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Detection of Latent Heteroscedasticity and Group-Based Regression Effects
in Linear Models via Bayesian Model Selection

Thomas Anthony Metzger

(ABSTRACT)

Standard linear modeling approaches make potentially simplistic assumptions regarding

the structure of categorical effects that may obfuscate more complex relationships governing

data. For example, recent work focused on the two-way unreplicated layout has shown that

hidden groupings among the levels of one categorical predictor frequently interact with the

ungrouped factor. We extend the notion of a “latent grouping factor” to linear models in

general. The proposed work allows researchers to determine whether an apparent grouping

of the levels of a categorical predictor reveals a plausible hidden structure given the observed

data. Specifically, we offer Bayesian model selection-based approaches to reveal latent group-

based heteroscedasticity, regression effects, and/or interactions. Failure to account for such

structures can produce misleading conclusions. Since the presence of latent group structures

is frequently unknown a priori to the researcher, we use fractional Bayes factor methods and

mixture g-priors to overcome lack of prior information. We provide an R package, slgf,

that implements our methodology in practice, and demonstrate its usage in practice.



Detection of Latent Heteroscedasticity and Group-Based Regression Effects
in Linear Models via Bayesian Model Selection

Thomas Anthony Metzger

(GENERAL AUDIENCE ABSTRACT)

Statistical models are a powerful tool for describing a broad range of phenomena in our

world. However, many common statistical models may make assumptions that are overly

simplistic and fail to account for key trends and patterns in data. Specifically, we search

for hidden structures formed by partitioning a dataset into two groups. These two groups

may have distinct variability, statistical effects, or other hidden effects that are missed by

conventional approaches. We illustrate the ability of our method to detect these patterns

through a variety of disciplines and data layouts, and provide software for researchers to

implement this approach in practice.
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Chapter 1

Introduction

In this work we propose the Suspected Latent Grouping Factor (SLGF) methodology for

Bayesian model selection. Our method is applicable to linear models with categorical pre-

dictors, an extremely versatile and widely used class of statistical models. We partition

the levels of a user-chosen categorical predictor, which we call the SLGF, into two groups.

These two groups may elicit a variety of effects on the observed data, including latent group-

based regression effects, group-based interactions, group-based heteroscedasticity, and/or

some combination of these structures. Most standard modeling approaches neglect to con-

sider such structures or latent groups, but we demonstrate that they occur quite frequently

in common datasets. Our methodology invokes several key components to detect these

structures:

1. Combinatoric approach: because a practitioner will often lack prior information on

the levels of the categorical predictor that should be grouped together (if they should

be grouped together at all), we consider all possible latent grouping structures are

considered. See Chapter 2 for further detail.

2. Bayesian model selection: we implement Bayes’ Theorem, along with commonly used

and effective priors on regression effects and error variances, to quantify the prob-

1
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ability that specific structures underlie the data in question. This work provides a

thorough description of the mathematical and computational approach necessary to

compute these model probabilities under our flexible framework, for linear models with

a categorical predictor. Thus we can implicitly conduct variable selection as well as

select the most probable grouping structures simultaneously. See Chapter 2 for further

detail.

3. Fractional Bayes factors; a major advantage of this proposed methodology it that it

can compare homoscedastic and heteroscedastic models. An artifact of this feature is

that a partial Bayes factor approach must be utilized in order to take full advantage of

our objective Bayesian approach. We justify the use of a fractional Bayes factor and

demonstrate its utility in our method. See Chapter 2 for further detail.

4. Simulation; we demonstrate the effectiveness of our methodology through a simulation

study on several commonly used linear model structures. The study establishes that

we can detect a variety of latent grouping structures underlying a dataset. See Chapter

2 for further detail.

5. User-friendly implementation; through the new R package slgf, we thoroughly demon-

strate the process a practitioner would invoke to implement our method on a dataset.

We demonstrate the functionality of slgf on several linear models that represent a

wide range of disciplines, experimental designs, classical analysis methods, and latent

grouping structures. This R package will be publically available on CRAN in the near

future. See Chapter 3 for further detail.

It is our hope that this methodology becomes a staple in the analysis of common linear

models for researchers in a variety of disciplines. Although that is an ambitious goal, we

believe it is realistic for two reasons. First, our method is appropriate in a broad scope of

layouts and fields; we illustrate our method’s utility in across many datasets representing one-

way analysis of variance (ANOVA), replicated and unreplicated two-way layouts, balanced
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incomplete block designs, and analysis of covariance (ANCOVA), in the contexts of biology,

agriculture, manufacturing, and engineering. Second, such a method will only be applied

by researchers if it is straightforward and accessible to implement for non-statisticians. We

believe that we accomplish this with the R package slgf.

The remainder of this dissertation is organized as follows. Chapter 2 provides a review

of previous literature, lays the framework of the statistical model and combinatoric latent

grouping approach, summarizes mathematical details on the computation of posterior model

probabilities, describes the fractional Bayes factor approach and implementation, analyzes

several representative data sets, and gives a simulation study demonstrating the effectiveness

of our method. Chapter 3 describes the R package slgf that implements the methodology

in practice, by reviewing the approach, providing several examples contrasting a classical

approach with our proposed method, and demonstrating the functionality of the package.

Chapter 4 summarizes the work and provides several avenues of future research.



Chapter 2

Suspected Latent Grouping Factor

Methodology

2.1 Introduction

Linear models with categorical predictors are among the most frequently used statistical

models, but oversimplification of the variance or regression effect structures can misrepre-

sent key relationships within observed data. Figure 2.1 shows three relevant data sets. First,

the left panel shows a simulated one-way ANOVA experiment, based on the statistics re-

ported in Welch [1951]. The horizontal axis represents the levels of a treatment factor, and

the vertical axis represents a continuous response. The center panel is an analysis of covari-

ance (ANCOVA) that analyzes the breaking strength of a starch chip [Flurry, 1939]. The

horizontal axis represents the chip’s thickness in 10−4 inches, the vertical axis represents the

breaking strength in grams, and the point shapes represent the plant from which the starch

was derived. Finally, the right panel is an unreplicated two-way layout, measuring the ge-

nomic hybridization signal in dogs with lymphoma [Franck et al., 2013]. The horizontal axis

represents whether the sample was taken from normal or tumor tissue, the vertical axis rep-

resents the intensity of the genomic hybridization signal, and the individual lines represent

4
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six dogs studied. In each case, the levels of the categorical predictor appear to fall into one of

two groups, although the group structure is unknown before data collection. The apparent

group structure for the data in Figure 2.1 is represented by dark and light gray. Situations

Figure 2.1: Data from Welch [1951] (left), Flurry [1939] (center), and Franck et al. [2013]
(right). After a cursory examination of the data, a researcher might suspect that a latent
grouping factor (emphasized by dark and light gray) underlies the levels of the categorical
predictor.

similar to those illustrated in Figure 2.1 often arise in research. Perhaps after plotting the

data or in reviewing previous related work, the researcher begins to suspect that there is

a hidden grouping within the levels of the categorical predictor. We call this predictor the

suspected latent grouping factor, or SLGF. This work aims to determine whether the latent

groupings are plausible and how the group structure affects the response.

We must consider the SLGF with two key ideas in mind: first, that the SLGF might

manifest itself through one of several structures in the data, namely, (i) group-specific re-

gression effects, (ii) group-specific variances, and/or (iii) hidden interactions between groups

and other model predictors. There are eight possible combinations of structures. Second,

the specific assignment of levels to groups is unknown. Both of these aspects of the SLGF

must be learned from the data in an unsupervised fashion: specifically, our proposed method
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uses Bayesian model selection to assess the plausibility of the SLGF’s impact on the data

based on posterior probability. Formal detail can be found in Section 2.

Common linear model assumptions include homoscedasticity and a unique effect of the

response at each level of categorical predictors; for a thorough review see Berry [1993].

Violations of these assumptions can have a wide variety of negative consequences on inference;

see Rencher and Schaalje [2008], Deschamps [1991] and Scheffé [1959]. Model misspecification

can lead to additional problems; see Rencher and Schaalje [2008], Rao [1971], and Deegan

[1976].

Regarding the detection of heteroscedasticity, many analyses follow a two-stage approach.

These include the methods proposed by Bartlett [1937], Levene [1960], Brown and Forsythe

[1974], and Hartley [1950]. When heteroscedasticity is believed to be a function of a con-

tinuous predictor, many methods are available, including Breusch and Pagan [1979], Cook

and Weisberg [1983], White [1980], Glejser [1969], Park [1966], Box and Hill [1974], Bickel

[1978], Jobson and Fuller [1980], and Carroll and Ruppert [1982].

Regarding inference in the presence of heteroscedasticity, methods include those of Box

and Cox [1964], Carroll and Ruppert [1988], Perthes [1855], Morrison [1983], Huber [1967],

Eicker [1967], Cragg [1983], Hildreth and Houck [1968], Long and Ervin [2000], Polasek et al.

