
Supplementary Material

Here we outline the FMR and FMRlasso models, how they are estimated, and implementation details used in the

simulation study. Given these building blocks, the steps in the estimation algorithm for the MRF-FMRlasso model

are summarized.

1. FMR Model

A finite mixture of regression models (FMR) is implemented in the R package mixtools for maximum likelihood

estimation of a mixture regression model via a standard EM algorithm (Benaglia et al. 2009), named regmixEM. We

refer to this model as the finite mixture of regression (FMR) model. It does not subject the component coefficient

parameters, βk, to any form of penalty. It assumes spatial independence within each component and across the

component assignments.

The FMR model assumes independence among component assignments and also conditional independence among

observations within each component, and we use this as our baseline model for comparison. Let Y1, . . . ,Yn be random

response variables, each with a corresponding vector of known predictors, x1, . . . , xn, where xi = (xi1, . . . , xip)′ for

i = 1, . . . , n. Let Y = (Y1, . . . ,Yn)′, and let X be the n × p matrix of observed predictor values. Suppose that each

variable, Yi, is generated under one of K components. Conditional on membership in the kth component, k = 1, . . . ,K,

the relationship between Yi and xi is the typical linear regression model Yi = x′iβk + εi, with εi ∼ N(0, σ2
k), where βk

and σ2
k are the p-dimensional vector of regression coefficients and the error variance for component k, respectively.

Accounting for the mixture structure, the conditional density of Yi|xi is

f (yi|xi, θ) =

K∑
k=1

πk · φ(yi|x′iβk, σ
2
k),

where πk is the proportion of observations from the kth component, and φ(·|x′iβk, σ
2
k) is the normal density with mean

x′iβk and variance σ2
k . The parameter vector for this model is θ = (π1, . . . , πk;β1, . . . ,βk;σ2

1, . . . , σ
2
k)′. Assuming

independence among observations, the joint density of Y is
∏n

i=1 f (yi|X, θ), and thus the observed log-likelihood is

`(θ|y,X) =

n∑
i=1

log (f (yi|X, θ)) =

n∑
i=1

log

 K∑
k=1

πkφ(yi|x′iβk, σ
2
k)

 . (1)

Maximum likelihood estimation consists in finding θ̂ = argminθ∈Θ {−`(θ|y,X)}, where Θ is the set of all possible

parameter values. Calculating θ̂ for a finite regression mixture model is known to be a difficult problem (Dempster

et al. 1977; McLachlan and Peel 2004), and it is helpful to consider the observation yi as a partial observation of the

complete data, which includes the unobservable random vector Zi = (Zi1, . . . ,ZiK)′, where Zik ∈ {0, 1} is a Bernoulli

random variable indicating whether observation i comes from component k or not. Each Zi therefore follows a one-

1

trial multinomial distribution with K groups. Since each observation comes from exactly one component, this implies∑K
k=1 Zik = 1, so P(Zik = 1) = πk, and (Yi|Zik = 1,X) ∼ N(x′iβk, σ

2
k), k = 1, . . . ,K.

The complete-data distribution for one observation is then

P(yi, zi|X, θ) = f (yi|zi,X, θ)P(zi|X, θ) =

K∑
k=1

I{zik=1}πkφ(yi|x′iβk, σ
2
k),

where I{·} is the indicator function. Thus, P(yi, zi|X, θ) = πkφ(yi|x′iβk, σ
2
k) when zik = 1. With the assumptions of

independence among the component assignments, Z1, . . . ,Zn, and conditional independence among Y1, . . . ,Yn given

Z and the predictors X, the complete joint density is
∏n

i=1 P(yi, zi|X, θ), and thus the complete log-likelihood is

`(θ|y, z,X) =

n∑
i=1

log (P(yi, zi|X, θ))

=

n∑
i=1

log

 K∑
k=1

I{zik=1}πkφ(yi|x′iβk, σ
2
k)

 .
To estimate the parameters in this model, the EM algorithm is used. Starting from an arbitrary value of the

parameters, θ(0), the principle of the EM algorithm is to iteratively build a sequence of estimates, θ̂
(1)
, . . . , θ̂

(m)
, over

which the observed negative log-likelihood, −`(θ|y,X), monotonically decreases. This is achieved by choosing at

iteration m + 1 the value θ(m+1) that minimizes Q(θ|θ(m)) ≡ E[−`(θ|y, z,X)|y,X, θ(m)], the conditional expectation of

the negative complete log-likelihood given the observed data and the current parameter value, θ(m), at iteration m. With

some basic manipulation, this can be written as follows:

