 34.06% 

compared with RMSE in the Gaussian model under the low-noise case in Signal 2. SHS_B-

spline models have the smallest RMSE in the low-noise and mid-noise cases while STGP 

outerperforms other models in RMSE under the other scenario. Coverage and type I error 

are at or near the nominal level for all methods except for the Gaussian model in the low-

noise cases. All models have strong power when the error variance is small. However, large 

error variance distinguishes the models. STGP model has about 66% the power of SHS 

models. The loss of power in STGP model results from excessive shrinkage from the soft-

thresholding formulation, especially in the large-noise scenario.

Figures 5 and 6 illustrate the simulation results under Signal 2 with σ = 0.5 and 2, 

respectively. Increasing the flexibility of the shrinkage process improves signal identification 

and leads to a smoother signal surface. The Gaussian model tends to have more false 

positives, especially when the error variance is small. This explains why it has strong power 

but poor RMSE. The simulation plots under other scenarios including data generated with 

spatially-correlated errors are shown in Supplementary Materials D. For the computing time, 

analyzing a simulated data set takes 0.33, 0.87, 1.23, 3.40 and 10.29 minutes for Gaussian, 

SHS_quad, SHS_B-spline 1, SHS_B-spline 2 and STGP models, respectively.

6 Analysis of the 2-D XRD data

6.1 Model comparisons

In this section we apply the proposed model in Section 3 to the 2-D XRD data. We tailor the 

SHP model to the 2-D XRD data to capture the ring-shaped pattern visible in Figure 1. 

Rather than using the basis expansions of square coordinates in the simulation study, we 

consider a basis expansion of the radius, r ≥ 0, and the angle, a ∈ [0, 2π), from the central 

point. In the simulation study the true features were defined on disks and thus we used radial 

basis functions for the smoothing process, λ(s). As is apparent in Figure 1, the features in 

the XRD data are annuli, and we thus choose basis functions define in polar coordinates to 

capture the shape of these features. We use Fourier and B-spline basis expansions for angle 

and radius, respectively. A1(a), …, Aka
(a) be the Fourier basis functions and B1(r), …, Bkr

(r) be 

the B-spline basis functions, where ka and kr are the numbers of basis functions in the angle 
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and the radius, respectively. The Fourier basis functions are A1(a) = sin(a),A2(a) = 

cos(a),A3(a) = sin (2a), and A4(a) = cos (2a), etc. At pixel s, the basis functions consist of J 
= ka × kr products of Fourier and B-spline basis expansions, i.e. 

x(s) = x1(s), …, xJ(s) T = A1[a(s)] × B1[r(s)], …, Aka
[a(s)] × Bkr

[r(s)]
T

. The priors and 

computing details remain the same as in Section 5.

We implement five-fold cross-validation to evaluate the prediction in models with varying 

flexibility of shrinkage across space. We consider (ka, kr) = (4,10), (4, 25), (4,50), (4,100), 

(8, 5) and (8, 50). We do not include STGP in the model comparisons because of the heavy 

computation. Table 3 presents the results as RMSE–1, since for the z-scores with 

independent standard normal error, one is the lowest achievable prediction RMSE. 

Generally, predicted RMSE declines as flexibility of shrinkage grows, similar to the 

simulation results shown in Section 5. However, a larger number of basis functions of angle 

tends to have a smaller prediction error when the total number of basis expansions is the 

same, e.g. SHS1 versus SHS5 and SHS3 versus SHS6. According to Wilcoxon signed rank 

test, RMSE of the models SHS1-SHS6 is significantly less than RMSE of the Gaussian 

model. Coverage is close to the nominal level 95% for all models.

6.2 Summary of fitted models

In this section we fit the Gaussian and SHS models as above to the full dataset. Because the 

number of pixels is large, we implement the Bayesian spatial false discovery rate (BSFDR) 

procedure (Sun et al., 2015) with rate 0.05 to control for multiple testing. We consider the 

one-sided null and alternative hypotheses H0 : β(s) ≤ 0 and H1 : β(s) > 0, respectively. The 

BSFDR procedure provides a critical probability that the null hypothesis is rejected if the 

posterior probability is greater than the critical probability. The critical probabilities are 

92.93% for all models, except for 91.92% for the SHS4 model. The number of pixels for 

which H0s is rejected are also similar for the Gaussian and SHS models, from 1.42% to 

2.02%.