[1998], Polasek and Pötzelberger [1994], Cuervo and Achcar [2009], Boscardin and Gelman

[1994], MacKinnon and White [1985], Dumitrascu et al. [2015], and White [1980]; for a

review see Hayes and Cai [2007] and Cribari-Neto and Zarkos [1999]. Many methods exist to

detect heteroscedasticity or conduct inference in its presence. To our knowledge, ours is the

first proposal of latent group-based heteroscedasticity alongside possibly unique regression

effects and/or hidden interactions.

While an extension to more than two groups is natural, our choice of two groups is still a

reasonable approach in many problems; Kharrati-Kopaei and Sadooghi-Alvandi [2007] and

Franck [2018] study factor level groupings based on two groups in unreplicated two-way

layouts, while Goldfeld and Quandt [1965] model heteroscedasticity as a function of two
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groups, where groups are created by partitioning observations ordinally.

The main contribution of this work is to propose a method of probabilistically detecting

the presence of hidden categorical level groupings, and to describe the model specifications

that capture the effect of such groupings, through the use of Bayesian model selection. This

work generalizes the notion of latent group-based effects from the two-way layout to linear

models; see Kharrati-Kopaei and Sadooghi-Alvandi [2007], Franck et al. [2013], Franck and

Osborne [2016], and Franck [2018]. There is no unified Bayesian model selection approach to

account for these structures in the context of latent groupings of the levels of a categorical

predictor in general. Although we illustrate our method in the contexts of the three specific

settings shown in Figure 2.1, our proposal is flexible enough to be used in the context of any

linear model with a categorical predictor.

The remaining structure of this paper is as follows. Section 2 describes the candidate

models in the context of the SLGF, as well as the fractional Bayes factor and Bayesian model

selection details. Section 3 describes our proposed Bayesian model specification in contexts

of ANCOVA models and unreplicated two-way layouts. Section 4 describes a simulation

study to assess the performance of our method. Section 5 applies our proposed method

to the empirical data sets of Figure 2.1. Section 6 summarizes the proposed method and

provides some additional comments. Additional mathematical details and simulation results

for one-way ANOVA data are provided in Section 2.7.

2.2 Proposed Method

2.2.1 Specification of Linear Models with Categorical Predictors

We begin the development of our approach by elucidating the assignment of the levels of

the SLGF into groups. As an illustration, consider the data analyzed by Franck et al.

[2013], shown in the right panel of Figure 2.1: an unreplicated two-way layout with 6 rows
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and 2 columns. We choose the dogs as the SLGF. Three examples of possible SLGF level

assignments are shown in Figure 2.2: For a SLGF with levels k = 1, . . . , K + 1, let k =

r1 9.33 9.22
r2 9.51 9.39
r3 8.75 9.42
r4 8.64 9.25
r5 9.50 9.46
r6 8.73 9.35
Example scheme 1

r1 9.33 9.22
r2 9.51 9.40
r3 8.75 9.42
r4 8.64 9.25
r5 9.50 9.46
r6 8.73 9.34
Example scheme 2

r1 9.33 9.22
r2 9.51 9.39
r3 8.75 9.42
r4 8.64 9.25
r5 9.50 9.46
r6 8.73 9.34
Example scheme 3

Figure 2.2: Three possible grouping schemes of the data analyzed by Franck et al. [2013]
(as shown in the rightmost panel of Figure 2.1) are shown here. Row membership is used
to partition the data into two groups, shaded and unshaded. These grouping schemes are
denoted 1, 2, 3 : 4, 5, 6 (left), 1, 2, 4, 6 : 3, 5 (center), and 1, 4, 5 : 2, 3, 6 (right).

(1, . . . , K + 1)T . We formally define a grouping scheme, denoted ds(k), as a partitioning

that assigns the data into two groups based on each observation’s corresponding level of the

SLGF. Let S be the set of all possible schemes, and s = 1, . . . , S index the possible schemes.

We refer to the example scheme 3, in the rightmost panel of Figure 2.2, to motivate the

subsequent notational definitions; this example partitions levels k = 1, 4, and 5 separately

from 2, 3, and 6. For a scheme ds(k), a colon separates the levels each group comprises; for

example, the scheme of example 3 is denoted as ds(k) = 1, 4, 5 : 2, 3, 6. The most effective

method to partition the levels of the SLGF into groups depends on the size and nature of the

study in question. Many problems have K small enough that a combinatoric search over all

possible grouping schemes is reasonable; see Franck et al. [2013], Franck and Osborne [2016],

Franck [2018], and Kharrati-Kopaei and Sadooghi-Alvandi [2007]. We use the combinatoric

search approach exclusively in this study.

Next we formalize the idea of model structures in the context of specific linear mod-

els. Recall from Section 2.1 that we must potentially accommodate eight model structures

containing a mix of group-based regression effects, group-based variances, and group-based

interactions. These structures must be tailored to both the researcher’s suspicion and goals,

as well as the data layout under consideration. Thus we propose the model class, which is
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the set of models representing a particular structure. While structures reflect the presence or

absence of group-based effects, classes prescribe specific corresponding models in the context

of the data layout in question.

Now that the grouping schemes and model classes have been enumerated, consider a

linear model with N centered observations Y :

Y = Xβ + ε (2.1)

with model matrix X parametrized to be full column rank, regression effects β, and er-

rors ε
iid∼ N(0, Σ) with covariance matrix Σ. To account for the eight possible model

structures previously described, we will partition Y , β, ε, and Σ. Partition β into four

components: let α represent an intercept common to all models, let ν = {νk}Kk=1 represent

the SLGF with K + 1 levels, let τ = {τj}Jj=1 contain J other regression effects, categor-

ical or continuous, and, let ρ = {ρℓ}Lℓ=1 represent L interactions with the SLGF. Then

β(1+K+J+L)×1 = (α, νK×1, τJ×1, ρL×1).

Similarly, partition the model matrix XN×(1+K+J+L) = (1T
N×1 |WN×K |VN×J |UN×L) into

three matrices corresponding to the data related to α, ν, τ , and ρ, respectively. Thus we

can express (2.1) equivalently as

Y = 1Tα +Wν + V τ + Uρ+ ε. (2.2)

In cases where the effect structure for one of the terms in Equation (2.2) depends on a latent

grouping scheme, denote that term with a tilde. For example, in structures with group-based

interactions, model a group-based interaction ρ̃ instead of usual the interaction ρ. Similarly,

heteroscedastic structures with group-based variances are modeled with error vector ε̃ and

corresponding covariance matrix Σ̃ instead of the homoscedastic counterparts ε and Σ.

When a model contains a group structure, we arrange the observations within Y to

first contain the n1 observations corresponding to s1, followed by the n2 observations corre-
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sponding to s2, denoted Y = (Y1,Y2). We similarly arrange the rows and columns of X to

contain the corresponding observations, which helps concisely express our proposed forms

of heteroscedasticity in Σ. For structures with distinct regression effects by group, arrange

ν̃ = (ν̃1, ν̃2), and for classes with distinct variances by group, partition the error vector and

covariance matrix such that ε̃ ∼ N(0, Σ̃) where Σ̃ =

 σ2
1In1×n1 0n1×n2

0n2×n1 σ2
2In2×n2


N×N

. Notice

N = n1 + n2, for the effects corresponding to groups s1 and s2, respectively. With multi-

ple schemes, classes, and structures under consideration, we next propose a Bayesian model

selection approach to assess whether latent groups exist within the data, and if so, identify

the appropriate grouping scheme ds(k) ∈ S (if present) and class c ∈ C.

2.2.2 Bayesian Model Selection Details

Model Specification

Denote the set of all candidate models M = {mc
s}, indexed over all possible schemes s =

1, ..., S and classes c = 1, ..., C, where |M| = M ; to ease the notational burden, we have

denoted ds(k) as s in the subscript of m. Although each model matrix X and estimators for

β and Σ depend on the grouping and class under consideration, for notational simplicity we

do not index X, β, or Σ by m, s, or c. Let the vector φ contain the single precision φ := 1
σ2

under homoscedastic models, and the corresponding subgroup precisions φ1 and φ2 under

heteroscedastic models. Denote the precision matrix Φ = Σ−1 and θ = {φ,β}, the set of

unknown model parameters; then we can express (2.1) conditionally as

Y |mc
s,θ ∼ N(Xβ,Φ−1) (2.3)

for a given scheme ds(k) ∈ S and class c ∈ C. Thus the likelihood function is given by

P (Y |θ,mc
s) = (2π)−

N
2 |Φ|

1
2 · exp{−1

2
(Y −Xβ)TΦ(Y −Xβ)} (2.4)
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We consider two common prior specifications on the regression effects and precision(s). In

both cases, we prefer noninformative priors on the precision(s) because prior information on

precision is rarely available. First, we consider a noninformative approach, where we have

P (β, φ, |mc
s) ∝ φ−1 (homoscedastic models), or (2.5)

P (β,φ, |mc
s) ∝ φ1

−1 · φ2
−1 (heteroscedastic models) (2.6)

Next we consider the Zellner-Siow mixture g-prior [Zellner and Siow, 1980, Zellner, 1986,

Liang et al., 2008], where

P (α, φ) ∝ φ−1 (homoscedastic models), (2.7)

P (α, φ) ∝ φ−1
1 · φ−1

2 (heteroscedastic models), (2.8)

β−α|φ,mc
s ∼ N(0, g(XTΦ−1X)−1), and (2.9)

g ∼ IG
(
1

2
,
N

2

)
(2.10)

where β−α := β \ {α}. We use the Zellner-Siow mixture g-prior in relatively data-poor situ-

ations, such as unreplicated two-way layouts, to reduce the dimensionality of the parameter

space with improper priors. This consequently lowers the minimal training sample size, a

critical component of the fractional Bayes factor approach described in Section 2.2.2. We

use the noninformative flat prior where data are more abundant; see Section 2.3.2 for more

detail.