Q(θ|θ(m)) = −

n∑
i=1

K∑
k=1

log(πk)E
[
I{zik=1}

∣∣∣ y,X, θ(m)
]
−

n∑
i=1

K∑
k=1

log
(
φ(yi|x′iβk, σ

2
k)
)
E

[
I{zik=1}

∣∣∣ y,X, θ(m)
]
. (2)

The EM algorithm is broken into two steps:

1. E-Step (Expectation): compute parts of Q(θ|θ(m)) that do not depend on

θ = (π1, ..., πk;β1, . . . ,βk;σ2
1, . . . , σ

2
k).

2. M-Step (Minimization): set θ(m+1) = argminθ∈Θ {Q(θ|θ(m))}.

From Q(θ|θ(m)), we see that the E-Step consists of computing

E
[
I{zik=1}

∣∣∣ y,X, θ(m)
]

= P(Zik = 1|y,X, θ(m)) = P(Zi = ek |y,X, θ(m))

for k = 1, . . . ,K and i = 1, . . . , n, where ek is a K × 1 vector with kth entry equal to 1, and all other entries equal to 0.

2

Since the ith component assignment depends only on the ith observation, (yi, xi), we have

P(Zi = ek |y,X, θ(m)) = P(Zi = ek |yi, xi, θ
(m))

=
f (yi|Zi = ek, xi, θ

(m))P(Zi = ek |xi, θ
(m))

f (yi|xi, θ
(m))

(by Bayes′ Rule)

=
π(m)

k φ
(
yi|x′iβ

(m)
k , σ2 (m)

k

)
∑K

j=1 π
(m)
j φ

(
yi|x′iβ

(m)
j , σ2 (m)

j

) . (3)

Defining γ(m)
ik to be the expression in Equation (3), the E-step reduces to computing values γ(m)

ik , which is the posterior

probability (conditional on the observed data y, X, and θ(m)) of the ith observation’s membership in component k.

After the E-step, the values in Equation (3) are substituted into Q(θ|θ(m)), and minimizing yields the following

updates:

π(m+1)
k =

1
n

n∑
i=1

γ(m)
ik (4)

β(m+1)
k =

(
X′W(m)

k X
)−1

X′W(m)
k y (5)

σ2 (m+1)
k =

(
y − Xβ(m+1)

k

)′
W(m)

k

(
y − Xβ(m+1)

k

)
tr(W(m)

k)
, (6)

where W(m)
k = diag(γ(m)

1k , . . . , γ
(m)
nk). Equation (5) is a weighted least squares (WLS) estimate of βk, and Equation (6)

resembles the WLS variance estimate.

The E-step and M-step are then iterated through until the absolute change in the value of the parameters is less

than a specified threshold, here 10−8, and the algorithm is initiated from a random parameter value. In particular,

π(0) = (π(0)
1 , . . . , π(0)

K) is drawn from a uniform Dirichlet; β(0)
1 , . . . ,β(0)

K each have standard normal entries; and the

inverses of σ2 (0)
1 , . . . , σ2 (0)

K are each generated from a standard exponential. After convergence, observations are

then assigned to the component under which they have the greatest probability of being generated (i.e., zik = 1 if

k = argmax{γ̂i1 . . . γ̂iK}).

2. FMRlasso Estimation Algorithm

FMRlasso, developed by Städler et al. (2010), is presented, and it introduces a penalty on the component param-

eters, βk. It assumes spatial independence within each component and across the component assignments. Städler et

al. (2010) propose the FMRlasso algorithm for fitting a model that addresses the issue of variable selection via a lasso

penalization. In a non-mixture Gaussian linear model, Y = Xβ + ε, ε ∼ N(0, σ2In), where In is the n × n identity

matrix, the lasso estimator is obtained as

β̂ = argminβ {−`(β|Y,X) + λ‖β||1} = argminβ {‖Y − Xβ‖2 + λ‖β‖1}.

