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Abstract

We consider the problem of describing excursion sets of a real-valued function
f , i.e. the set of inputs where f is above a fixed threshold. Such regions are hard
to visualize if the input space dimension, d, is higher than 2. For a given projec-
tion matrix from the input space to a lower dimensional (usually 1, 2) subspace, we
introduce profile sup (inf) functions that associate to each point in the projection’s
image the sup (inf) of the function constrained over the pre-image of this point by the
considered projection. Plots of profile extrema functions convey a simple, although
intrinsically partial, visualization of the set. We consider expensive to evaluate func-
tions where only a very limited number of evaluations, n, is available, e.g. n < 100d,
and we surrogate f with a posterior quantity of a Gaussian process (GP) model. We
first compute profile extrema functions for the posterior mean given n evaluations
of f . We quantify the uncertainty on such estimates by studying the distribution of
GP profile extrema with posterior quasi-realizations obtained from an approximating
process. We control such approximation with a bound inherited from the Borell-TIS
inequality. The technique is applied to analytical functions (d = 2, 3) and to a 5-
dimensional coastal flooding test case for a site located on the Atlantic French coast.
Here f is a numerical model returning the area of flooded surface in the coastal re-
gion given some offshore conditions. Profile extrema functions allowed us to better
understand which offshore conditions impact large flooding events.

Keywords: excursion set; set estimation; Gaussian process; profile extrema function; Graph-
ical Methods.
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1 Introduction

1.1 Problem statement

In many domains of application (structural reliability, Dubourg et al. (2013), nuclear safety,
Chevalier et al. (2014), environmental problems, Bolin and Lindgren (2015), natural risk,
Rohmer and Idier (2012); Bayarri et al. (2009)) the region in the parameter space leading
to response values above or below a given threshold is of crucial interest. In particular here,
we assume that a phenomenon can be modelled by a function f : D ⊂ Rd → R, where D
is a compact set and we focus on excursion sets of the form

Γ = {x ∈ D : f(x) ≥ τ},

where τ ∈ R is a prescribed threshold depending on the application at hand. This work
presents a method to gain visual insights on Γ when the input space dimension d ≥ 3.

Visualization of point clouds and manifolds in high dimensions is a very active field
of research. Principal components analysis and its kernel version (Schölkopf et al., 1997)
play a fundamental role in dimensionality reduction for high dimensional data. Parallel
coordinates (Inselberg, 1985, 2009) are widely used for exploratory data analysis. In order
to visualize more complex structure, techniques relying on the topological concept of Morse-
Smale complex (Edelsbrunner and Harer, 2008; Gerber et al., 2010) provide powerful, but
hard to interpret, tools. Projection based techniques, in particular tours (see, e.g., Asimov,
1985; Cook et al., 1995, 2008), are also a prominent method to visualize data in high-
dimensional Euclidean spaces. All these techniques, however, are based on a finite set of
data points while, in our case, we provide a representation that exploits the structure of Γ .

The contribution of this paper is two-fold: first we show how to use profile extrema func-
tions for visualizing excursion sets of known deterministic functions; second, we implement
these tools for expensive computer experiments with Gaussian process (GP) emulation.

For a given projection matrix Ψ ∈ Rd×p, a profile sup (inf respectively) is a function
P sup

Ψ f (P inf
Ψ f) that associates to each point η in the image of ΨT , the sup (inf respectively)

of f over all points with projection equal to η, i.e. P sup
Ψ f(η) = supΨTx=η f(x). For example,

if ΨT = [1, 0, . . . , 0] ∈ R1×d is the canonical projection over the first coordinate, then
P sup

Ψ f(η) is the sup of f over all points in D with first coordinate equal to η. In this
case we can plot the values of P sup

Ψ f and P inf
Ψ f over their 1-dimensional (p dimensional, in

general) domain and study such functions. In particular, all η̃ such that P sup
Ψ f(η̃) < τ , i.e.

all inputs x ∈ D such that ΨTx = η̃, identify regions of non-excursion. Analogously
P inf

Ψ f(η) > τ selects regions of excursion. We compute profile extrema for known, fast-to-
evaluate functions f with numerical optimization, as described in Section 2.

In this paper, however, we focus on the case where the function f is very expensive
to evaluate and thus the number of evaluations, n, is limited, e.g. n < 100d. Follow-
ing the classical computer experiments literature (see, e.g., Sacks et al., 1989; Santner
et al., 2003), we define a design of experiments Xn = (x1, , . . . ,xn) ∈ Dn and denote with
yn = (f(x1), . . . , f(xn))T the corresponding vector of evaluations. We assume that f is a
realization of a GP (Zx)x∈D ∼ GP (µ,K) with prior mean function µ : D ⊂ Rd → R and
covariance kernel K : D × D → R. The set Γ can be estimated from the posterior GP
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distribution (see, e.g. Bingham et al., 2014; Bolin and Lindgren, 2015; Azzimonti, 2016),
in particular, here we consider the plug-in estimate

Γ̂n = {x ∈ D : γn(x) ≥ τ},

where γn is a posterior quantity related to Z. Examples of interesting quantities γn are the
posterior mean, the 1 − α posterior quantiles or a posterior realization of Z. If d = 1, 2,
a visualization of Γ̂n only requires evaluations of γn on a grid; however, when d ≥ 3, this
approach is problematic. We propose a technique to compute and plot profile extrema
functions for γn and we detail how to use profile extrema to identify regions of interest.

A GP model not only provides an estimate for Γ , but it also allows for a quantification
of the associated uncertainty. In particular, here we study the distribution of the stochastic
object P sup

Ψ Z and we provide point-wise confidence statements on profile extrema functions.
The quantities P sup

Ψ Z, P inf
Ψ Z are strongly related to extreme values of Gaussian processes

indexed by compact sets which have been widely studied in probability theory (see, e.g.,
Adler and Taylor, 2007; Azäıs and Wschebor, 2009) and have been the subject of recent
interest in the computer experiments literature, see, e.g. Chevalier (2013, Chapter 6) and
Ginsbourger et al. (2014). Here we obtain point-wise confidence intervals for profile extrema
functions by using posterior quasi-realizations of an approximating process obtained as
in Azzimonti et al. (2016). Moreover we introduce a probabilistic bound for the quantiles
of the posterior profile function based on the sample quantiles of the approximating process.
This procedure enabled the identification of regions of interests for the coastal flooding test
case presented in Section 4.

1.2 Outline of the paper

In Section 2 we introduce profile extrema functions for a generic function γ and we apply
them to a synthetic test case. In this section, we also discuss implementation details. Sec-
tion 3 describes the GP model and the quantification of uncertainty on the profiles with
approximate posterior GP simulations. Moreover we provide a probabilistic bound (Theo-
rem 1 and Corollary 1, proofs in Appendix A) for this approximation. In Section 4 we apply
the procedure on a coastal flooding problem where f is evaluated with an expensive-to-
evaluate computer experiment. Further details are in Appendix C. Finally, in Section 5, we
discuss advantages and drawbacks of the current method and propose possible extensions.

2 Profile extrema functions

2.1 Definitions

In this section, we introduce the concept of profile extrema for a continuously differentiable
function γ : D → R, D ⊂ Rd compact. While γ can be any function, in this paper we
mainly consider γ as the posterior mean, a quantile or a posterior realization of a GP. The
first example of profile extrema are coordinate profiles defined below, i.e. 2d univariate
functions describing the extremal behavior of γ for each coordinate.
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Definition 1 (Coordinate profile extrema). For each i ∈ {1, . . . , d}, let us denote with ei
the i-th canonical coordinate vector, then the i-th coordinate profile extrema functions are

P sup
ei
γ = P sup

i γ : η ∈ Eei −→ P sup
i γ(η) := sup

xi=η
γ(x) (1)

P inf
ei
γ = P inf

i γ : η ∈ Eei −→ P inf
i γ(η) := inf

xi=η
γ(x). (2)

where Eei = {η ∈ R : eTi x = η, x ∈ D} and x = (x1, . . . , xi, . . . , xd).