Model Priors for Classes and Schemes

We impose a uniform model prior by model class: P (mc) =
∑S

s=1 P (mc
s) :=

1
C
. Depending

on the data layout and model structures under consideration, various classes may contain

different numbers of models; thus we subsequently divide each class’s prior uniformly among



12

the models it contains. For example, in an ANOVA layout, one model class might represent

the single mean model, where P (mc) = 1
C
; note we do not index this model by s as there is no

grouping structure present in this class. Alternatively, for a model class containing models

with distinct regression effects by grouping scheme, the S individual models within the class

would be given the prior P (mc
s) =

1
S·C . By implementing Bayes’ Theorem, posterior model

probabilities approximated via the fractional Bayes factor (see Section 2.2.2) can then be

easily computed for each individual model and class with the marginal probabilities of each

model. For a given model ms′

c′ we compute:

P (mc′

s′|Y ) =
P (Y |mc′

s′)P (mc′

s′)
C∑
c=I

S∑
s=1

P (Y |mc
s)P (mc

s)

(2.11)

We can then aggregate the overall probability of a given class c′ as P (mc′|Y ) =
∑
s∈S

P (mc′
s |Y ),

or for a given grouping scheme s′ as P (ms′ |Y ) =
∑
c∈C

P (mc
s′|Y ); hence the proposed method

allows researchers to draw probabilistic conclusions about both structures and specific group-

ing schemes.

Fractional Bayes Factor Approach

We next motivate the need to use a fractional Bayes factor approach. Consider a compar-

ison between arbitrary models m1 and m2, where m1 and m2 represent homoscedastic and

heteroscedastic models, respectively, via B12 = P (m1|Y )P (m2)
P (m2|Y )P (m1)

. For m1 we use P (φ) = a ·φ−1,

and for m2 we use P (φ) = a′ · φ−1
1 · φ−1

2 for arbitrary constants a ̸= a′. So the Bayes factor

to compare m1 and m2 is

B12 =
a ·
∫
P (Y |β,Φ,m1)P (β)P (φ)dβdφ · P (m2)

a′ ·
∫
P (Y |β,Φ,m2)P (β)P (φ)dβdφ · P (m1)

(2.12)

which is defined only up to the arbitrary constant a
a′
and thus inappropriate for use in model

comparison. Note this problem arises from the use of noninformative priors on the precisions
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when comparing homoscedastic and heteroscedastic models. Fractional Bayes factors were

developed to elicit a cancellation of this constant, rendering a Bayes factor that is well-defined

[O’Hagan, 1995].

For a description of fractional Bayes factors (FBFs), see O’Hagan [1995] and ?. We use

the FBF approach of O’Hagan rather than the intrinsic Bayes factor of Berger and Pericchi

[1996], as the need to choose a training sample would be complicated by the potential scarcity

of data induced by some clustering schemes.

To fully quantify the fractional marginal probability of a given model mi, we must com-

pute both∫
P (Y |θi,mi)π(θi)dθi and

∫
P b(Y |θi,mi)π(θi)dθi for some user-chosen fractional exponent

b. O’Hagan [1995] provides several recommendations for b, including b := m0

N
, where m0

is the minimal training sample size necessary for P b(Y |mi) to be proper. In this study we

choose b = m0

N
, which elicits consistent model selection [O’Hagan, 1995]. In many cases,

tractable expressions exist for both
∫
P (Y |θi,mi)π(θ)dθ and

∫
P b(Y |θi,mi)π(θ)dθ. When

these integrals are intractable, we use the Laplace approximation in the computation of

both
∫
P (Y |θi,mi)π(θ)dθ and

∫
P b(Y |θi,mi)π(θ)dθ, as cubature-based approximation is

computationally expensive and our study of the integrand surface indicates a suitable shape.

See Section 2.7 for justification and further detail.

2.3 Applications

2.3.1 Application 1: ANCOVA Models

We first consider an ANCOVA scenario with continuous effect τ and where the SLGF with

K+1 levels corresponds to the single categorical predictor effect ν. We let VN×1 contain the

observed continuous covariate and WN×K be the appropriate categorical effect design matrix.

We consider models with and without the interaction effect ρ, which governs whether the
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linear trends share a common slope. Thus we begin with the model given by

Y = 1Tα +Wν + V τ + Uρ+ ε (2.13)

yielding the likelihood function

P (Y |mc
s, α,ν, τ ,ρ,φ) = (2π)−

N
2 |Φ|

1
2 ·exp{−1

2
(Y −1Tα−Wν−V τ−Uρ)TΦ(Y −1Tα−Wν−V τ−Uρ)}

(2.14)

To consider the model without an interaction, let ρ := 0. For models with a group effect, let

ν := ν̃; for models with a group-by-continuous predictor interaction, let ρ := ρ̃; and finally

for heteroscedastic models, let ε := ε̃. As an illustration, we consider eight distinct model

classes.

1. Class I (mI): the ”null” model, with no categorical or continuous covariate effects

and homoscedastic error variance, contains 1 model with no grouping schemes; Y =

1Tα + ε, ε ∼ N(0, σ2I)

2. Class II (mII): the ”simple linear regression (SLR)” model, with a continuous covari-

ate effect only and homoscedastic error variance, contains 1 model with no grouping

schemes; Y = 1Tα + V τ + ε, ε ∼ N(0, σ2I)

3. Class III (mIII): the ”ANCOVA” model with categorical and continuous covariate

effects and homoscedastic error variance, contains 1 model with no grouping schemes;

Y = 1Tα +Wν + V τ + ε, ε ∼ N(0, σ2I)

4. Class IV (mIV
s ): the ”group-contracted ANCOVA” model with group and continuous

covariate effects and homoscedastic error variance, contains 2K−1 − 1 schemes; Y =

1Tα +W ν̃ + V τ + ε, ε ∼ N(0, σ2I)

5. Class V (mV): the ”interaction ANCOVA” model with categorical and continuous

covariate effects, level-based interaction, and homoscedastic error variance, contains 1

model with no grouping scheme; Y = 1Tα +Wν + V τ + Uρ+ ε, ε ∼ N(0, σ2I)
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6. Class VI (mVI
s ): the ”group-interaction” model, with group and continuous covariate

effects, group-based interaction, and homoscedastic error variance, contains 2K−1 − 1

schemes; Y = 1Tα +W ν̃ + V τ + U ρ̃+ ε, ε ∼ N(0, σ2I)

7. Class VII (mVII
s ): the ”heteroscedastic group-contracted” model (heteroscedastic Class

IV), with group and continuous covariate effects and heteroscedastic error variance,

contains 2K−1−1 schemes; Y = 1Tα+W ν̃+V τ+ε̃, ε̃ ∼ N

0, Σ̃ =

 σ2
1In1×n1 0n1×n2

0n2×n1 σ2
2In2×n2


N×N


8. Class VIII (mVIII

s ): the ”heteroscedastic group-interaction” model (heteroscedastic

Class VI), with group and continuous covariate effects, group-based interaction, and

heteroscedastic error variance, contains 2K−1 − 1 schemes; Y = 1Tα + W ν̃ + V τ +

U ρ̃+ ε̃, ε̃ ∼ N

0, Σ̃ =

 σ2
1In1×n1 0n1×n2

0n2×n1 σ2
2In2×n2


N×N


Thus the structure of no group-based effects is represented by Classes I, II, III, and V;

group-based regression effects are represented by Classes IV, VI, VII, and VIII; group-based

variances are represented by Classes VII and VIII.