3

If an estimate of σ2 is also needed, then the following would be required:

{β̂, σ̂2} = argmin{β,σ2}

{
nlog(σ) +

1
2σ2 ‖Y − Xβ‖2 + λ‖β‖1

}
. (7)

In this case, only β is penalized, but the variance parameter estimate σ̂2, is indirectly influenced by the shrinkage

parameter λ. For instance, a stricter penalty, λ, will result in a more sparse estimate of β, which will explain less of the

variability in Y, thus increasing the variance estimate, σ̂2. There are two issues with the estimator in Equation (7): 1)

the function to optimize is non-convex, which diminishes the computational advantages of lasso for high-dimensional

problems, and 2) the estimator is not equivariant under scaling of the response.

To address these issues, Städler et al. (2010) propose using the penalty λ ‖β‖1
σ

, leading to the estimator

{β̂, σ̂2} = argmin{β,σ2}

{
nlog(σ) +

1
2σ2 ‖Y − Xβ‖2 + λ

‖β‖1
σ

}
.

This estimator is equivariant under scaling, and it penalizes both the `1-norm of the coefficients and small variances σ2

simultaneously. As a consequence, the model is penalized for choosing many components with very few observations

in each component. Additionally, convexity of the optimization problem can be achieved with the re-parameterization

ρ = 1
σ

and ϕ j =
β j

σ
for j = 1, . . . , p. This yields the following estimator, which is equivariant under scaling and whose

computation involves convex optimization,

{ϕ̂, ρ̂} = argmin{ϕ,ρ}

{
−nlog(ρ) +

1
2
‖ρY − Xϕ‖2 + λ‖ϕ‖1

}
. (8)

For the mixture regression model, the parameter vector is θ = (π1, ..., πk;ϕ1, . . . ,ϕk; ρ1, . . . , ρk)′, and the objective

is to minimize the negative observed log-likelihood, −`(θ|y,X) of Equation (1), subject to penalization as

θ̂ = argminθ∈Θ

− n∑
i

log

 K∑
k=1

πk
ρk
√

2π
exp

{
−

1
2

(ρkyi − x′iϕk)2
} + λ

K∑
k=1

πωk ‖ϕk‖1

 , (9)

where the term πωk is included to control to what extent the penalty depends on the expected proportion of observations

within each component. We setω = 1 throughout, and this implies that a component with greater probability is subject

to a stronger penalty, which serves to prevent identifying one overly complex component.

Städler et al. (2010) test a grid of candidate values for λ and choose the one that minimizes BIC = −2`(θ̂|y,X) +

log(n)de, where de = K + (K − 1) +
∑p

j=1
∑K

k=1 I{ϕ jk,0} is the effective number of parameters (Pan and Shen 2007).

Städler et al. (2010) also suggest selecting λ via cross-validation. In a simulation study with K assumed to be known,

they found that BIC and 10-fold cross-validation performed similarly.

To optimize the criterion in Equation (9), Städler et al. (2010) propose the FMRlasso algorithm, which is a gen-

eralized EM (GEM) algorithm. Starting from an arbitrary value of the parameter, θ(0), they seek to iteratively build a

4

sequence of estimates, θ̂
(1)
, . . . , θ̂

(m)
, over which the observed penalized negative log-likelihood, −`pen,λ(θ), monotoni-

cally decreases. This is achieved by choosing at iteration m + 1 a value θ(m+1) that improves

Qpen(θ|θ(m)) = Q(θ|θ(m)) + λ

K∑
k=1

πωk ||ϕk ||, (10)

where Q(θ|θ(m)) is the expected negative complete data log-likelihood in Equation (2).

The GEM algorithm is broken into two steps:

1. E-Step (Expectation): compute parts of Qpen(θ|θ(m)) that do not depend on

θ = (π1, ..., πk;ϕ1, . . . ,ϕk; ρ2
1, . . . , ρ

2
k).

2. Generalized M-Step: Improve Qpen(θ|θ(m)) w.r.t. θ ∈ Θ,

This is a “generalized” EM algorithm because, rather than optimizing Qpen(θ|θ(m)) w.r.t. θ ∈ Θ at each iteration, here

we simply seek to improve it.

E-step:

The addition of the penalty term in Equation (10) does not affect the E-step, which is the same as the FMR E-step

in Equation (3), so with reparameterization we compute

γ(m)
ik ≡ P(Zi = ek |y,X, θ(m)) =

π(m)
k ρ(m)

k e−
1
2 (ρ(m)

k yi−x′iϕ
(m)
k)2∑K

j=1 π
(m)
j ρ(m)

j e−
1
2 (ρ(m)

j yi−x′iϕ
(m)
j)2

,

for k = 1, . . . ,K; i = 1, . . . , n.