By studying these functions we can split the input space D in simple regions providing
a marginal visualization of Γ . Consider the first coordinate profile sup function P sup

1 γ. If
there exists η∗ such that P sup

1 γ(η∗) < τ , the function γ is below τ for all x ∈ Di,η∗ = {x ∈
D : xi = η∗}. In a symmetric way, if η∗ is such that P inf

1 γ(η∗) ≥ τ , the function γ is above τ
over the whole Di,η∗ . Since P sup

1 and P inf
1 are univariate functions we can evaluate them over

a discretization of Ee1 and with a simple plot we can locate those regions. Profile functions
could also lead to more undetermined situations: for example, for η̃ such that P sup

1 γ(η̃) ≥ τ ,
there exists at least one point x̄η̃ = (η̃, x̄2, . . . , x̄d) ∈ D1,η̃ such that γ(x̄η̃) ≥ τ and we cannot
flag the region D1,η̃ neither as excursion nor as non-excursion. Coordinate profile extrema
are the results of constrained optimization problems over particular projections on the
coordinate axes. Profile extrema functions further generalize this concept.

Definition 2 (Profile extrema). Consider a full column rank matrix Ψ ∈ Rd×p with p < d.
Let EΨ := {ΨTx : x ∈ D} and DΨ,η := {x ∈ D : ΨTx = η}, then the functions

P sup
Ψ γ : η ∈ EΨ −→ P sup

Ψ γ(η) := sup
x∈DΨ,η

γ(x) (3)

P inf
Ψ γ : η ∈ EΨ −→ P inf

Ψ γ(η) := inf
x∈DΨ,η

γ(x), (4)

are called Profile sup and Profile inf functions of γ respectively. The set EΨ is the image
of D under ΨT and DΨ,η is the pre-image of η under ΨT restricted to D.

Since we are interested in visualization here we only consider p ∈ {1, 2} and Ψ as
orthogonal projections because they have a more direct interpretation.

2.2 Analytical example

Let us review the concepts just introduced on an analytical test case. Consider

γ(x) = sin
(
av1

Tx + b
)

+ cos
(
cv2

Tx + d
)

x ∈ [0, 1]2, v1,v2 ∈ R2 (5)

where a, b, c, d ∈ R, v1 = [cos(θ), sin(θ)]T , v2 = [cos(θ + π/2), sin(θ + π/2)]T and θ = π/6.
Figure 1 shows contour lines of γ with parameters chosen as a = 1, b = 0, c = 10, d = 0.

We fix a threshold τ = 0 and we compute the coordinate profile extrema, plotted in
Figure 2. In this case, P sup

1 γ(η) < τ for η ∈ [0, 0.13] and P sup
2 γ(η) < τ for η ∈ [0, 0.25] ∪

[0.70, 0.80]. The second coordinate seems more informative on the excursion: P sup
1 γ flags as

non-excursion a region with volume 0.13 while P sup
2 γ flags a region with volume 0.35. The

5



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Test function and coordinate profile extrema

function
excursion set
excluded regions

Figure 1: Example of 2-dimensional test case
in equation (5). Threshold τ in red dashed.
The regions excluded with coordinate pro-
files are delimited by dotted blue lines.
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Figure 2: Profile extrema functions for γ
(black solid) and their approximation (blue
dashed) from k = 15 points (circles).
Threshold τ = 0, horizontal solid line.

true set has volume 0.127, i.e. the region of non excursion has volume 0.873. This example
shows that canonical directions might not be the most appropriate ones to visualize this
function. Figure 4 shows profile extrema computed along the (oblique) generating directions
v1,v2, i.e. profile extrema in Definition 2 with Ψ = v1 or v2. By using oblique directions
we can say that for x such that v1

Tx ∈ [0, 0.52] ∪ [1.22, 1.37] (area excluded 0.33) and for
x such that v2

Tx ∈ [−0.5,−0.1] ∪ [0.11, 0.54] ∪ [0.71, 0.87] (area excluded 0.68) there is no
excursion. As shown in Figure 3 profile extrema along this direction allow us to exclude a
much larger portion (total area excluded 0.79 versus 0.44 with coordinate profiles) of the
input space. In Appendix E we combine coordinate, oblique and bivariate profiles extrema
for a finer visualization of the excursion set on a 3-dimensional analytical function inspired
by (5).

2.3 Implementation

The value of the profile sup P sup
Ψ γ(η), for a fixed matrix Ψ ∈ Rd×p, is the solution of

a constrained optimization problem. In general, γ is not convex, therefore we are not
guaranteed to achieve a global optimum. We implement a local method to obtain profile
extrema functions for Ψ = ei ∈ Rd, i ∈ {1, . . . , d}, and for a matrix Ψ ∈ Rd×p of rank p.

In the first case we obtain the value for P sup
i γ, for a coordinate i with the follow-

ing procedure. For each η, define a new function γ̃i,η : Rd−1 → R such that γ̃i(z) :=
γ(z1, . . . , zi−1, η, zi, . . . , zd−1) for any z = (z1, . . . , zd−1) ∈ D−i, where D−i is the d − 1 di-
mensional restriction of D without the ith coordinate. We can estimate the value P sup

i γ(η)
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Figure 3: Example of 2-dimensional test case
in equation (5). Regions excluded by oblique
profile extrema delimited by dotted lines.
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Figure 4: Oblique profile extrema functions
for γ (black solid lines) and their approxima-
tion (blue dashed lines) from k = 15 points.

with a L-BFGS-B algorithm. If the gradient of γ is available it is used in the optimiza-
tion, otherwise numerical derivatives are used. This method depends on the starting point
chosen for the optimization. In general we are interested in the evaluation of the functions
P sup
i γ(η) for all η and for all i ∈ {1, . . . , d}. By exploiting the smoothness of γ we re-use the

previously obtained points of optimum as starting point for the subsequent optimizations.
In the second case, we assume that the matrix Ψ has full column rank and that D is a

hyper-cube. The value P sup
Ψ γ(η) is the solution of the constrained optimization problem

maximize γ(x) subject to ΨTx = η, x ∈ D. (6)

We transform (6) in an unconstrained optimization problem first by computing an arbitrary
ξ ∈ Rd such that ΨT ξ = η and then by observing that if x satisfies the equality constraint
then x = ξ + Null(ΨT )z, where Null(ΨT ) ∈ Rd×(d−p) is the matrix representing the null
space of ΨT and z ∈ Rd−p. We can then maximize γ over the d−p dimensional space using
a (hard) barrier function for the hyper-cube inequality constraints. Both ξ and the starting
point(s) for the interior point method are computed by solving auxiliary linear programs.

In both cases, a multi-start optimization procedure provides a more reliable estimate of
the global optimum at an increased computational cost. The two methods are implemented
in the R programming language (R Core Team, 2018) in the package profExtrema, available
on CRAN. The first method uses the L-BFGS-B (Byrd et al., 1995) implementation in the
function optim, base package; the second method solves the auxiliary linear programs with
lpcdd from the package rcdd (a R interface for cddlib, Fukuda (2007)) and optimizes the
barrier function with the BFGS implementation in optim.
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2.4 Approximation of profile extrema functions

The cost of evaluating the profile extrema functions at each η increases as d−p grows larger.
Plots of profile extrema functions with Ψ ∈ Rd×p with p = 1 or 2 require evaluations
over EΨ ⊂ Rp. If the input dimension d is high, each evaluation is a high dimensional
optimization and visualizing the function at sufficient resolution becomes expensive. We
mitigate this issue by approximating P sup

Ψ γ(η) at any η with an interpolation of profile
function evaluations at few space filling points η1, . . . , ηk ∈ EΨ.

Coordinate profile extrema functions can be seen as a special type of optimal value func-
tions. First order characterizations of such objects have been studied in optimization and
perturbation theory, see, e.g., Danskin (1967); Bonnans and Shapiro (1998). In particular,
consider the i-th coordinate profile extrema function P sup

i γ. We can write γ : D|−i×D|i → R
and P sup

i γ(η) = supy∈D|−i γ(y, η). If γ(y, ·) is differentiable with ∇ηγ(y, ·) continuous for

y ∈ D|−i and there exists a unique y∗ = arg max γ(y, η), then ∇ηP
sup
i γ(η) = ∇ηγ(·, ·)|(y∗,η)

.
We can then evaluate P sup

i γ(η) and ∇ηηP
sup
i γ(η) at few space filling points η1, . . . , ηk, for

a small k > 0, and interpolate the value P sup
i γ(η) at any η ∈ EΨ using a first order approx-

imation. For arbitrary Ψ, we approximate P sup
Ψ γ(η) at any η with cubic splines or kriging

interpolators as they do not require ∇ηP
sup
Ψ .