We use the FBF approach outlined in Section 2.2.2. Typically, the most complex model

considered in an ANCOVA study will have a small minimal training sample size relative to

the overall sample size. Thus we choose noninformative priors on the regression effects and

precision(s) as described in Equations (2.5) and (2.6), so the marginal density of the data

conditional on the model is

P (Y |mc
s) =

∫∫
P (Y |β,φ,mc

s)P (β)P (φ)dβdφ (2.15)

This marginal density is analytically integrable over all of the homoscedastic classes defined

previously. In heteroscedastic cases (classes VII and VIII), we use a Laplace approximation

over the log-variances to approximate P (Y |mVII
s ) and P (Y |mVIII

s ). We demonstrate the per-

formance of this approach through a simulation study in Section 2.4.1 and through empirical

data sets in Section 2.5.1.



16

2.3.2 Application 2: Unreplicated Two-Way Layouts

Next we consider an unreplicated two-way layout with R rows, C columns, and N = R×C

observations. Because of the unreplicated nature of such a design, the full set of standard

interaction effects cannot be incorporated due to insufficient degrees of freedom. Treat the

row effects as the SLGF ν, and let τ contain the column effects; note by transposing the

data table we could treat the column effects as the SLGF as well.

Our choice of model classes is based on the idea of hidden additivity, where interactions

are treated as a group-by-column effect [Franck et al., 2013]. The usual “additive” model

Y = 1Tα + Wν + V τ + ε accounts for only row and column main effects. The group-

based model, partitioned by levels of the row effect, does not include column effects but

does consider group-by-column interactions, denoted by ρ̃. We require at least 2 levels of

k (rows) in both groups to ensure there are enough degrees of freedom to estimate this

group-by-column interaction. We thus begin with the model

Y = 1Tα +Wν + V τ + U ρ̃+ ε (2.16)

where we let ρ̃ := 0 in the additive model, τ := 0 in cases with scheme-based regression

effects, and ε := ε̃ in cases with group-based heteroscedasticity. So the full likelihood

function is given by

P (Y |mc
s, α,ν, τ , ρ̃,φ) = (2π)−

N
2 |Φ|

1
2 exp{−1

2
(Y−1α−Wν−V τ−U ρ̃)TΦ(Y−1α−Wν−V τ−U ρ̃)}

(2.17)

In this layout we consider four model classes:

1. Class I (mI): the ”additive” model, where column effects are equivalent across rows and

error variance is constant across all observations, contains 1 model with no grouping

schemes; Y = 1Tα +Wν + V τ + ε, ε ∼ N(0, σ2I)

2. Class II (mII
s ): the ”group-by-column interaction” model, where levels are divided into
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two latent groups based on grouping scheme ds(k) with distinct means and equivalent

variance, contains 2K−1 −K − 1 grouping schemes [Franck et al., 2013]; Y = 1Tα +

Wν + U ρ̃+ ε, ε ∼ N(0, σ2I)

3. Class III (mIII
s ): the ”heteroscedastic additive” model, where levels are divided into two

latent groups based on grouping scheme ds(k) with equivalent means and group-based

variances, contains 2K−1 −K − 1 grouping schemes; Y = 1Tα +Wν + V τ + ε̃, ε̃ ∼

N

0, Σ̃ =

 σ2
1In1×n1 0n1×n2

0n2×n1 σ2
2In2×n2


N×N


4. Class IV (mIV

s ): the ”heteroscedastic group-by-column interaction” model where levels

are divided into two latent groups based on grouping scheme ds(k) with distinct means

and group-based variances, contains 2K−1−K−1 grouping schemes; Y = 1Tα+Wν+

U ρ̃+ ε̃, ε̃ ∼ N

0, Σ̃ =

 σ2
1In1×n1 0n1×n2

0n2×n1 σ2
2In2×n2


N×N


Thus there are M = (3× 2K−1)− 3K − 2 models considered.

Bayesian Model Specification: Unreplicated Two-Way Layouts

The two-way unreplicated layout is typically modeled with a high ratio of parameters to

data points. Thus we must take care in choosing priors that allow us to successfully incorpo-

rate the FBF approach. With noninformative priors on the regression effects, the minimal

training sample size needed to estimate R− 1 regression effects, 2 · (C − 1) group-by-column

interactions, and 2 error variances would be prohibitively large in relation to the sample size

N ; indeed, b = m0

N
< 1

2
only when R ≥ 7. In this work, we propose using the Zellner-Siow

mixture g-prior on regression coefficients to reduce the dimensionality of the improper prior.

Our use of this automatic prior on the regression effects lowers the minimal training sam-

ple size to m0 = 3, and thus the fractional exponent b = m0

N
, to a value that allows us to
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successfully implement the FBF. Thus we let

P (α) ∝ 1, (2.18)

P (β|φ, g) = N(0, g(XTΦX)−1), (2.19)

P (φ) ∝ φ−1 (for models with homoscedasticity), (2.20)

P (φ) ∝ φ−1
1 φ−1

2 (for models with heteroscedasticity), and (2.21)

P (g) = IG
(
1

2
,
N

2

)
(2.22)

The marginal density of the data conditional on the model is

P (Y |mc
s) =

∫∫∫∫
P (Y |α,β,φ,mc

s)P (α)P (β|φ, g)P (φ)P (g)dαdβdφdg (2.23)

It is well-known in the homoscedastic case that the Zellner-Siow mixture g-prior advanta-

geously elicits a Cauchy distribution on the regression effects [Liang et al., 2008]. We show

the Cauchy result also holds in the heteroscedastic case; that is:

β ∼ MVCauchyp
(
location = 0, scale =

(
XTΦX

n

)−1
)
; see Section 2.7 for proof.

In classes with homoscedasticity, this intergral is intractable over g and thus a Laplace ap-

proximation is conducted over a single dimension; in heteroscedastic cases, a three-dimensional

Laplace approximation is used to integrate g, λ1 = log(φ1), and λ2 = log(φ2).

2.4 Simulation Studies

2.4.1 Simulation Study: ANCOVA Models

In order to simulate ANCOVA data, we generated independent draws x uniformly over the
interval (0, 10). Outcomes Y were then simulated according to each of the eight classes
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Class Parameters
I (Null) σ2 = 1

II (SLR) τ = 0.5, σ2 = 1

III (ANCOVA) α = 2.0, ν = (4.0, 6.0, 8.0), τ = 0.5, σ2 = 1

IV (Group-Contracted ANCOVA) α = 0.0, ν̃ = (3.0), τ = 0.5, σ2 = 1

V (Interaction ANCOVA) α = 0.5, ν = (1.0, 1.5, 2.0), ρ = (0.25, 0.5, 0.75, 1.0), τ = 0.5, σ2 = 1

VI (Group-Interaction ANCOVA) α = 0.0, ν̃ = (0.8), ρ̃ = (0, 1), τ = 1, σ2 = 1

VII (Heteroscedastic α = 0.0, ν̃ = (3.0), τ = 0.5,
Group-Contracted ANCOVA) σ2

1 = 1, σ2
2 = 5

VIII (Heteroscedastic α = 0.0, ν̃ = (3.0), τ = 0.5, ρ̃ = (0, 1),
Group-Interaction ANCOVA) σ2

1 = 1, σ2
2 = 5

Table 2.1: Settings for the eight model classes in the ANCOVA simulation study where
α = 0, K = 4, and N = 360.

described in Section 2.3.1 with continuous, categorical, interaction, and/or group-based ef-
fects, as well as errors with group-based heteroscedasticity, as appropriate. In this study, we
simulated nk = 90 observations at each level of the SLGF; another simulation study with
nk = 10 is provided in Section 2.7. We note that the settings in Table 2.1 are not calibrated
to be equivalent in the total effect between classes, where such a calibration would be non-
trivial. For example, the Class V model contains eight non-null parameters compared to
the Class I model’s single parameter; thus we avoid comparing overall performance between
classes in this study.

Figure 2.8 shows that overall our method accurately attributes posterior model probabil-

ity to the correct model class for the eight classes described in Section 2.3.1. For Class I (null

model) data, the posterior probability of the true class is high relative to the other classes,

indicating that our method neither misattributes noise to a group-based structure, nor ap-

pears to systematically favor one of the other model classes when it does select the wrong

model. Class II (SLR model) data performs similarly, but Classes IV (group-contracted AN-

COVA) and VII (group-interaction) capture some posterior probability as well. The Class

III (ANCOVA) data setting is favored by the correct class, with Class V (interaction AN-

COVA) being the second choice. Class IV (group-contracted ANCOVA) data appears to

be the most difficult to detect based on the parameters chosen for this study; although its
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Figure 2.3: Posterior probabilities (y-axis) by class based on 1000 Monte Carlo data sets with
K = 4 levels of the categorical predictor, each with 90 observations, for a total of N = 360
observations. The true model class is emphasized in bold on the x-axis. The dashed line
indicates the prior by model class.
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posterior probabilities are generally higher than the other classes’, it is often mistaken for

Class III data, meaning in this case a group-based categorical effect is often mistaken for the

full categorical effect. Note that these misattributed classes differ by only two parameters

in the regression structure. For Class V (interaction ANCOVA) data, the correct model

class is favored. Class VI (group-interaction) data is also correctly favored the majority

of the time; when misclassified, it is usually chosen as Class V (interaction ANCOVA) or

VIII (heteroscedastic ANCOVA). Classes VII (heteroscedastic group-contracted) and VIII

(heteroscedastic group-interaction) perform well; when wrong, Class VII tends to favor a

spurious interaction effect.