Figure 7 displays the fitted results for the Gaussian and SHS6 (with the lowest RMSE) 

models. The posterior mean of the shrinkage parameter λ(s) (Figure 7, bottom left) is large 

for only a few radii and for only a subset of the angles on the rings. These areas also have 

the largest posterior mean of β(s) and posterior probability that β(s) is positive. The map of 

difference in posterior probability (Figure 7, top right) exhibits that the model SHS6 

encourages shrinkage along the rings. Comparing models, we find more significant pixels 

and stronger spatial clustering of the signal in the SHS model compared to the Gaussian 

model. In addition, Figure 8 illustrates that the density of posterior mean β(s) from the SHP 

model (SHS6) has higher concentration around zero and heavier tails than the density of β(s) 

from the Gaussian model.

Figure 7 is an analysis of one time point (t = 20). We investigate the temporal trend of i 

signals by fitting the model SHS6 for the standardized intensity Y(s) at all time points. We. 

use the sum of squared signals, D = ∑i = 1
n β si

2, as a measure of strength of structural 

change of the PZT sample. Figure 9 displays the boxplots of the posterior of D and the 
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electric field by time. Generally, the structural change becomes larger when the magnitude 

of electric field increases. The measure D is smaller in the first half of experimental period 

under a positive charge compared to the second half of period under a negative charge. The 

reason for the rapid increase in D between 54 and 58 seconds is a material phenomenon 

known as ferroelectric switching; the electric field amplitude at this time exceeds that 

required for substantial reorientation of material elements, leading to a significant change in 

the diffraction pattern. The example of this method on ferroelectrics demonstrates the 

versatility of the method at efficiently assessing 2-D XRD images for the purposes of 

materials characterization.

7 Conclusion

In this paper, we propose a new method for sparse signal defection with application to the 2-

D XRD imaging data. To our knowledge, the SHP is the first continuous shrinkage prior for 

spatial data. Theoretically, we prove that the SHP has the univariate horseshoe prior 

marginally at each location, and that the induced joint distribution for pairs of nearby sites 

has higher concentration around zero and heavier tails compared to independent horseshoe 

priors. Further, we facilitate the computation via the HMC algorithm (Neal, 1994) for high-

dimensional data. The simulation and empirical results both show the improvement of 

estimation and prediction when we consider spatial dependence.

A potential limitation of our method is that the covariance structure of data is assumed to be 

independent given the mean vector β. This is sufficient for the 2-D XRD imaging data 

because the distribution of photons ought to follow a Poisson process with independent 

counts across pixels, but it may not hold for different data. Our simulation results 

(Supplemental Materials D) show that for data with moderate spatial correlation our working 

independence model maintained reasonable error rates but had lower power than our 

previous simulation with independent errors. For simulated data with strong residual spatial 

correlation, our model with working independent assumption did not work well. The 

shortcomings of the working independence model led us to consider a richer model that 

includes spatial correlation in the residuals. A second restriction is the assumption of CAR 

covariance structure with the first order neighbors. The covariance structure can be modified 

to meet needs in other situations. For instance, the Matérn covariance (Stein, 1999) is a 

covariance function depending on the distance between two given locations, a smooth 

parameter and a range parameter. The general class of covariance functions includes the 

exponential covariance and the squared exponential covariance. The flexibility may be 

preferred and computationally feasible for smaller datasets.

Deep learning via convolutional neural networks (CNN) have emerged as immensely 

powerful tools for extracting information from images (Goodfellow et al., 2016; Rawat and 

Wang, 2017; Yamashita et al., 2018). The standard CNN is a supervised learning algorithm 

that uses an image predictor. However, in our setting we do not have known labels (e.g., 

images with locations that are known to have a change) to train the model. Also, while 

CNNs are strong for prediction, they are weak for formal statistical inference which is our 

primary objective.
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In the future, the proposed method can be extended to Bayesian variable selection in spatial 

linear regression. In spatial regression, the covariates effect can vary by site (Gelfand et al., 