Below we present an example for the case p = 1 with a cubic spline approximation.
The blue dashed lines in Figures 2, 4 show the approximation of coordinate and oblique
profile extrema functions, the exact functions are also plotted in black solid lines. We
select k = 15 points η1, . . . , ηk ∈ Eei with Latin hyper-cube sampling, the approximate
profiles at any point are computed with a cubic spline regression from k exact calculations.
Exact coordinate profiles P sup

i , P inf
i , for i = 1, 2 over a grid of equispaced 100 points on [0, 1]

require 0.25 seconds and oblique profiles P sup
vi
, P inf

vi
, i = 1, 2 require 0.64 seconds on a laptop

with 2.6 GHz Intel Core i5-7300U CPU. On the same laptop, cubic spline approximations
plotted on the same grid require 0.04 seconds for coordinate profiles (0.13 oblique). On this
example, the maximum absolute median errors achieved with the approximation of P infγ,
P supγ are 0.07% and 0.54% for coordinate profiles and 0.19% and 5.08% for oblique profiles.
The number of approximation points, k, is an important parameter for the approximation,
the choice of k boils down to a trade-off between computational time and precision. For
1-dimensional profile extrema (p = 1) the default choice implemented is k = 10

√
d. When

the profile functions are smooth this heuristics often leads to good results, however it is
generally better to compare different values for k. Cubic splines are implemented here only
for p = 1, for p = 2 we use kriging.

3 Uncertainty quantification for profile extrema

3.1 Profile extrema for expensive-to-evaluate functions

In the previous section we introduced profile extrema functions to visualize excursion sets
of arbitrary functions. This method, however, requires performing potentially very high
numbers of function evaluations which can be prohibitive in many computer experiments,
as, for example, in the motivating application of Section 4. We therefore rely on a Gaus-
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sian process emulator based on few evaluations of the expensive function. We consider
a design of experiments (DoE) with n points Xn ∈ Dn and the corresponding function
evaluations yn as described in Section 1. We select a prior GP (Zx)x∈D ∼ GP (µ,K) with
mean µ(x) =

∑m
j=1 cjhj(x), where c = (c1, . . . , cm) is a vector of unknown coefficients and

hj are known basis functions. The covariance kernel is typically selected from a stationary
parametric family, e.g. Matérn family, and its hyper-parameters are estimated with maxi-
mum likelihood. Here we use the R package DiceKriging (Roustant et al., 2012) for fitting
and prediction. Given the data and hyper-parameters the posterior mean and covariance
kernel can be computed with the following universal kriging (UK) equations.

µn(x) = h(x)T ĉ + K(x, Xn)K(Xn, Xn)−1 (yn −H ĉ) (7)

Kn(x,x′) = K(x,x′)− K(x, Xn)K(Xn, Xn)−1K(x′, Xn)T+ (8)

λ(x, Xn)(HTK(Xn, Xn)−1H)−1λ(x′, Xn)T , for x,x′ ∈ D with

λ(x, Xn) = (h(x)T − K(x, Xn)K(Xn, Xn)−1H) and

ĉ = (HTK(Xn, Xn)−1H)−1HTK(Xn, Xn)−1yn

where h(x) = (h1(x), . . . , hm(x))T , H = [hj(xi)]i=1,...,n,j=1,...,m, K(x, Xn) = (K(x,x1), . . . ,K(x,xn)),
for x ∈ D and K(Xn, Xn) = (K(xi,xj))i,j=1,...,n ∈ Rn×n. If m = 1 and h1 ≡ 1 we have ordi-
nary kriging (OK) equations.

Once we have fitted the GP, profile extrema functions can be directly computed with the
posterior mean, leading to a visualization of a plug-in estimate Γ̂ = {x ∈ D : µn(x) ≥ τ}
for Γ . The GP assumption allows us to also quantify the uncertainty on profile extrema
functions, at fixed hyper-parameters. In particular, in the next section, we develop a
Monte Carlo method that exploits approximate posterior realizations to obtain point-wise
confidence intervals for P sup

ei
f and P inf

ei
f , for i = 1, . . . , d.

3.2 Approximation for posterior field realizations

Consider the GP (Zx)x∈D, we denote with Zx(ω) a realization of the process at x, for
ω ∈ Ω, the underlying probability space. We are interested in posterior realizations of Zx

given ZXn = yn. A brute force approach would involve simulating s times the field over a
space filling design on D and then evaluating the profile extrema function by taking the
discrete extrema. This procedure however is very costly as it requires s exact simulations
of the field over many points and its results strongly depend on the chosen discretization.
Following Azzimonti et al. (2016) we use an approximating process in order to reduce the
computational cost. We consider the sequence of points G = (g1, . . . ,g`) ∈ D` and the
approximating process of Z based on G

Z̃x = a(x) + bT (x)ZG, x ∈ D, (9)

where a : D → R is a trend function and b : D → R` is a continuous vector-valued
function of deterministic weights, and ZG = (Zg1 , . . . , Zg`) is the `-dimensional random
vector given by the values of the original process Z at G. Here we select a(x) = µ(x),
b(x) = K(G,G)−1K(x, G)T where K(x, G) = (K(x,g1), . . . ,K(x,gl)) ∈ R1×` and K(G,G) =
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[K(gi,gj)]i,j=1,...,` ∈ R`×`. In what follows, the points G are called pilot points, borrowing
the term from geostatistics (see,e.g. Scheidt, 2006, Chapter 4.2), and here they are selected
with Algorihtm B from Azzimonti et al. (2016). The number of pilot points ` can be
empirically chosen by stopping when the optimum of Algorithm B’s objective function
stabilizes around a value. In moderate dimensions, usually ` between 50 and 150 leads to
distributions close to the true one. The bound introduced in section 3.4 and, in particular,
the related tightness indicator, equation (13), can also be used to choose the number of pilot

points. For a fixed ω ∈ Ω, Z̃x(ω) is a function of x that has an analytical expression and
only requires posterior simulations of the original field Z at G and linear operations with
pre-calculated kriging weights. Moreover the gradient of Z̃x(ω) with respect to x is known,

see Appendix B, therefore we compute profile extrema for each realization, P sup
Ψ Z̃x(ω) and

P inf
Ψ Z̃x(ω), with the algorithms introduced in Section 2.3.

3.3 Analytical example under uncertainty

Let us consider the analytical example illustrated in Section 2.2. We evaluate the function
in Equation (5) only at n points and we approximate it on a dense grid 100×100 with a GP.
We consider two DoE with n = 20 and n = 90, both obtained with (randomized) maximin
Latin hypercube sampling (R package DiceDesign, Dupuy et al. (2015)) and we choose a
prior GP with constant mean and Matèrn covariance kernel with ν = 5/2. We estimate
the covariance hyper-parameters with maximum likelihood and the constant mean value
with the ordinary kriging formulae. The model with n = 20 evaluations provides a rough
approximation for f , while the model with n = 90 is an accurate reconstruction. The Q2

criterion1 computed over a dense grid of Ntest = 10000 test data is equal to 0.86 for the
posterior mean with n = 20 and 0.99 for n = 90. For both models, we consider ` = 80
pilot points and we compute the point-wise confidence intervals for the profile extrema on
the mean with Monte Carlo simulations. Figure 5 shows the posterior GP mean obtained
from n = 20 evaluations of the function in Equation (5), the regions delimited by the
oblique profile extrema on the mean along the directions v1,v2 and its 90% point-wise
confidence intervals for the threshold τ = 0. Figure 6 shows the profile extrema for the
mean, the profile extrema for s = 150 approximate realizations of the posterior process
and the empirical point-wise 90% confidence intervals (dark shaded tube, red). Figure 8
shows profile extrema for the mean on the model with n = 90 observations. In this case
the confidence intervals (dark shaded tube, red) are much tighter indicating a smaller
uncertainty.