These results indicate that, in general, our method tends to identify the correct class.

When no group-based structure is present, our method tends to not erroneously fit spurious

effects or variances. Thus group-based regression effects, interactions, and/or variances are

detected with high accuracy when present. We see similar performance with the additional

study provided in Section 2.7 where N = 40.

2.4.2 Simulation Study: Unreplicated Two-Way Layouts

Row and column effects along with error variance(s) (provided in Table 2.2) were simulated

to generate unreplicated two-way layouts. We consider layouts of size 10× 5 where N = 50.

Another setting with a smaller effect size, and a study on layouts of size 5× 5, are given in

Section 2.7.

Figure 2.4 shows that our method also tends to favor the true class in the two-way unrepli-

cated layout, with high parameter to data ratio and the mixture g-prior. For additive data

from Class I, the true class is generally favored; the most probable alternative is typically

the heteroscedastic additive Class III. Under large effect size, Class II (group-by-column

interaction) data is correctly identified. Class III (heteroscedastic additive) and Class IV
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Class Parameters
I (Additive Model) α = 1, ν ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10}, τ ∈ {1, 2, 3, 4, 5}, σ2 = 1

II (Group-by-Column α = 1, ν ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10}, τ1 ∈ {1.0, 1.8, 2.6, 3.4, 4.2},
Interaction) τ2 ∈ {4.2, 3.4, 2.6, 1.8, 1.0}, σ2 = 1

III (Heteroscedastic α = 1, ν ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10}, τ ∈ {1, 2, 3, 4, 5},
Additive) σ2

1 = 1.0, σ2
2 = 0.10

IV (Heteroscedastic Group- α = 1, ν ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10}, τ1 ∈ {1.0, 1.8, 2.6, 3.4, 4.2},
by-Column Interaction) τ2 ∈ {4.2, 3.4, 2.6, 1.8, 1.0}, σ2

1 = 1.0, σ2
2 = 0.10

Table 2.2: Settings for the four model classes in the two-way unreplicated layout simulation
study with 10× 5 layouts with larger effect size.

Figure 2.4: Posterior probabilities (y-axis) by class based on 1000 Monte Carlo 10×5 layouts.
The true model class is emphasized in bold on the x-axis. The dashed line indicates the prior
by model class.
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(heteroscedastic group-by-column interaction) data are both favored correctly as well re-

garding both effect sizes.

2.5 Case Studies

2.5.1 Case Study: ANCOVA

We revisit the Flurry [1939] data, shown in the center panel of Figure 2.1 and in Figure 2.5.

The breaking strength of a chip coated with a film derived from one of three plant materials

is studied as a function of a continuous predictor (the thickness of the film) and a categorical

predictor (the plant type from which the film was developed). The plot seems to indicate

some degree of heteroscedasticity between canna and corn, versus potato; results are shown

in Figure 2.5. Two models receive 93% of the posterior probability: the heteroscedastic

group-contracted model, with P (mVII
1,2:3|Y ) ≈ 0.51, and the heteroscedastic group-interaction

model, with P (mVIII
1,2:3|Y ) ≈ 0.42.

2.5.2 Case Study: Two-Way Unreplicated Layouts

Franck et al. [2013] and Franck and Osborne [2016] examine a two-way unreplicated layout

describing the copy number variation for genes in six dogs with lymphoma. Samples were

taken from healthy and diseased tissue within each dog. It is clear in the plot that dogs

behave differently by group: dogs 1, 2, and 5 appear to behave distinctly from dogs 3, 4, and

6. With six subjects by row, there are 1+3 · (26−1− 6− 1) = 76 candidate models, including

the null model and three classes each containing 25 models. Thus we show only the six most

probable models, which account for 98.1% of the posterior probability; these results are shown

in Figure 2.6. We conclude with high probability that subjects 1, 2, and 5 behave distinctly

from 3, 4, and 6; this scheme over all classes has probability P (m1,2,5:3,4,6|Y ) ≈ .9680. More

specifically, we also conclude homoscedastic behavior along with this grouping scheme, the
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Figure 2.5: The most probable models from the Flurry [1939] data set are plotted above:
the heteroscedastic group-contracted model (left), with P (mVII

1,2:3|Y ) ≈ 0.51, and the het-
eroscedastic group-interaction model (right), with P (mVIII

1,2:3|Y ) ≈ 0.42. Overall the grouping
scheme where canna and corn are grouped together accounts for about 93.8% of the poste-
rior model probability, while heteroscedastic models account for about 93.0% of the posterior
model probability.

group-by-column interaction model, with P (m1,2,5:3,4,6|Y ) ≈ .9040.

2.6 Discussion

Our proposed method is a flexible and intuitive approach to accommodate linear models with

latent group-based effects underlying the data. This method generalizes the homoscedastic,

two-way unreplicated layout work of Franck [2018] to a heteroscedastic approach to any lin-

ear model with a categorical predictor. By partitioning the data according to the levels of a

categorical predictor, we can detect latent structures within the data that might influence the

regression effects, error variance, or interaction effects. Often, these group-based structures

have straightforward and intuitive interpretations in the context of the data, making the

approach particularly useful to domain experts. The use of fractional Bayes factors allows

us to compare homoscedastic and heteroscedastic models with minimal prior influence. Re-

garding priors on the regression effects, we explored the performance of noninformative and
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Figure 2.6: A two-way unreplicated layout with apparent group-based regression effects
[Franck et al., 2013], where P (mII

1,2,5:3,4,6|Y ) ≈ 0.904 and P (mIV
1,2,5:3,4,6|Y ) ≈ 0.064. Overall

the grouping scheme 1, 2, 5 : 3, 4, 6 accounts for approximately 96.8% of the posterior model
probability.

mixture g-priors in the contexts of ANCOVA and two-way unreplicated layouts, but many

other choices on priors and data layouts can be considered. We considered cases in which

the number of levels of the SLGF K was relatively small, so that a combinatoric search over

all possible grouping schemes was computationally feasible. In cases where K is large, a

Markov-chain model composition (MC3) could be used to search the model space.

In some cases, our method leads to a contraction of the number of effects modeled. For

instance, in the ANCOVA examples illustrated in Section 2.3.1, estimating a group effect ν̃

as opposed to a categorical effect ν will reduce the degrees of freedom used to estimate the

effect from K to 2. Alternatively, in the two-way unreplicated layout examples, modeling a

group-by-column interaction rather than column effects will expand the degrees of freedom

used from C − 1 to 2 · (C − 1).

While we have illustrated our method using two latent groups, an extension to three or

more groups is straightforward conceptually but increases the complexity of the models, the

number of model classes, and the number of models to consider. Fortunately, the two-group

assumption has been shown to lead to useful inferences in several previous works, including
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Kharrati-Kopaei and Sadooghi-Alvandi [2007], Franck et al. [2013], Franck and Osborne

[2016], and Franck [2018].

2.7 Supplement

2.7.1 Marginal Model Probability Calculations

To prevent numeric underflow we consider model probabilites on the logarithmic scale in all

cases. Consider the set of all log-marginal probabilities L = {logP (Y |mc
s)}. Let ℓ⋆ = maxL

and m⋆ = argmax
m

L. Transform L⋆ = L−ℓ⋆ to obtain the set exp[L⋆] = {exp[logP (Y |mc
s)−

logP (Y |m⋆)]} = {P (Y |mc
s)

P (Y |m⋆)
} = {Bmc

s,m
⋆}, representing Bayes factors for each model relative

to the most probable model. Note the untransformed model probabilities are given by

P = { P (Y |mc
s)P (mc

s)∑
P (Y |mc

s)P (mc
s)
} = { P (Y |mc

s)P (mc
s)/P (Y |m⋆)∑

P (Y |mc
s)P (mc

s)/P (Y |m⋆)
} = { Bmc

s,m
⋆
P (mc

s)∑
Bmc

s,m
⋆
P (mc

s)
}; thus we can easily use

these transformed log-marginal probabilities to obtain posterior model probabilities. Our

Laplace approximations generally provided values comparable to quadrature and cubature-

based approximations at less computational expense.