Generalized M-step:

After the E-step we have

Qpen(θ|θ(m)) = −

n∑
i=1

K∑
k=1

log(πk)γ(m)
ik −

n∑
i=1

K∑
k=1

log
(
φ(yi|x′iβk, σ

2
k)
)
γ(m)

ik + λ

K∑
k=1

πk
‖βk‖1

σk
.

Then, we obtain Qpen(θ|θ(m))

= −

n∑
i=1

K∑
k=1

γ(m)
ik log(πk) −

n∑
i=1

K∑
k=1

γ(m)
ik log

 1

σk
√

2π
exp

−1
2

(
yi − x′iβk

σk

)2

 + λ

K∑
k=1

πk
‖βk‖1

σk

= −

n∑
i=1

K∑
k=1

γ(m)
ik log(πk) −

n∑
i=1

K∑
k=1

γ(m)
ik log

(
ρk
√

2π
exp

{
−

1
2

(ρkyi − x′iϕk)2
})

+ λ

K∑
k=1

πk‖ϕk‖1

(a) Improvement of Qpen(θ|θ(m)) w.r.t. π = (π1, . . . , πK) :

5

Fix ϕ at the present value ϕ(m) and improve

−

n∑
i=1

K∑
k=1

γ(m)
ik log(πk) + λ

K∑
k=1

πk‖ϕ
(m)
k ‖1, (11)

w.r.t. the condition that πk > 0 for k = 1, . . . ,K and
∑K

k=1 πk = 1. To do so, Städler et al. (2010) propose the following

update. First, let

π̄(m+1) =

∑n
i=1 γ

(m)
i

n
,

where γ(m)
i = (γ(m)

i1 , . . . , γ(m)
iK)′. The value π̄(m+1) is simply the update used in FMR, Equation (5). To account for the

added penalty term in Equation (11), they suggest

π(m+1) = (1 − t(m))π(m) + t(m)π̄(m+1), (12)

where t(m) ∈ (0, 1]. In practice, t(m) is chosen to be the largest value in the grid {δ j; j = 0, 1, 2, . . .} (0 < δ < 1) such

that the value of Equation (11) is not increased. They find that δ = 0.1 worked well in their example, and we follow

this approach in our implementation. Thus, the update is a weighted combination of π̄(m) and π(m). If the update

π(m+1) = π̄(m+1) does not lead to an increase in (11), they will use this value. If it does lead to an increase, then

they will give more and more weight to the previous value, π(m), in Equation (12) until the computed value does not

increase the value of Equation (11).

6

(b) Coordinate descent improvement of Qpen(θ|θ(m)) w.r.t. ρ and ϕ :

To obtain estimates of ϕk and ρk for k = 1, . . . ,K, we first show how the expected complete penalized log likeli-

hood decouples into K distinct optimization problems. With some re-arranging, we have Qpen(θ|θ(m))

= −

n∑
i=1

K∑
k=1

γ(m)
ik log(πk) −

n∑
i=1

K∑
k=1

γ(m)
ik log

(
ρk
√

2π
exp

{
−

1
2

(ρkyi − x′iϕk)2
})

+ λ

K∑
k=1

πk‖ϕk‖1

=

K∑
k=1

− n∑
i=1

γ(m)
ik log(πk) −

n∑
i=1

γ(m)
ik log

(
ρk
√

2π
exp

{
−

1
2

(ρkyi − x′iϕk)2
})

+ λπk‖ϕk‖1


=

K∑
k=1

−log(πk)
n∑

i=1

γ(m)
ik −

n∑
i=1

γ(m)
ik log

(
ρk
√

2π

)
−
γ(m)

ik

2
(ρkyi − x′iϕk)2

 + λπk‖ϕk‖1


=

K∑
k=1

−log(πk)
n∑

i=1

γ(m)
ik −

n∑
i=1

γ(m)
ik log

(
ρk
√

2π

)
+

n∑
i=1

γ(m)
ik

2
(ρkyi − x′iϕk)2 + λπk‖ϕk‖1


=

K∑
k=1

−log(πk)
n∑

i=1

γ(m)
ik −

n∑
i=1

γ(m)
ik

(
log(ρk) − log(

√
2π)