3.4 Bounds for the approximation

The approximating process Z̃ does not provide proper probabilistic statements for P sup
Ψ Z, P inf

Ψ Z
as it is based on the `-dimensional random vector ZG. However since the distribution of
the error process Z− Z̃ can be expressed in closed form, we can control the approximating
error with the following probabilistic bound. Proofs are in Appendix A.

1Q2 = 1−
∑Ntest

j=1 (µn(xj)− ytestj )2/(
∑Ntest

j=1 (ytestj − ytest)2) with ytest = 1/Ntest

∑Ntest

j=1 ytestj
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Excursion region (τ = 0, shaded red), re-
gions selected by the profile extrema on mean
(solid) and on 95%− 5% quantiles (dashed).
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Figure 6: Profile extrema functions (n = 20,
τ = 0): mean (black, solid), breakpoints (ver-
tical green; mean: solid, quantiles: dashed),
quantiles (90%, black dashed, CI dark red
tube), upper-lower bound (light blue tube).

Theorem 1. Consider a Gaussian process (Zx)x∈D ∼ GP (µ,K), the approximating process

Z̃ of Z based on the points G (Equation (9)) and T ⊂ D, then for any u > µ∆̃
T

Pr

(∣∣∣∣sup
x∈T

Zx − sup
x∈T

Z̃x

∣∣∣∣ > u

)
≤ 2 exp

(
−(u− µ∆̃

T )2

2(σ∆̃
T )2

)
, (10)

where

µ∆̃
T = sup

x∈T
|µ∆̃(x)| and (σ∆̃

T )2 = sup
x∈T

K∆̃(x,x) with (11)

µ∆̃(x) = E[Zx − Z̃x] = µ(x)− a(x)− bT (x)µ(G) x ∈ T

K∆̃(x,y) = K(x,y)− K(y, G)b(x)− K(x, G)b(y) + bT (x)K(G,G)b(y), x,y ∈ T

If the approximating process Z̃ is unbiased then µ∆̃(x) ≡ 0 and the inequality in (10)
is valid for any u > 0.

Corollary 1. Consider the profile sup random functions defined as

P sup
Ψ Z̃(η) := sup

{x∈D:ΨTx=η}
Z̃x and P sup

Ψ Z(η) := sup
{x∈D:ΨTx=η}

Zx, η ∈ EΨ,
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gions selected by the profile extrema on mean
(solid) and on 95%− 5% quantiles (dashed).
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Figure 8: Profile extrema functions (n = 90,
τ = 0): mean (black, solid), breakpoints (ver-
tical green; mean: solid, quantiles: dashed),
quantiles (90%, black dashed, CI dark red
tube), upper-lower bound (light blue tube).

where Z̃ is an unbiased approximate process in the form of Equation (9). For any η∗ ∈ EΨ

and α ∈ (0, 1)

Pr
(
P sup

Ψ Z(η∗) ≤ u+
α

)
≥ 1− α, with u+

α = ũ+
β +

√
2
(
σ∆̃
T

)2

log

(
2

α− β

)
and

Pr
(
P sup

Ψ Z(η∗) ≥ u−α
)
≥ 1− α, with u−α = ũ−β −

√
2
(
σ∆̃
T

)2

log

(
2

α− 2β

)
(12)

with (σ∆̃
T )2 as in (11), T = {x ∈ D : ΨTx = η}, α > 2β and ũ+

β , ũ
−
β are the 1−β, β quantiles

for P sup
Ψ Z̃(η∗) respectively. Equations (12) imply Pr

(
P sup

Ψ Z(η∗) ∈ [u−α , u
+
α ]
)
≥ 1− 2α.

In practice the quantiles ũ±β in equation (12) are estimated with sample quantiles ̂̃u±β
from the realizations of Z̃ and u±α are estimated by plugging-in ̂̃u±β in equation (12).

Figures 6 and 8 show the conservative bound in equation (12) on P sup
i Z (skyblue, lightly

shaded tube) and P inf
i Z (seagreen, lightly shaded), i = 1, 2, on the example presented in

Section 3.3. The uncertainty is much smaller with n = 90, however the bound is still very
conservative. An indicator for the bound tightness is the quantity (σ∆̃

T )2(η, `), for each
η ∈ EΨ. Here we explicit the dependency of the approximation on `. In particular, we

12



study the integral of this map, i.e.

I(σ∆̃
T )2(`) :=

∫
EΨ

(σ∆̃
T )2(η, `)dη (13)

Appendix D shows a comparison of I(σ∆̃
T )2 from the example in figure 8, as a function of

`. Figure 21, in particular, shows exponential decrease in I(σ∆̃
T )2 as ` grows to 80.

3.5 Discussion on method’s parameters

Profile extrema functions for an expensive-to-evaluate function require the user to set sev-
eral parameters summarized in Table 4, Appendix D. The DoE selected to train the GP
model has the biggest influence on the profile extrema uncertainty. Figures 6 and 8 show
that a GP model trained on more function evaluations, reduces the uncertainty on pro-
files. The bounds on profile extrema, equation (12), however, are also controlled by two
parameters chosen by the user given a fixed DoE: the number of pilot points, `, and of GP
realizations, s. The number of posterior GP realizations, s, controls the accuracy of the
empirical quantiles ũ±β . More importantly, the number of pilot points ` controls directly
the tightness of the bounds in equation (12). This parameter plays a more prominent role

in uncertainty quantification as more pilot points lead to a smaller σ∆̃
T and a tighter bound,

see, e.g., Figure 21, Appendix D.

4 Motivating application: coastal flooding

4.1 Motivation and study case

Coastal flooding models experienced recent progresses opening new research and applica-
tions perspectives. However, their computational cost (> hours) hinders their use when a
large number of simulations is required for estimating the excursion region corresponding
to the critical forcing conditions leading to inundation or when forecast is needed (Rohmer
and Idier, 2012; Idier et al., 2013).

We focus here on coastal flooding induced by overflow and we consider the Boucholeurs
area (French Atlantic coast, see Figure 9). This area is located close to La Rochelle and
was flooded during the 2010 Xynthia storm event. This event was characterized by a high
storm surge (> 1.5 m at La Rochelle tide gauge) in phase with a high spring tide (Bertin
et al., 2014). Here, we focus on these primary drivers (tide and storm surge) and on how
they affect the resulting flooded surface (Y , in square meters).

4.1.1 The forcing conditions

The offshore forcing conditions correspond to the tide and storm surge temporal evolution
(see Figure 10a) are denoted with x = (T, S, t0, t+, t−). They are parametrized as follows:

• the tide is simplified by a sinusoidal signal parametrised by its high tide level T ∈
[0.95 m, 3.70 m], (see Figure 10a);
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Figure 9: Study site location (left) and computational domain limits (right, in white) and
location of the forcing conditions x (right, in blue).

• the surge signal is assumed to be described by a triangular model (see Figure 10a)
using four parameters: the peak amplitude S ∈ [0.65 m, 2.50 m], the phase difference
t0 ∈ [−6, 6] hours, between the surge peak and the high tide, the time duration of
the raising part t− ∈ [−12.0,−0.5] hours, and the falling part t+ ∈ [0.5, 12.0] hours.