2.7.2 Derivation of Model Probabilities: Noninformative Regres-

sion Effect Priors

Let HX := X(XTX)−1XT .
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Homoscedastic Error Variance, No Group-Based Regression Effects

P (Y |m) =

∫
Θ

[
(2π)−

N
2 |Σ|−

1
2 · exp{−1

2
(Y −Xβ)TΣ−1(Y −Xβ)}

]b
P (θ)dθ

=

∞∫
0

∞∫
−∞

(2π)
−Nb

2 |Σ|−
b
2 exp{−b · 1

2
[Y TΣ−1Y − 2βTXTΣ−1Y + βTXTΣ−1Xβ]}Σ−1dβdγ

=

∞∫
0

∞∫
−∞

(2π)
−Nb

2 γ
Nb
2
−1 exp{−b · 1

2
[Y TΣ−1Y − 2βTXTΣ−1Y + βTXTΣ−1Xβ]}dβdγ

=

∞∫
0

∞∫
−∞

(2π)
−Nb

2 γ
Nb
2
−1 exp{−b · γ

2
[βTXTXβ − 2βTXTY + Y THY ]}×

exp{−b · γ
2
[Y TY − Y THY ]}dβdγ

=

∞∫
0

(2π)
−Nb

2 γ
Nb
2
−1(2π)+

p
2 |b−1γ−1(XTX)−1|+

1
2 exp{−b · γ

2
[Y T (I −H)Y ]}dγ

= (2π)−
Nb−P

2 b−
P
2 |XTX|−

1
2Γ

(
Nb− P

2

)(
b · SSResidI

2

)−Nb−P
2

= π−Nb−P
2 b−

Nb
2 |XTX|−

1
2Γ

(
Nb− P

2

)
(SSResidI)−

Nb−P
2 . �

qb(Y |m) =

∫
Θ

P (Y |mI,θ)P (θ)dθ∫
Θ

P b(Y |mI,θ)P (θ)dθ

=
π−N−P

2 |XTX|− 1
2Γ
(
N−P

2

)
(SSResidI)−

N−P
2 .

π−Nb−P
2 b−

Nb
2 |XTX|− 1

2Γ
(
Nb−P

2

)
(SSResidI)−

Nb−P
2

= π−N(1−b)
2 b

Nb
2 (SSResidI)−

N(1−b)
2

Γ
(
N−P

2

)
Γ
(
Nb−P

2

) . �
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Homoscedastic Error Variance, Group-Based Regression Effects

P (Y |ms) =

∫
Θ

[
(2π)−

N
2 |Σ|−

1
2 · exp{−1

2
(Y −Xβ)TΣ−1(Y −Xβ)}

]b
P (θ)dθ

=

∞∫
0

∞∫
−∞

∞∫
−∞

(2π)
−Nb

2 γ
Nb
2
−1 exp{−b · 1

2
[Y TΣ−1Y − 2βTXTΣ−1Y + βTXTΣ−1XβT ]}dβT

1 dβ
T
2 dγ

=

∞∫
0

∞∫
−∞

∞∫
−∞

(2π)
−Nb

2 γ
Nb
2
−1 exp{−b · γ

2
[βTXTXβ − 2βTXTY + Y THY ]}×

exp{−b · γ
2
[Y TY − Y THY ]}dβ1dβ2dγ

=

∞∫
0

(2π)
−Nb

2 γ
Nb
2
−1(2π)+

P
2 |b−1γ−1(X1X1)

−1|+
1
2 |b−1γ−1(X2X2)

−1|+
1
2×

exp{−b · γ
2
[Y T

1 (I −H1)Y1 + Y T
2 (I −H2)Y2]}dγ

= (2π)−
Nb−P

2 b−
P
2 |XT

1 X1|−
1
2 |XT

2 X2|−
1
2Γ

(
Nb− P

2

)(
b ·
[
SSResidII

1 + SSResidII
2

]
2

)−Nb−P
2

= π−Nb−P
2 b−

Nb
2 |XT

1 X1|−
1
2 |XT

2 X2|−
1
2Γ

(
Nb− P

2

)
(SSResidII

1 + SSResidII
2 )

−Nb−P
2 . �

qb(Y |ms) =

∫
Θ

P (Y |mII
s ,θ)P (θ)dθ∫

Θ

P b(Y |mII
s ,θ)P (θ)dθ

=
π−N−P

2 b−
N
2 |XT

1 X1|−
1
2 |XT

2 X2|−
1
2Γ
(
N−P

2

)
(SSResidII

1 + SSResidII
2 )

−N−P
2

π−Nb−P
2 b−

Nb
2 |XT

1 X1|−
1
2 |XT

2 X2|−
1
2Γ
(
Nb−P

2

)
(SSResidII

1 + SSResidII
2 )

−Nb−P
2

= π−N(1−b)
2 b

Nb
2 (SSResidII

1 + SSResidII
2 )

−N(1−b)
2

Γ
(
N−P

2

)
Γ
(
Nb−P

2

) . �
Heteroscedastic Error Variance

A Laplace approximation is used to evaluate
∫
P (Y |φ,m)P (φ)dφ, parametrized with re-

spect to the log-variances λ1 = log σ2
1 and λ2 = log σ2

2. Denote Λ as the log-variance matrix,
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JΛ as the transformation Jacobian, (λ⋆
1, λ

⋆
2) as the mode of the log-marginal distribution,

and ∇⋆ as the Hessian evaluated at this mode. A subscript of b refers to the same quantities

calculated with respect to the fractional exponentiated likelihood. The joint modes (λ⋆
1, λ

⋆
2)

and (λ⋆
b1
, λ⋆

b2
) are computed using the function optim in R; similarly, the Hessians ∇⋆ and ∇⋆

b

are evaluated at these values using the function hessian in the package numderiv [Gilbert

and Varadhan, 2016, R Core Team, 2017].

We first integrate over the regression effects vector β. Let HΦ := ΦX(XTΦX)−1XTΦ.

P b(Y |mIII
s , φ1, φ2) =

∫
Θ

[
(2π)−

N
2 |Φ|

1
2 · exp{−1

2
(Y −Xβ)TΦ(Y −Xβ)}

]b
P (θ)dθ

=

∞∫
−∞

(2π)
−Nb

2 φ1

n1b
2

−1φ2

n2b
2

−1 exp{−b · 1
2
[Y TΦY − 2βTXTΦY + βTXTΦXβT ]}dβ

=

∞∫
−∞

(2π)
−Nb

2 φ1

n1b
2

−1φ2

n2b
2

−1×

exp{−b · 1
2
[βTXTΦXβ − 2βTXTY + Y THΦY ]}×

exp{−b · 1
2
[Y TΦY − Y THΦY ]}dβ

= (2π)−
Nb−P

2 φ1

n1b
2

−1φ2

n2b
2

−1b−
P
2 |XTΦX|−

1
2 exp{−b · 1

2
[Y TΦY − Y THΦY ]}

We reparametrize the precisions of P b(Y |mIII
s , φ1, φ2) and P (Y |mIII

s , φ1, φ2) to log-variances

λ1 and λ2 to elicit a shape more conducive to the Laplace approximation. For λ1 = lnφ−1
1

and λ2 = lnφ−1
2 , P (Y |mIII

s , λ1, λ2) = P (Y |mIII
s , φ1, φ2) · |JΛ| where ∂φ1

∂λ1
= − exp{−λ1} and

∂φ2

∂λ2
= − exp{−λ2}, so |JΛ| = exp{−(λ1 + λ2)}. Thus the Laplace approximation for the

fractional marginal model probability is given by

qb(Y |mIII
s ) ≈

(2π)| − ∇⋆|− 1
2 · P (Y |mIII

s , φ⋆
b1
, φ⋆

b2
)|J⋆

Λ|
(2π)| − ∇⋆

b |−
1
2 · P b(Y |mIII

s , φ⋆
b1
, φ⋆

b2
)|J⋆

bΛ
|
. �

Empirical comparisons with cubature-based approximations, in addition to the shapes of

the marginal densities P (Y |mIII
s , λ1, λ2) and P b(Y |mIII

s , λ1, λ2), indicate that this Laplace
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Figure 2.7: The marginal densities P (Y |mII
1:2,3,4, λ1, λ2) and P b(Y |mIII

1:2,3,4, λ1, λ2) for one
particular grouping of an ANOVA layout withK = 4 levels of nk = 10 observations each show
an overall shape conducive to the Laplace approximation in both the raw and exponentiated
likelihood cases.