)
+

n∑
i=1

γ(m)
ik

2
(ρkyi − x′iϕk)2 + λπk‖ϕk‖1


=

K∑
k=1

−log(πk)
n∑

i=1

γ(m)
ik − log(ρk)

n∑
i=1

γ(m)
ik + log(

√
2π)

n∑
i=1

γ(m)
ik +

n∑
i=1

γ(m)
ik

2
(ρkyi − x′iϕk)2 + λπk‖ϕk‖1


=

K∑
k=1

nk

(
−log(πk) − log(ρk) + log(

√
2π)

)
+

n∑
i=1

1
2

(ρkỹi − x̃′iϕk)2 + λπk‖ϕk‖1


=

K∑
k=1

{
nk

(
−log(πk) − log(ρk) + log(

√
2π) +

1
2nk
‖ρkỹ − X̃ϕk‖

2 +
λ

nk
πk‖ϕk‖1

)}
,

where nk =
∑n

i=1 γ
(m)
ik , ỹi =

√
γ(m)

ik yi, x̃i =

√
γ(m)

ik xi. Thus, the M-step decouples into K distinct optimization problems

of the form

nk

(
−log(πk) − log(ρk) + log(

√
2π) +

1
2nk
‖ρkỹ − X̃ϕk‖

2 +
λ

nk
πk‖ϕk‖1

)
for k = 1, . . . ,K.

Fixing π to the updated value, π(m+1), obtained in the previous step and minimizing Qpen(θ|θ(m)) with respect to ϕ and

ρ reduces to minimizing

−log(ρk) +
1

2nk
‖ρkỹ − X̃ϕk‖

2 +
λ

nk

(
π(m+1)

k

)
‖ϕk‖1 for k = 1, . . . ,K. (13)

Equation (13) is convex in the parameters (ρk, ϕk1, . . . , ϕkp). Instead of fully optimizing Equation (13), Städler et

al. (2010) only minimize with respect to each parameter one at a time starting with ρk, holding the other parameters

at their most recent values. Making use of the Karush-Kuhn-Tucker (KKT) conditions (i.e., necessary conditions

for a solution in nonlinear programming to be optimal), closed-form updates can be computed for each component

k = 1, . . . ,K as

7

ρ(m+1)
k =

ỹ′X̃ϕ(m)
k +

√(
ỹ′X̃ϕ(m)

k

)2
+ 4‖ỹ‖2nk

2‖ỹ‖2
(14)

ϕ(m+1)
k j =


0 if |S j| ≤ λ(π(m+1)

k)

(λ(π(m+1)
k) − S j)/‖X̃ j‖

2 if S j > λ(π(m+1)
k)

−(λ(π(m+1)
k) + S j)/‖X̃ j‖

2 if S j < −λ(π(m+1)
k),

(15)

where S j is defined as

S j = −ρ(m+1)
k X̃′jỹ +

∑
s< j

ϕ(m+1)
ks X̃′jX̃s +

∑
s> j

ϕ(m)
ks X̃′jX̃s, j = 1, . . . , p,

where p is the number of predictors, and X̃ j denotes the jth column of X̃. The piecewise expression in Equation (15)

arises from differentiating absolute value functions, i.e., the |ϕk j| terms in the penalty, and as a consequence of the

KKT conditions. In the definition of S j, the sum is split over s < j and s > j because we include the most recent

values for each parameter as we progress from j = 1 to j = p.

The E-step and M-step are alternated between until convergence. Following Städler et al. (2010), we stop the

algorithm if the relative penalized log-likelihood improvement and the relative change of the parameter vector are

small enough, namely

|`pen,λ(θ)(m+1) − `pen,λ(θ)(m)|

1 + |`pen,λ(θ)(m+1)|
≤ τ,

max j

 |θ
(m+1)
j − θ(m)

j |

1 + |θ(m+1)
j |

 ≤ √τ, τ = 10−6. (16)

We also follow the approach of Städler et al. (2010) for initializing the algorithm. In particular, for each observa-

tion i, i = 1, . . . , n, a component k ∈ {1, . . . ,K} is randomly assigned. That component is then given weight γ(0)
ik = 0.9,

and weights γ(0)
i j = 0.1 are assigned to all other components. Finally, the weights γ(0)

i j , j = 1, . . . ,K, are normalized to

sum to one. This can be viewed as an initialization of the E-step. In the M-step that follows, we update all parameters

from the initial values ϕ(0)
k = 0, ρ(0)

k = 2, π(0)
k = 1

K , k = 1, . . . ,K.