4.1.2 The numerical model

The numerical modelling of the coastal flood relies on the MARS model (Lazure and Dumas,
2008). This finite-difference model solves the shallow-water equations and was originally
designed to compute regional coastal hydrodynamics, e.g., tide and storm induced water
level and currents. The MARS model has here been adapted to account for the specificities
of local coastal flooding processes: hydraulic processes around connections like culverts
and weirs, coastal defence breaching. This model has been implemented on the study site
(white box in Figure 9) with a spatial resolution of 25 m and a total number of mesh
cells of >39,000. The land cover effect on the flood is taken into account by using a
spatially varying friction coefficient. The different hydraulic connections (e.g., the hydraulic
culverts below the roads, dike, railway,) are taken into account in the modeling. The forcing
conditions (time series deduced from the parameters x, Figure 10a) are uniform over the
open boundaries of the domain in blue on Figure 9. A single model run takes about 30-
60 minutes of computation using a single CPU. For more details on the study site, the
model set-up and validation, see Rohmer et al. (2018). It should be noted that when wave
overtopping is dominant in the flooding processes, other types of models should be used
(Le Roy et al., 2015), with computation times 2 orders of magnitude larger. An overflow
case allows setting up statistical developments which will useful also for the more expensive
models. Figure 10b provides examples of the inundation depth (H) computed in each cell
for given forcing conditions x, as well as the resulting flood surface value (Y ). We consider

the threshold values τ
(Y )
1 = 1.2×106 m2, . . . , τ

(Y )
4 = 6.5×106 m2 introduced in Figure 10b.
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Figure 10: (a) Schematic representation of the tide and surge temporal signals and the
different parameters describing them. (b) Maps of inland water height for given values of
the x parameters, and deduced Y value of flood surface (in square meter).

4.1.3 Gaussian process model

We consider a rescaled input space D = [0, 1]5 and the function f̌ : D ⊂ R5 → R+ with
Y = f̌(x) for each x = (x1, . . . , x5) = (T, S, to, t+, t−) ∈ D. In the remainder we keep the
notation (T, S, to, t+, t−) for the rescaled input. We are interested in estimating

Γ = {x ∈ D : f̌(x) ≥ τ}, where τ = τ
(Y )
k , for k = 1, . . . , 4. (14)

We consider the square root transformed output data f(x) =
√
f̌(x) =

√
Y for x ∈ D

and the square root thresholds τk =

√
τ

(Y )
k . This transformation was chosen, after fitting

the model on different scales for Y , because it provided the best cross-validation metrics.
We fix an initial DoE Xn ∈ Dn, with n = 200 points obtained by evaluating the

function f on the first 500 points of the 5-d Sobol’ sequence and by selecting the first
n = 200 points leading to a flood of any magnitude. The evaluations f(Xn) at Xn are
denoted with yn ∈ Rn. We consider a GP model with a tensor product prior Matérn
covariance kernel ν = 3/2 and prior mean of the form

µ(x) = c0 + c1x1 + c2x2 + c3x
2
3 + c4x4 + c5x5 = c0 +

5∑
j=1

cjhj(x). (15)

The covariance kernel hyper-parameters are estimated with maximum likelihood from
(Xn,yn) and the posterior mean and covariance kernel are obtained with Equations (7), (8).
The GP and the basis functions hj were selected using expert-based information achieving
a Q2 = 0.958. A comparison of different model fits is shown in Appendix C.
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We estimate Γ from the posterior mean with

Γ̂n,τk = {x ∈ D : µn(x) ≥ τk}, for k = 1, . . . , 4.

4.2 Procedure overview

3. Bivariate visualization
 via profile extrema

- Using canonical or oblique directions
- Profile extrema on GP mean (Sect. 3.1)
- With Uncertainty estimates (Sect. 3.2) 
- Probabilistic bounds (Sect. 3.4)

1. Analysis of computer 
experiments

- Define a DoE 
(expert-based knowledge, sampling techniques)
- Fit a GP (Sect. 3.1)
- GP model validation (cross-validation)

2. Univariate visualization 
via profile extrema

- Using canonical or oblique directions
- Profile extrema on GP mean (Sect. 3.1)
- With Uncertainty estimates (Sect. 3.2)
- Probabilistic bounds (Sect. 3.4)

2’. Pilot points tuning
- Tighter bound for profile extrema 
UQ (Sect. 3.2, 3.5 and App. D)

3’. Pilot points tuning
-  Tighter bound for profile extrema 
UQ  (Sect. 3.2, 3.5 and App. D)

Identify 
regions of 
possible 

excursion 
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Figure 11: Flow chart for the procedure used in the test case.

In the following sections profile extrema are used to explore visually estimates for Γ
and to quantify their uncertainty. The proposed procedure is summarized in Figure 11:

step 1: design of experiment and emulation. Select a DoE Xn (n = 200) and run
the MARS model (numerical simulator) to compute the flooded area Yn; Fit a GP
(4.1.3) on Xn, Yn, evaluate the emulation quality with leave-one-out-cross validation.

step 2: univariate profile extrema. Compute coordinate profile extrema (i.e. along the
canonical directions) on the GP mean and give a first visual indication on the ex-
cursion set. Uncertainty quantification on profile extrema (Section 3) guides expert
knowledge in identifying possible regions of excursion. A comparison of several profile
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extrema plots with a different number of pilot points ` increases the understanding
of profile functions uncertainty without additional numerical simulator runs. The
conclusions drawn from 1d profile extrema can be used to refine the DoE in step 1
and ultimately decrease the uncertainty on the excursion set. This first analysis, for
example, shows that some offshore conditions do not influence the excursion. Oblique
profile extrema could be used in this phase, see, e.g., section 2.2, if more informative
directions are known in advance.

step 3: bivariate profile extrema. Explore combinations of input variables that lead
to excursion with bivariate profile extrema functions. Orthogonal projections can
potentially be used as shown in Section 2.2 on the analytical example. Similarly as
for step 3, refinements of the DoE in the regions of interest can be performed.

4.3 Results on coastal flooding test case

4.3.1 Univariate profile extrema

We start the analysis of Γ̂n,τk , for the thresholds τ1, . . . , τ4, with coordinate profile extrema
on the posterior GP mean. The uncertainty is visualized with posterior quantiles of the
profile extrema (Section 3.2) and with the upper and lower bound of equation (12).

Figure 12 shows the coordinate profile extrema for the posterior mean of the process
based on the design with n = 200 points described in Section 4.1.3, with the universal
kriging prior mean defined in Equation (15) and the lowest and highest threshold τ1, τ4.

Let us consider τ4 = 2549.5 =
√

6.5e6, the highest threshold in dark red. Coordinate
profile extrema on the posterior mean tell us that if T < 0.57, there is no excursion
independently of the other coordinates. The 90% point-wise confidence interval is based
on s = 600 approximate posterior realizations generated with ` = 300 pilot points. The
point-wise confidence intervals identify a possible (90%) region of non-excursion {x ∈ D :
T ∈ [0, λ] with λ ∈ [0.52, 0.6]}. If we consider the variable S, a possible region of non-
excursion (above τ4) is {x ∈ D : S ∈ [0, λ], λ ∈ [0.28, 0.43]}. This region does not exist
for low threshold values (< τ2), thus indicating that small values of surge peak only play a
role in moderate flooding events, i.e. < τ2. Similar assessments are available for the other
coordinates and the other thresholds, see Table 3 in Appendix C for a summary. Note
that the variables t+, t− do not bring information on the excursion regions as P inf

e4,5
γn(η)

and P sup
e4,5
γn(η) are consistently below and above the thresholds τ1, τ4 respectively. The

bounds on the approximating process from equation (12), plotted as wide light blue tube,
show that there is still uncertainty on this assessment. In fact, by accounting also for the
approximation uncertainty, the possible region of non-excursion becomes {x ∈ D : T ∈
[0, 0.19]}. The tightness of the bound is evaluated by looking the integrated variance of
the difference, i.e. equation (13). We chose ` = 300 as the resulting integrated variance is
small enough and at the same time the method is not computationally too expensive. For
example the average integrated variance over all dimensions is 41.6% and 18.3% smaller
than with ` = 37 for P inf and P sup respectively. On the other hand, the computational
time for (σ∆̃

T ) grew from 302 seconds (` = 37) to 1595 seconds for ` = 300. More details in
Appendix C.
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Figure 12: Coordinate profiles for 5-dimensional test case. Excursion thresholds (red, light
τ1, dark τ4), breakpoints P sup

i /P inf
i on mean (vertical green lines) and on 95%−5% quantiles

(vertical green lines, dashed), CI dark red tube, bound range light blue tube.

4.3.2 Bivariate profile extrema

We now focus on the combination of variables T, S and T, to, whose more prominent role on
the excursion was outlined by the coordinate profile extrema, and we consider τ = τ1. We
explore which values of these combinations lead to excursion with bivariate profile extrema
functions. For example, the profile extrema for T, S is obtained with

Ψ =

[
1 0 0 0 0
0 1 0 0 0

]T
.