2003), and the SHP for the spaitally-varying effects would encourage sparsity in these 

effects. We can also extend the SHP to a spatio-temporal horseshoe model for longitudinal 

data. We can use the extended model to test for spatio-temporal anomalies in a surveillance 

study (e.g. Li et al., 2012) or process monitoring (e.g. Yan et al., 2018).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
The map of the standardized intensity Y(s) (left) with the maximum electric field 2 kV/mm 

at time t = 20 seconds using the sample mean μ(s) and the sample standard deviation σ(s) of 

the 100 baseline images without electric field and the smoothed Y(s) (right) using a 

Gaussian kernel with the bandwidth 0.75 pixels.
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Figure 2: 
Log prior density of β1 and β2 in the first quadrant for (a) independent horseshoe priors (log 

P0) and (b)-(d) the spatial horseshoe prior (log P1) with ρβ ∈ {0, 0.5, 0.9}.
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Figure 3: 
Induced prior density plot of the complexity measure df = tr(I — K) with independent and 

common shrinkage with ρβ ∈ {0, 0.5,0.9}.
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Figure 4: 
True surface β0(s) (left) and a simulated data set Y(s) with error standard deviation σ = 0.5 

(middle) and σ = 2 (right).
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Figure 5: 
Simulation results for Signal 2 with σ = 0.5 for the four models (rows): the first row shows 

the true signal β0(s) and results for the soft-thresholded Gaussian process (STGP) model, the 

second row shows the simulated data Y(s) and results for the Gaussian model, the third and 

fourth rows show results for spatial horseshoe with quadratic (SHS_quad) and spline 

(SHS_B-spline 2) shrinkage models.
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Figure 6: 
Simulation results for Signal 2 with σ = 2 for the four models (rows): the first row shows the 

true signal β0(s) and results for the soft-thresholded Gaussian process (STGP) model, the 

second row shows the simulated data Y(s) and results for the Gaussian model, the third and 

fourth rows show results for spatial horseshoe with quadratic (SHS_quad) and spline 

(SHS_B-spline 2) shrinkage models.
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Figure 7: 
Results of the Gaussian model (top row), and the best prediction performance model SHS6 

(bottom row) and columns in different statistics; the first column plots the observations and 

posterior mean of shrinkage process λ(s) from the model SHS6, the second column plots the 

truncated (at ±0.5) posterior mean of signal β(s) to illustrate contrast between the two 

models, and the third column plots the difference in posterior probability that β(s) is 

positive, i.e. P(β(s) > 0 | Y)_SHS6 — P(β(s) > 0 | Y)_Gaussian, and the signal map for the 

model SHS6 with the Bayesian spatial false discovery rate controlled at 0.05.

Jhuang et al. Page 23

Technometrics. Author manuscript; available in PMC 2020 March 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8: 
Density plot (left) and quantile-quantile plot (right) of the posterior mean of signal β(s) from 

the Gaussian and SHS6 models.
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Figure 9: 

Time series plot of the posterior of D = ∑i = 1
n β si

2 (boxplots) from the model SHS6 

applied separately for a bipolar electric field from −2 kV/mm to 2 kV/mm (line).
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Table 1:

Summary of the simulation study under Signal 1 by error variance σ2 for the Gaussian, spatial horseshoe with 

quadratic (SHS_quad), spline 1 (SHS_B-spline 1) and spline 2 (SHS_B-spline 2) shrinkage models and the 

soft-thresholded Gaussian process (STGP) model.

σ2 = 0.52 σ2 = 12 σ2 = 22

Statistics Model Estimate SE Estimate SE Estimate SE

100×RMSE

Gaussian 33.08 0.11 42.34 0.17 52.21 0.26

SHS_quad 22.32 0.07 31.92 0.14 43.84 0.28

SHS_B-spline 1 19.67 0.13 28.97 0.21 42.32 0.39

SHS_B-spline 2 21.31 0.12 31.19 0.14 44.31 0.34

STGP 24.05 0.22 30.75 0.45 39.76 0.33

Coverage (%)