2.1. Active Set Selection

Städler et al. (2010) propose a simple approach to speed up the algorithm described above. When updating

the parameter ϕk j in the M-step (b), for every 10 EM-iterations they only update the current non-zero parameters

(the “active set”). All parameters are updated every 11th EM-iteration, which allows for periodic updates of which

8

parameters are included in the active set. Städler et al. (2010) claim that in very high-dimensional and sparse settings,

this leads to a remarkable decrease in computational times.

3. MRF-FMRlasso Estimation Algorithm

The MRF-FMRlasso algorithm is summarized by the following steps:

1. E-step:

(a) Compute values ž(m)
i for i = 1, . . . , n:

• Simulated field approximation: ž(m)
i is simulated from P(z|y,X,Φ(m)) using one iteration of Gibbs

sampling from the most likely component assignments based on the most recent approximate poste-

rior probabilities, γ∗(m−
1
2)

ik .

(b) Compute approximate posterior probabilities, γ∗(m)
ik , i = 1, . . . , n; k = 1, . . . ,K:

• Simulated field approximation:

γ∗(m)
ik =

φ
(
yi|x′iβ

(m)
k , σ2 (m)

k

)
P(Zi = ek |ž(m)

Ni
,X, ψ(m))

K∑
l=1

φ
(
yi|x′iβ

(m)
l , σ2 (m)

l

)
P(Zi = el|ž(m)

Ni
,X, ψ(m))

, (17)

i = 1, . . . , n; k = 1, . . . ,K.

2. Generalized M-step:

(a) Fix θ to the current value θ(m), and improve Q∗pen(Φ,Φ
(m)) w.r.t. ψ via numerical optimization to obtain

ψ(m+1).

i. Update approximate distributions by computing ž(m+ 1
2)

i as in step 1(a) with parameter vector (ψm+1, θ(m)).

ii. Update approximate posterior probabilities by computing γ∗(m+ 1
2)

ik as in step 1(b) using values ž(m+ 1
2)

i

in place of ž(m)
i .

iii. Compute approximate component probabilities, π̀∗(m+ 1
2)

k = 1
n
∑n

i γ
∗(m+ 1

2)
ik , k = 1, . . . ,K.

(b) Update ρ and ϕ with:

ρ(m+1)
k =

ỹ′X̃ϕ(m)
k +

√(
ỹ′X̃ϕ(m)

k

)2
+ 4‖ỹ‖2nk

2‖ỹ‖2
k = 1, . . . ,K,

and

9

ϕ(m+1)
k j =


0 if |S j| ≤ λ(π̀∗(m+ 1

2)
k)

(λ(π̀∗(m+ 1
2)

k) − S j)/‖X̃ j‖
2 if S j > λ(π̀∗(m+ 1

2)
k)

−(λ(π̀∗(m+ 1
2)

k) + S j)/‖X̃ j‖
2 if S j < −λ(π̀∗(m+ 1

2)
k)

where nk =
∑n

i γ
∗(m+ 1

2)
ik , ỹi =

√
γ
∗(m+ 1

2)
ik yi, x̃i =

√
γ
∗(m+ 1

2)
ik xi, where xi is the ith row of X, and S j is defined

as

S j = −ρ(m+1)
k X̃′jỹ +

∑
s< j

ϕ(m+1)
ks X̃′jX̃s +

∑
s> j

ϕ(m)
ks X̃′jX̃s, j = 1, . . . , p,

where p is the number of predictors, and X̃ j denotes the jth column of X̃.

3. Set m = m + 1, and return to Step 1.

These steps are iterated through until convergence or a maximum number of iterations is reached. We initialize

the algorithm from Step 2(b) and evaluate the convergence criteria after Step 1(b).

References

Benaglia, T., Chauveau, D., Hunter, D., & Young, D. (2009) “mixtools: An R package for analyzing finite mixture

models,” Journal of Statistical Software, 32: 1–29.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977) “Maximum likelihood from incomplete data via the EM

algorithm,” Journal of the Royal Statistical Society, Series B (Methodological), 1–38.

McLachlan, G. J. & Peel, D. (2004) Finite Mixture Models. John Wiley & Sons.

Pan W. & Shen X. (2007) “Penalized model-based clustering with application to variable selection,” The Journal of

Machine Learning Research, 8: 1145–1164.

Städler, N., Bühlmann, P., & Van De Geer, S. (2010), “`1-penalization for mixture regression models,” TEST, 19:

209–256.

10