We compute the empirical quantile maps and the bound with ` = 300 and s = 420 approx-
imate posterior realizations, see Section 3.2. Figures 13 (a,b,c) show the contour lines of
P sup

Ψ and P inf
Ψ for the posterior GP mean based on the DoE described in Section 4.1.3. The
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background colors indicate different heuristic measures of uncertainty: (a) the weighted
inter-quantile range (i.e. the empirical inter-quantile range for profile extrema maps if the
threshold is between the upper and lower quantile or zero, otherwise); (b) the upper-lower
bound range (i.e. the difference between the upper and lower bound in (12) if τ is between

them, zero otherwise); (c) the standard deviation of the difference (σ∆̃
T )(η), η ∈ EΨ.

Let us start by analyzing P sup
Ψ , P inf

Ψ on the posterior mean, shown in the contour lines
in Figures 13. The map on the left suggests that the region below the critical dashed red
contour can be excluded, i.e. the region is outside the excursion. In a symmetric way, P inf

Ψ

(Figure 13, right) suggests that high values for T (> 0.8) along with values for S in the
range [0.05, 0.7] should lead to an excursion (i.e. flood). The bivariate profile extrema for
T, to in Figure 19, instead, show (left) a non-flood region on the left of the critical contour
and suggest (right) excursion in the region T > 0.95, to ∈ [0.42, 0.68]. These conclusions
are consistent with our physical knowledge, except for the excursion domain on T, S in
Figure 13 (right). Indeed, an excursion domain bounded by maximum surge does not have
a physical explanation because Y should increase with S, with no maximum bound of S.

The above analysis is based only on P sup and P inf for the posterior GP mean and,
since the DoE is small and non-adaptive, there could be high uncertainty in some parts
of the input domain. The indicators plotted as background colors allow us to quantify
this uncertainty. Both the weighted inter-quantile range and the bound range for P inf

Ψ in
Figure 13 (right) are high the region of large T and S. Moreover, as shown in Figure 13(c),

the values of (σ∆̃
T ) are not high in that region indicating that the uncertainty due to the

approximating process is not very high. Those insights collectively suggest that more
function evaluations should be added in the P inf

Ψ uncertain region.

4.3.3 Summary of results

Coordinate profile extrema functions on the coastal flooding test case enabled: (i) to high-
light the major role of the high tide level, T , whatever the considered thresholds, i.e., for
small to large flooding events; (ii) to highlight the key role of the surge peak, S, only
for moderate thresholds i.e., moderate flooding events; (iii) to highlight the moderate role
of the phase difference to alone; (iv) to exclude a strong influence of t− and t+ alone for
the excursion of the response whatever the considered thresholds. Moreover by studying
bivariate profile extrema we could: (i) exclude regions where T and S are simultaneously
small (e.g. T < 0.4 and S < 0.6); (ii) highlight the role of phase difference to and tide T
combined with a possible excursion in the region T > 0.95, S ∈ [0.42, 0.68]. Furthermore,
the comparison of approximation error indicators (Figure 13(c)) with uncertainty measures
on profile extrema (Figure 13(b)) enabled us to nuance the results and to track the main
uncertainty source. In the coastal flooding test case, the uncertainty unlikely stems from
the approximating process, but rather from the lack of function evaluations.

5 Discussion

In this work we introduced a visualization technique, based on profile extrema functions,
for excursion regions of expensive-to-evaluate functions. The main idea is to study the con-
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Figure 13: Bivariate (T, S) profile extrema mean (contour lines). Threshold τ1 dashed red
line, Xn locations (crosses, green above τ1). Background: (a) weighted inter-quantile range
(95%− 5%), (b) bound range (eq. (12)), (c) approximation error standard deviation.
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strained optima of the functions on lower dimensional subspaces resulting from projections
on lines or planes. By plotting profile extrema functions we can select regions of interest.
If the function is expensive to evaluate, a GP model is used to emulate the function and we
showed how profile extrema can be computed on the GP model. In this case the conclu-
sions strongly depend on the chosen GP model and, as we show in Appendix C, the profile
extrema uncertainty is affected by the modeling choices.

In the coastal flooding test case, as sketched in Figure 11, we selected directions of inter-
est from coordinate profiles. For example, the profile sup along the direction of coordinate T
is below the threshold of interest for some values. This indicates that T is a direction of
interest for the excursion phenomena. This procedure was repeated for each coordinate.
In test cases where canonical directions are not meaningful we could explore the excursion
by looking at oblique directions as we did in the analytical example in Section 3.3.

The bivariate profile extrema maps in Figure 13 also suggest a principled way to develop
adaptive design of experiments that sequentially reduce uncertainties. For example, we
could select the next evaluations as the minimizers of the integrated (or maximum of)

(σ∆̃
T ). Such criteria should be analytically tractable and could lead to adaptive designs

similar to classic IMSE (MSE) strategies, Sacks et al. (1989). Alternative criteria could be
obtained by minimizing bound-range uncertainties (Figure 13(b)), as they provide direct
information on the excursion, however their tractability is still unclear.

Profile extrema functions require a continuously differentiable function on a compact
domain. If the domain is not compact, then the optimization in the definition of profile
extrema might not be well posed. In case of an open domain with a probability distri-
bution on the inputs, profile extrema functions could be extended by using quantiles in
place of the maximum (Roy and Notz, 2014). Profile extrema functions could be extended
to non-linear subsets, however it is technically not straightforward and it might result in
visualizations that are much harder to interpret. The overall approach developed here is
a one-step procedure, and it could become part of an exploratory work flow. As shown in
Appendix E, coordinate profile extrema, oblique and bivariate profiles can be combined to
convey more information on the excursion set in simpler terms. A possible future exten-
sion could involve a treed procedure where the input space is restricted with constrained
coordinate profile functions. Oblique coordinate profiles, i.e. profiles along non-canonical
directions, require the user to choose which directions to explore. This choice could be
driven by expert knowledge, such as in the motivating test case presented here. However,
when such knowledge is not available, we could envisage a procedure following similar steps
to projection pursuit (Cook et al., 1995) where we obtain the most informative direction.
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réponses non-régulières par krigeage et plans d’expériences. PhD thesis, Université Louis
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A Proofs

Theorem 1. Consider the GP regression set-up as described in Section 4.1.3. For ease of
notation let us denote the posterior process as (Zx)x∈T ∼ GP (µ,K), where we drop n, the
number of observations as it is fixed in this section. Recall that the proposed approximate
field (Z̃x)x∈T is defined as follows

Z̃x = a(x) + bT (x)ZG x ∈ T,

where a : T → R is a continuous trend function, b : T → R` is a continuous vector-valued
function of deterministic weights, G = (g1, . . . ,g`) ∈ T ` is a fixed sequence of points in T
and ZG = (Zg1 , . . . , Zg`)

T is a `-dimensional random vector. Let us consider the difference

process (∆̃x)x∈T , defined as ∆̃x := Zx − Z̃x, for each x ∈ T . The mean function and

covariance kernel of ∆̃ are

µ∆̃(x) = E[Zx − Z̃x] = µ(x)− a(x)− b(x)Tµ(G) x ∈ T

K∆̃(x,y) = K(x,y)− K(y, G)b(x)− K(x, G)b(y) + bT (x)K(G,G)b(y) x,y ∈ T
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First of all notice that

Pr

(∣∣∣∣sup
x∈T

Zx − sup
x∈T

Z̃x

∣∣∣∣ > u

)
≤ Pr

(
sup
x∈T
|∆̃x| > u

)
(16)

Let us now consider the centred process (∆̃C
x )x∈T := (∆̃x − µ∆̃(x))x∈T . We have that

Pr

(
sup
x∈T
|∆̃C

x | > u

)
≤ 2Pr

(
sup
x∈T

∆̃C
x > u

)
≤ 2e−u

2/2(σ∆̃
T )2

, u > 0 (17)

where (σ∆̃
T )2 = supx∈T E[(∆̃C

x )2] = supx∈T K
∆̃(x,x). The first inequality follows from the

symmetric distribution of the centered field ∆̃C
x and the second is the Borell-TIS inequality,

see, e.g., Adler and Taylor (2007), Chapter 2 for more detail.
Since we have

sup
x∈T
|∆̃x| ≤ sup

x∈T
|∆̃C

x |+ sup
x∈T
|µ∆̃(x)| (18)

then following Equations (16), (17), (18), if u > µ∆̃(x)

Pr

(∣∣∣∣sup
x∈T

Zx − sup
x∈T

Z̃x

∣∣∣∣ > u

)
≤ Pr

(
sup
x∈T
|∆̃C

x |+ sup
x∈T
|µ∆̃(x)| > u

)
≤ Pr

(
sup
x∈T
|∆̃C

x | > u− sup
x∈T
|µ∆̃(x)|

)

≤ 2 exp

−
(
u− supx∈T |µ∆̃(x)|

)2

2(σ∆̃
T )2

 .