approximation is satisfactory.
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Special Case: Heteroscedastic Error Variance with no Regression Effects Span-

ning Two Variances

P (Y |ms) =

∫
Θ

[
(2π)−

N
2 |Σ|−

1
2 · exp{−1

2
(Y −Xβ)TΣ−1(Y −Xβ)}

]b
P (θ)dθ

=

∞∫
0

∞∫
0

∞∫
−∞

∞∫
−∞

(2π)
−Nb

2 |Σ|−
b
2 exp{−b · 1

2
[Y TΣ−1Y − 2βTXTΣ−1Y + βTXTΣ−1Xβ]}

dβ1dβ2dγ1dγ2

=

∞∫
0

∞∫
0

∞∫
−∞

∞∫
−∞

(2π)
−Nb

2 γ
n1b
2

−1γ
n2b
2

−1 exp{−b · 1
2
[Y TΣ−1Y − 2βTXTΣ−1Y + βTXTΣ−1Xβ]}

dβ1dβ2dγ1dγ2

=

∞∫
0

∞∫
0

(2π)
−Nb

2 γ
n1b
2

−1γ
n2b
2

−1(2π)+
P
2 |b−1γ−1(XT

1 X1)
−1|+

1
2 |b−1γ−1(XT

2 X2)
−1|+

1
2×

exp{−b · γ
2
[Y T

1 (I −H1)Y1 + Y T
2 (I −H2)Y2]}dγ1dγ2

= (2π)−
Nb−P

2 b−
P
2 |XT

1 X1|−
1
2 |XT

2 X2|−
1
2Γ

(
Nb− P

2

)(
b ·
[
SSResidIV

1 + SSResidIV
2

]
2

)−Nb−P
2

= (2π)−
Nb−P

2 b−
P
2 |XT

1 X1|−
1
2 |XT

2 X2|−
1
2Γ

(
n1b− p1

2

)
Γ

(
n2b− p2

2

)
×

(
b · SSResidIV

1

2

)−n1b−p1
2
(
b · SSResidIV

2

2

)−n2b−p2
2

.
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qb(Y |ms) =

∫
Θ

P (Y |ms,θ)P (θ)dθ∫
Θ

P b(Y |mIV
s ,θ)P (θ)dθ

=
(2π)−

N−P
2 |X1X1|−

1
2 |X2X2|−

1
2Γ
(
n1−p1

2

)
Γ
(
n2−p2

2

)
(2π)−

Nb−P
2 b−

P
2 |X1X1|−

1
2 |X2X2|−

1
2Γ
(
n1b−p1

2

)
Γ
(
n2b−p2

2

)×
(

SSResidIV
1

2

)−n1−p1
2
(

SSResidIV
2

2

)−n2−p2
2

(
b·SSResidIV

1

2

)−n1b−p1
2
(

b·SSResidIV
2

2

)−n2b−p2
2

= π−N(1−b)
2 b

Nb
2 (SSResidIV

1 )−
n1(1−b)

2 (SSResidIV
2 )−

n2(1−b)
2

Γ
(
n1−p1

2

)
Γ
(
n1b−p1

2

) Γ (n2−p2
2

)
Γ
(
n2b−p2

2

) . �
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2.7.3 Derivation of Model Probabilities: Mixture g Regression Ef-

fect Priors

P (Y , g|ms) =

∞∫
0

∞∫
0

∞∫
−∞

∞∫
−∞

P b(Y |α, β, φ,ms)P (α, φ)P (β|φ, g)P (g)dαdβdφdg

=

∞∫
0

∞∫
0

∞∫
−∞

∞∫
−∞

(2π)−
Nb
2 φ

Nb
2 exp{−φb

2
(Y − 1Tα−Xβ)T (Y − 1Tα−Xβ)}×

(2π)−
P
2 |gφ−1(XTX)−1|−

1
2 exp{−φ

2

βTXTXβ

g
}φ−1P (g)dαdβdφdg

=

∞∫
0

∞∫
0

∞∫
−∞

∞∫
−∞

(2π)−
Nb+P

2 φ
Nb
2
−1×

exp{−φ

2
(α2b1T1− 2αb(1TY − 1TXβ) + b(Y −Xβ)H1(Y −Xβ))}×

|gφ−1(XTX)−1|−
1
2 exp{−φ

2
(βT

(
XTX

g
+ bXTX

)
β − 2βT bXTY )}×

exp{−φ

2
(bY TY − b(Y −Xβ)H1(Y −Xβ))}P (g)dαdβdφdg

=

∞∫
0

∞∫
0

∞∫
−∞

(2π)−
Nb+P−1

2 φ
Nb+P−1

2
−1b−

1
2 |XTX|−

1
2N− 1

2 g−
P
2 ×

exp{−φ

2
(βT

(
XTX

g
+ bXTX

)
β − 2βT bXTY +

b2g

1 + bg
Y THXY )}×

exp{−φ

2
(bY TY − bY TH1Y − b2g

1 + bg
Y THXY )}P (g)dβdφdg

=

∞∫
0

∞∫
0

(2π)−
Nb−1

2 φ
Nb−1

2
−1b−

1
2N− 1

2 (1 + bg)−
P
2 ×

exp{−φ

2
(bY TY − bY TH1Y − b2g

1 + bg
Y THXY )}dφdg

=

∞∫
0

Γ
(
Nb−1

2

)
√
π
Nb−1√

N
b−

Nb
2 (1 + bg)−

Nb−P−1
2 SST−Nb−1

2 [1 + bg(1−R2)]−
Nb−1

2 P (g)dg. �
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After integrating over α, β, and φ, we obtain

P (Y , g|mc
s) =

∞∫
0

Γ(Nb−1
2

)b−
Nb
2

√
π
Nb−1√

N

SST−Nb−1
2

(1 + bg)
Nb−P−1

2

[1+bg(1−R2)]−
Nb−1

2 g−1.5 exp{−N

2g
}dg (2.24)

To execute the Laplace approximation over g, we must obtain the mode g⋆ = argmax
g

P (Y , g|mc
s),

the root of the equation

−Qb2(P + 3)g3 + (b(Nb− P − 4)− 2Q)g2 + (Nb(2−R2)− 3)g +N := 0 (2.25)

where Q = 1−R2. We also require the Hessian evaluated at the mode,

H⋆ =
∂2

∂g2
[log((1 + bg)

Nb−P−1
2 (1 +Qbg)−

Nb−1
2 g−

3
2 exp{−N

2g
})]
∣∣∣∣g=g⋆

=
1

2

[
(Nb− 1)b2Q2

(1 +Qbg⋆)2
− (Nb− P − 1)b2

(1 + bg⋆)2
+

3

(g⋆)2
− 2N

(g⋆)3

]
.

These expressions are appropriate to use in homoscedastic classes with either global or dis-

tinct regression effects; we simply compute the corresponding R2 and use the appropriate P

based on the model under consideration.

In classes with heteroscedasticity, the integral is intractable over both φ and g; thus

we must employ a three-dimensional Laplace approximation to evaluate this integral. For

computational ease and to improve the accuracy of the approximation, we again parametrize

with respect to the log-variance; let Λ represent the log-variance matrix. Denote HΛ =

Λ1(1TΛ1)−11TΛ; then integrating out the global intercept and regression effects yields an

expression for P b(Y , λ1, λ2, g|mc
s):

= (2π)−
Nb+P−1

2 λ
n1b
2

−1

1 λ
n2b
2

−1

2 g−
P
2 b−

P+1
2 |XTΛX|

1
2 |1TΛ1|−

1
2 |
(
1 + bg

bg

)
XTΛX −XTHΛX|−

1
2×

JΛ · exp{− b

2
[Y ΛY − Y THΛY − Y T (Λ−HΛ)

TX(
1 + bg

bg
XTΛX −XTHΛX)XT (Λ−HΛ)Y

T ]}

The joint mode (λ⋆
1, λ

⋆
2, g

⋆) is computed using the function optim in R; similarly, the Hessian
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is computed at this value using the function hessian in the package numderiv.

Heteroscedastic Zellner-Siow Cauchy Result

Let β|Φ, g ∼ N(0, g(XTΦX)−1) and g ∼ IG(1
2
, N

2
).

Then P (β|g, Φ) = (2π)−
P
2 |g(XTΦX)−1|− 1

2 exp{−1
2
βXTΦX

g
β} and P (g) =

(N
2 )

1
2

Γ( 1
2)

g−
3
2 exp{−N

2g
}.

P (β|φ) =
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=

∫
(2π)−

P
2 |g(XTΦX)−1|−
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=
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=
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1
2N

1
22−

1
2π− 1

2 × g−
P+1
2

−1 exp{−
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). �

2.7.4 Supplemental ANCOVA Simulation Study

We let nk := 10 for each level of the SLGF. The parameter settings are provided in Table

2.1.
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Figure 2.8: Posterior probabilities (y-axis) by class based on 1000 Monte Carlo data sets with
K = 4 levels of the categorical predictor, each with 10 observations, for a total of N = 40
observations. The true model class is emphasized in bold on the x-axis. The dashed line
indicates the prior by model class.
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Class Parameters
I (Additive Model) ν ∈ {1, 2, 3, 4, 5, 7, 8, 9, 10}, τ ∈ {1, 2, 3, 4, 5}, σ2 = 1

II (Group-by-Column ν ∈ {1, 2, 3, 4, 5, 7, 8, 9, 10}, τ1 ∈ {1.0, 1.5, 2.0, 2.5, 3.0},
Interaction) τ2 ∈ {3.0, 2.5, 2.0, 1.5, 1.0}, σ2 = 1

III (Heteroscedastic ν ∈ {1, 2, 3, 4, 5, 7, 8, 9, 10}, τ ∈ {1, 2, 3, 4, 5},
Additive) σ2

1 = 1.0, σ2
2 = 0.25

IV (Heteroscedastic Group- ν ∈ {1, 2, 3, 4, 5, 7, 8, 9, 10}, τ1 ∈ {1.0, 1.5, 2.0, 2.5, 3.0},
by-Column Interaction) τ2 ∈ {3.0, 2.5, 2.0, 1.5, 1.0}, σ2

1 = 1.0, σ2
2 = 0.25

Table 2.3: Settings for the four model classes in the 10× 5 two-way layout simulation study
with smaller effect size.