Gaussian 91.67 0.17 97.46 0.05 98.66 0.05

SHS_quad 98.09 0.04 98.68 0.03 99.28 0.03

SHS_B-spline 1 97.91 0.51 97.78 0.68 98.61 0.60

SHS_B-spline 2 97.61 0.36 97.31 0.08 98.22 0.13

STGP 98.15 0.07 99.48 0.03 99.62 0.02

Type I error (%)

Gaussian 7.25 0.14 2.60 0.06 1.18 0.05

SHS_quad 1.79 0.05 1.27 0.04 0.79 0.04

SHS_B-spline 1 1.73 0.40 1.91 0.55 1.06 0.19

SHS_B-spline 2 1.96 0.23 2.27 0.09 1.44 0.15

STGP 0.56 0.03 0.15 0.02 0.01 0.00

Power (%)

Gaussian 100.00 0.00 99.97 0.02 98.00 0.14

SHS_quad 100.00 0.00 99.86 0.03 95.36 0.25

SHS_B-spline 1 100.00 0.00 99.86 0.03 95.65 0.25

SHS_B-spline 2 100.00 0.00 99.94 0.02 96.60 0.27

STGP 100.00 0.00 98.48 0.15 67.85 0.62
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Table 2:

Summary of the simulation study under Signal 2 by error variance σ2 for the Gaussian, spatial horseshoe with 

quadratic (SHS_quad), spline 1 (SHS_B-spline 1) and spline 2 (SHS_B-spline 2) shrinkage models and the 

soft-thresholded Gaussian process (STGP) model.

σ2 = 0.52 σ2 = 12 σ2 = 22

Statistics Model Estimate SE Estimate SE Estimate SE

100×RMSE

Gaussian 37.04 0.12 49.21 0.18 60.98 0.27

SHS_quad 27.48 0.08 39.66 0.15 53.13 0.27

SHS_B-spline 1 24.87 0.09 36.78 0.22 52.65 0.42

SHS_B-spline 2 24.41 0.10 36.66 0.13 52.53 0.36

STGP 27.03 0.20 43.07 0.46 49.55 0.37

Coverage (%)

Gaussian 88.09 0.24 96.47 0.07 98.59 0.05

SHS_quad 96.74 0.08 97.74 0.06 98.76 0.05

SHS_B-spline 1 97.33 0.11 97.75 0.22 98.29 0.40

SHS_B-spline 2 97.40 0.12 96.87 0.07 98.13 0.08

STGP 98.15 0.07 98.42 0.07 99.31 0.03

Type I error (%)

Gaussian 9.79 0.17 3.67 0.08 1.39 0.05

SHS_quad 2.87 0.08 2.07 0.07 1.08 0.05

SHS_B-spline 1 2.40 0.09 1.85 0.14 1.45 0.35

SHS_B-spline 2 2.19 0.09 2.53 0.09 1.36 0.08

STGP 0.56 0.03 0.65 0.05 0.03 0.01

Power (%)

Gaussian 100.00 0.00 99.90 0.02 94.93 0.21

SHS_quad 100.00 0.00 99.79 0.04 92.69 0.27

SHS_B-spline 1 100.00 0.00 99.66 0.05 92.43 0.32

SHS_B-spline 2 100.00 0.00 99.79 0.03 92.65 0.33

STGP 100.00 0.00 98.91 0.09 64.36 0.56
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Table 3:

Comparison of prediction on the 2-D XRD data using the Gaussian and spatial horseshoe (SHS) models with 

ka basis functions in the angle and kr basis functions in the radius (SHS1-SHS6). Methods are compared using 

100×(root mean squared error-1) as RMSE, coverage (%) and computing time per 100 iterations in minutes.

Model ka kr

RMSE Coverage (%)

Computing time (mins)Estimate SE Estimate SE

Gaussian - - 3.64 0.08 94.72 0.02 2.78

SHS1 4 10 3.59 0.08 94.78 0.02 6.57

SHS2 4 25 3.57 0.08 94.79 0.02 9.91

SHS3 4 50 3.55 0.08 94.80 0.03 17.45

SHS4 4 100 3.54 0.08 94.80 0.02 41.61

SHS5 8 5 3.56 0.08 94.80 0.02 7.38

SHS6 8 25 3.50 0.09 94.84 0.02 8.62
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