If Z̃ is an unbiased approximation for Z, then µ∆̃(x) = 0 and the inequality is valid for
any u > 0.

Proof of Corollary 1. Let us denote with A = P sup
Ψ Z(η∗) and B = P sup

Ψ Z̃(η∗). By using
Theorem 1 we have that for u > 0

Pr(|A−B| ≥ u) ≤ 2e
− (u−µ∆̃

T )2

2(σ∆̃
T

)2

Moreover

Pr(A ≤ u+
α ) = 1− Pr(A ≥ u+

α ) = 1− Pr(A−B +B ≥ u+
α )

= 1− Pr(A−B +B ≥ u+
α | B ≥ ũ+

β )Pr(B ≥ ũ+
β )

− Pr(A−B +B ≥ u+
α , B ≤ ũ+

β )

≥ 1− β − Pr(A−B + ũ+
β ≥ u+

α , B ≤ ũ+
β )

≥ 1− β − Pr(|A−B| ≥ u+
α − ũ+

β , B ≤ ũ+
β )

≥ 1− β − 2e
−

(u+
α−ũ+

β−µ
∆̃
T )2

2(σ∆̃
T )2
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By solving for u+
α in β+2e

−
(u+
α−ũ+

β−µ
∆̃
T )2

2(σ∆̃
T )2

= α under the constraint u+
α > ũ+

β , we obtain (12).
For the other side notice that

Pr(A ≥ u−α ) ≥ Pr(B ≥ ũ−β , |A−B| ≤ ũ−β − u
−
α ) = 1− Pr(B > ũ−β , |A−B| ≥ ũ−β − u

−
α )

− Pr(B ≤ ũ−β , |A−B| ≥ ũ−β − u
−
α )− Pr(B ≤ ũ−β , |A−B| ≤ ũ−β − u

−
α )

≥ 1− Pr(|A−B| ≥ ũ−β − u
−
α )− β − β ≥ 1− 2β − 2e

−
(u−α−ũ−β )2

2(σ∆̃
T )2

By solving for u−α in 2β+2e
−

(u−α−ũ−β )2

2(σ∆̃
T )2

= α under the constraint u−α < ũ−β , we obtain (12).

B Gradient of Z̃x with respect to x

We are interested in the approximating process for the posterior distribution of Z con-
ditioned on (Xn,yn). If a,b are chosen as the posterior mean and the kriging weights

respectively, then we can write Z̃ as

Z̃x = Λ(x)T
[

yn
ZG

]
with

Λ(x) = K−1
n+`

(
Kn+`(x) +Hn+`KH

(
h(x)−HT

n+`K
−1
n+`Kn+`(x)

))
where KH =

(
HT
n+`K

−1
n+`Hn+`

)−1
, Kn+` = K(An+`, An+`), Kn+`(x) = K(x,An+`),

Hn+` = [hj(An+`)]j=1,...,m ∈ R(n+`)×m and An+` = [XT
n , G

T ]T ∈ R(n+`)×d

Then ∇xZ̃x = ∇xΛ(x)T
[

yn
ZG.

]
and it suffices to compute the gradient of Λ and

Kn+`∇xΛ(x) =
(
∇xK(x, An+`) +Hn+`KH

(
∇xh(x)−HT

n+`K
−1
n+`∇xK(x, An+`)

))
with ∇xK(x, An+`) = [∇xK(x, a1), . . . ,∇xK(x, an+`)]

T ∈ R(n+`)×d

and ∇xh(x) = [∇xh1(x), . . . , hm(x)] ∈ Rm×d.

C Full results on flooding test case

In this section, we report more details on the GP model used in the flooding test case in
Section 4 and we show the profile extrema functions for all thresholds τ1, . . . , τ4.

In table 1 we compare different GP models according to two metrics: Q2 on leave-one-
out predictions and log likelihood (logLik). According to those metrics the prior mean
function in equation 15 (universal kriging, UK) results in better fits than a constant prior
mean (ordinary kriging, OK). On the other hand the difference between using a smoothness
parameter ν = 3/2 or ν = 5/2 is very small. Here we chose the parameter ν = 3/2 as it
leads to standardized model residuals that have a distribution closer to the normal one.
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Table 1: Comparison of different GP models for flooding test case. OK: constant mean;
UK: mean function as in equation 15. Best values in bold.

Matern 3/2, OK Matern 3/2, UK Matern 5/2, OK Matern 5/2, UK
Q2 0.95 0.96 0.94 0.96

logLik -1, 406.02 -1,363.73 -1, 410.71 -1, 365.32
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Figure 14: Coordinate profiles on GP model
with Matérn ν = 3/2 and constant mean.
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Figure 15: Coordinate profiles on GP model
with Matérn ν = 5/2 and constant mean.

If the model fit is worse, then we obtain coordinate profiles with larger confidence bands
and thus more uncertainty. We checked this assumption by computing coordinate profile
extrema on each of the models in Table 1. Figures 14 and 15 show the first two coordinate
profile plots for Matérn 3/2, OK and Matérn 5/2, OK. A quick glance already shows that
the confidence bands are larger than in Figure 12. We further compared the integrated
inter-quantile range for each model and we ranked them in increasing order. The average
ranks over all coordinates for profile sup and profile inf are shown in Table 2. Note how the
chosen model (Matérn 3/2 model with UK prior mean) has an average rank 1.8 for P supf
and 1.4 for P inff .

Table 2: Average rank of integrated inter-quantile range for coordinate profile extrema.

Matern 3/2, OK Matern 3/2, UK Matern 5/2, OK Matern 5/2, UK
P supf 2.4 1.8 3 2.8
P inff 3.8 1.4 2.8 2

Let us now focus on the chosen model: Matérn ν = 3/2 with prior mean function as
described in equation 15. Table 3 summarizes the intervals selected with the coordinate
profile extrema functions. Figure 16 shows the coordinate profile extrema functions, the
5%, 95% quantiles, the boundary of the subsets selected (vertical lines) by posterior median
and quantiles. The values of the bound with confidence level α = 0.1 are shown with the
sky blue (P sup

i Z) and sea green (P inf
i Z) shaded regions. The bound on the profile inf

function is almost overlapping with the 90% confidence intervals in red. The bound on the
profile sup function instead provides an higher quantile and identifies as region of possible
non excursion T ∈ [0, 0.19] above τ4. For the other coordinates the bound does not provide
information on regions of non excursion.

Section 3.4 introduced the integrated variance of the difference, equation (13), as an

indicator for the bound tightness. Figure 17 shows the value I(σ∆̃
T )2 averaged over all
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Table 3: Regions excluded with profile extrema functions on 5-d test case. Interval defined
in the top line, for each threshold the interval for the boundary computed from the 90%
approximate confidence intervals for the profiles is reported.

T ∈ [0, λT,k] S ∈ [0, λS,k] to ∈ [0, λato,k] ∪ [λbto,k, 1] t+ t−
τ1 λT,1 ∈ [0.17, 0.26] − λato,1 = 0, λbto,1 = 1 − −
τ2 λT,2 ∈ [0.24, 0.32] λS,2 ∈ [0, 0.06] λato,2 ∈ [0, 0.11], λbto,2 = 1 − −
τ3 λT,3 ∈ [0.33, 0.40] λS,2 ∈ [0, 0.14] λato,3 ∈ [0, 0.12], λbto,3 = 1 − −
τ4 λT,4 ∈ [0.52, 0.60] λS,2 ∈ [0.28, 0.43] λato,4 ∈ [0, 0.16], λbto,4 = 1 − −
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Figure 16: Coordinate profiles for 5-dimensional test case. Thresholds (red, light to dark
for τ1, . . . , τ4), regions selected by profile extrema on mean (vertical green lines) and regions
selected by profile extrema on 95% − 5% quantiles (vertical green lines, dashed). Bound
on the confidence region (α = 0.05) for P sup

i Z (sky blue, shaded) and for P inf
i Z (sea green,

shaded).

dimensions for P sup and P inf versus the number of pilot points `. Note the “diminishing
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returns” as ` increases. In particular, here we chose ` = 300 for computational reasons.
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Figure 17: Average integrated variance of the difference, equation (13), for profile inf
(dashed, triangles) and profile sup (solid, circles) versus ` (37, 75, 150, 300). Computational

time for (σ∆̃
T )2 in legend. Profile coordinates, 5-d test case.

Figure 18 shows the cuts at T = 0, 0.5, 1 of the bivariate profile functions on the mean
shown in Figure 13(b) with their respective upper and lower bounds. Such plots can be used
to zoom in particular regions of the bivariate profiles. They do not plot more information
than bivariate profile maps, however they are simpler to read. For example, Figure 18
shows that {x ∈ D : T = 0 and S < 0.79} is a non-excursion region with high probability.

Figure 19 shows the bivariate profile extrema for the variables T, to. In particular the
left-most map allows us to exclude all input regions on the left of the red dotted curve.
In a symmetric way, the right-most plot tells us that values for T, to in the region on
the right-hand side of the red dotted line lead to an excursion. Also in this case the
uncertainty quantification adds more insights on the result. The profile inf shows much
uncertainty around the threshold, therefore while region of interest could be selected the
uncertainty must be accounted for. The profile sup also tells us that close to the threshold
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Figure 18: Cut with T = 0, 0.5, 1 of P sup
Ψ1
, P inf

Ψ1
on the profile mean, see also Figure 13.
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Figure 19: Bivariate profile extrema for 5-dimensional test case with T, to. Excursion
threshold τ1 in red, bivariate profile mean values in contour lines, Xn locations as crosses
(green if above τ1), background color denotes the upper-lower bound range (equation (12)).

the uncertainty is still high, however the top and bottom left triangles are not in the
excursion with very little uncertainty. A very conservative assessment should select only
this input region as non-excursion. Figure 20 shows the cuts at T = 0, 0.5, 1 of these
bivariate profile functions. As in the other case such plots confirm information shown in
bivariate maps. For example, we can clearly see that for T = 0 and to ∈ [0, 0.37] ∪ [0.63, 1]
there is no excursion with high probability.

0.0 0.2 0.4 0.6 0.8 1.0-5
00

0
-3

00
0

-1
00

0
10

00

Cut of  PΨ2

sup PΨ2

inf   mean,  T= 0

to

va
lu

e

0.0 0.2 0.4 0.6 0.8 1.0

-2
00

0
0

10
00

30
00

Cut of  PΨ2

sup PΨ2

inf   mean,  T= 0.5

to

va
lu

e

0.0 0.2 0.4 0.6 0.8 1.0

0
10

00
30

00
50

00

Cut of  PΨ2

sup PΨ2

inf   mean,  T= 1

to

va
lu

e

Figure 20: Cut with T = 0, 0.5, 1 of P sup
Ψ2
, P inf

Ψ2
on the profile mean, see also Figure 19.
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Table 4: Summary of profile extrema parameters.

Symbol Meaning Section
n Number of expensive computer experiment simulations 1
d Dimension of input space 1
p Dimension of profile extrema projection, usually 1 or 2 2
k Number of points used for deterministic approximation of P sup, P inf 2.4
` Number of pilot points for GP approximation in (9) 3.2
s Number of posterior approximate GP realizations 3.2
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Figure 21: Values of I(σ∆̃
T )2(`), Eq. (13), for Ψ = v1 (solid, circles) and Ψ = v2 (dashed,

triangles) as functions of ` . Profile sup (left) and Profile inf (right).

D An indicator of tightness for the bound

The bounds for the uncertainty on P sup
Ψ Z are computed with equation (12). For a given `,

the tightness of this approximation is controlled by (σ∆̃
T )2(η, `), i.e. the sup of the difference

variance. This is a non-negative function of η, as the difference depends on where we
evaluate P sup

Ψ Z(η). The integrated variance I(σ∆̃
T )2(`), Equation (13), is a summary of

this quantity. Since (σ∆̃
T )2(η, `) is non-negative for each η ∈ EΨ, a smaller integral implies

less variability and a tighter bound. We can control I(σ∆̃
T )2(`) with the number of pilot

points ` chosen for the approximate realizations. Figure 21 shows the estimated integral
I(σ∆̃

T )2(`) =
∫
Evi

(σ∆̃
T )2(η, `)dη, i = 1, 2 for the synthetic example introduced in Section 3.3

with n = 90 as a function of `. More pilot points lead to a smaller integral for each
coordinate and for both profile extrema, however the rate of decrease is test case dependent.

E Uni and bivariate profiles, a combined approach

In this section we consider the following function

γ(x) = sin
(
av1

Tx + b
)
+cos

(
cv2

Tx + d
)
+sin

(
ev3

Tx + f
)
−1.5 x ∈ [0, 1]3, v1,v2,v3 ∈ R3

(19)
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Figure 22: Cuts of the function in Equation (19).

where a, b, c, d, e, f ∈ R and

v1 =

sin(θ) cos(φ)
sin(θ) sin(φ)

cos(θ)

 , v2 =

cos(θ) cos(φ)
cos(θ) sin(φ)
− sin(θ)

 , v3 =

− sin(φ)
cos(φ)

0


with θ = π/4, φ = π/4. We fix [a, b, c, d, e, f ] = [1, 0, 10, 0, 1, 0] and we study the excursion
set above τ = 0. Figure 22 shows three cuts corresponding to the planes z = 0, 0.49, 1.

Since the excursion set sits along directions which are oblique with respect to the canon-
ical coordinates, the coordinate profile extrema do not provide information on this set.
Figure 23 shows that P sup

i f, i = 1, 2, 3 are always above the threshold and P inf
i f, i = 1, 2, 3

are always below the threshold, thus we cannot exclude any region. In such situations we
propose two approaches: compute oblique profiles according to more informative directions
or compute bivariate coordinate profiles. Figure 24 show the oblique profile extrema along
the generating directions v1,v2,v3. This plot excludes part of the input space by consider-
ing the planes delimited by the interceptions between the profile sup and the threshold, e.g.
all points between the planes v1x = 0 and v1x = 0.31.

The second option involves computing the profile extrema with projections on 2 dimen-
sional subspaces. Here we consider all combinations of bivariate projections on canonical
axes. Figures 25, 26 show the maps obtained for the P sup

Ψ f, P inf
Ψ f for the three matri-

ces build by combining the canonical directions. Figure 25 in particular highlights darker
shaded (red) regions that are not part of the excursion set. Consider P sup

Ψ1
γ, for all x1, x2 in

the shaded region the profile tells us that there is no excursion. For example if x1 ∈ [0.115, 1]
and x2 = 0.2, the segment highlighted in the top left plot of Figure 25, there is no excursion.
In this case, P inf

Ψ f , Figure 26, does not allow us to select any excursion region.
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Figure 23: Coordinate profile extrema for
the function in Equation (19).
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Figure 24: Profile extrema for the function in
Equation (19) along the directions v1,v2,v3.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

PΨ1

sup f

x_1

x_
2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

PΨ2

sup f

x_1

x_
3

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

PΨ3

sup f

x_2

x_
3

Figure 25: Bivariate profile sup for the func-
tion in Equation (19) along projections on
combinations of three canonical axes.
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Figure 26: Bivariate profile inf for the func-
tion in Equation (19) along projections on
combinations of three canonical axes.
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