Class Parameters
I (Additive Model) ν ∈ {1, 1.5, 2, 2.5, 3}, τ ∈ {1, 2, 3, 4, 5}, σ2 = 1

II (Group-by-Column ν ∈ {1, 2, 3, 4, 5}, τ1 ∈ {1.0, 1.8, 2.6, 3.4, 4.2},
Interaction) τ2 ∈ {4.2, 3.4, 2.6, 1.8, 1.0}, σ2 = 1

III (Heteroscedastic ν ∈ {1, 2, 3, 4, 5}, τ ∈ {1, 2, 3, 4, 5},
Additive) σ2

1 = 1.0, σ2
2 = 0.25

IV (Heteroscedastic Group- ν ∈ {1, 2, 3, 4, 5}, τ1 ∈ {1.0, 1.8, 2.6, 3.4, 4.2},
by-Column Interaction) τ2 ∈ {4.2, 3.4, 2.6, 1.8, 1.0}, σ2

1 = 1.0, σ2
2 = 0.25

Table 2.4: Settings for the four model classes in the two-way layout simulation study with
5× 5 layouts with larger effect size.

2.7.5 Supplemental Two-way Layout Simulation Study

We provide three additional simulation studies in the twoway layout scenario: 10×5 layouts

with a smaller effect size than the study provided in Section 2.4.2, as well as 5 × 5 studies

with larger and smaller effect sizes.
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Figure 2.9: Posterior probabilities (y-axis) by class based on 1000 Monte Carlo 10×5 layouts
with smaller effect size. The true model class is emphasized in bold on the x-axis. The dashed
line indicates the prior by model class.

Class Parameters
I (Additive Model) ν ∈ {1, 2, 3, 4, 5}, τ ∈ {1, 2, 3, 4, 5}, σ2 = 1

II (Group-by-Column ν ∈ {1, 2, 3, 4, 5}, τ1 ∈ {1.0, 1.5, 2.0, 2.5, 3.0},
Interaction) τ2 ∈ {3.0, 2.5, 2.0, 1.5, 1.0}, σ2 = 1

III (Heteroscedastic ν ∈ {1, 2, 3, 4, 5}, τ ∈ {1, 2, 3, 4, 5},
Additive) σ2

1 = 1.0, σ2
2 = 0.25

IV (Heteroscedastic Group- ν ∈ {1, 2, 3, 4, 5}, τ1 ∈ {1.0, 1.5, 2.0, 2.5, 3.0},
by-Column Interaction) τ2 ∈ {3.0, 2.5, 2.0, 1.5, 1.0}, σ2

1 = 1.0, σ2
2 = 0.25

Table 2.5: Settings for the four model classes in the two-way layout simulation study with
5× 5 layouts with smaller effect size.
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Figure 2.10: Posterior probabilities (y-axis) by class based on 1000 Monte Carlo 5×5 layouts
with larger effect size. The true model class is emphasized in bold on the x-axis. The dashed
line indicates the prior by model class.
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Figure 2.11: Posterior probabilities (y-axis) by class based on 1000 Monte Carlo 5×5 layouts
with smaller effect size. The true model class is emphasized in bold on the x-axis. The dashed
line indicates the prior by model class.



Chapter 3

Bayesian Model Selection with

Group-Based Regression Effects and

Heteroscedasticity using the R

Package slgf

Linear models are flexible and among the most frequently implemented statistical methods.

However, their performance can suffer when assumptions are violated. We focus on the

scenario in which the levels of a categorical predictor exhibit two latent groups, leading

to group-based regression effects and/or heteroscedastic error variance. First we review

the SLGF (suspected latent grouping factor) method. Next, using both observational and

experimental data, we illustrate the usage of the R package slgf in the context of several

common linear model layouts: one-way analysis of variance (ANOVA), analysis of covariance

(ANCOVA), a two-way replicated layout, a two-way unreplicated layout, and a balanced

incomplete block design (BIBD). We have selected data that reveal the shortcomings of

classical analyses to emphasize the advantage our method can provide when a latent grouping

structure underlies the data.

41
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3.1 Introduction

Linear models with categorical predictors are pervasive in the social and natural sciences.

Many well-established classical and Bayesian methods exist to analyze such models, but

conventional approaches may often rely on assumptions that are restrictive and fail to account

for more subtle latent structures within the data. Several examples of such datasets can be

found in Franck and Osborne [2016], Franck [2018], Kharrati-Kopaei and Sadooghi-Alvandi

[2007], and Metzger and Franck [2019]. Consider Figure 3.1, which illustrate three of the

five datasets considered herein. In each case, upon inspecting the plot, the researcher might

suspect that there is a latent grouping structure (indicated by color-coding) where groups are

formed by partitioning the levels of a factor; we call this the suspected latent grouping factor,

or SLGF. The left panel represents a one-way analysis of variance (ANOVA) study where a

continuous measurement of olfactory acuity (y-axis) is modeled as a function of age, where

age is represented in five categories (x-axis) [O’Brien and Heft, 1995]. We suspect that the

levels 1, 2, and 3 of the slgf, age, have distinct means and error variances from levels 4 and

5. The center panel shows a BIBD, where abrasion from a road test was measured on four

tires (blocks). Four treatments (compounds used to manufacture the tires) were analyzed,

but due to manufacturing limitations each tire was made from sections of three compounds

each. Compounds A and B appear to behave similarly to one another, as do C and D.

Finally, the right panel shows the example described by Meek and Ozgur [1991], where the

torque required to tighten a locknut was measured as a function of a plating process and

a threading technique. The plating processes analyzed included treatments with cadmium

and wax, heat treating, and phosphate and oil, denoted CW, HT, and PO, respectively. The

threading techniques studied include bolt and mandrel, the types of fixture on which each

locknut was affixed to conduct the test. We suspect that observations measured on a bolt

may have a higher error variance than those from the mandrel.
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Figure 3.1: Data from O’Brien and Heft [1995] (left), Davies [1954] (center), and Meek and
Ozgur [1991] (right). These data sets appear to have a latent grouping structure, color-coded
for emphasis. The left panel appears to show two groups with both distinct means and error
variances; the center panel shows two groups with distinct regression effects; and the right
panel shows group-based error variances, and group-based interactions may also be present.
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3.1.1 Model Classes and Grouping Schemes

We first describe the model classes associated with the SLGF methodology; for a thorough

review see Metzger and Franck [2019]. Note that the color-coding in Figure 3.1 is based on

subjective appearance. In the absence of prior information regarding grouping structures,

we consider all possible ways to partition the levels of the SLGF We denote S as the set

of all such possible grouping schemes. The function lm.slgf automatically considers all

possible grouping schemes based on a user-chosen SLGF, where the user can also specify the

minimum number of levels of the SLGF that may comprise an individual group. Notationally,

we denote the grouping schemes of Figure 3.1 as 1,2,3:4,5 and A,B:C,D and bolt:mandrel

respectively. The number of possible grouping schemes grows exponentially with the number

of levels of the SLGF, so slgf is recommended for use with categorical predictors with 10

or fewer levels.

Additionally, our suspicions in Figure 3.1 from left to right of group-based means and

variances, group-based regression effects, and group-based variances are also nothing but

subjective guesses at this point. We must also account for all such user-specified model

structures in addition to the combinatorically possible grouping schemes. We thus introduce

the concept of a model class, which summarizes the model effects along with its error variance

structure (either homoscedastic or heteroscedatic). We illustrate this idea with the roadwear

data set in the center panel of Figure 3.1:

> head(roadwear)

abrasion compound tire

1 238 A 1

2 238 B 1

3 279 C 1

4 196 A 2

5 213 B 2

6 308 D 2
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The column abrasion denotes the continuous response, compound the treatment factor, and

tire the blocking factor. We consider compound as the SLGF. Thus we might reasonably

consider many models; three non-exhaustive examples are provided here:

1. abrasion∼compound+tire, where the compound and tire effects each have three de-

grees of freedom. This simple, standard model does not rely on the SLGF methodology,

and its inclusion as a candidate helps assess the plausibility that a grouping structure

actually underlies the data.

2. abrasion∼group+tire, where the tire effect again has three degrees of freedom, but

the group effect contracts four levels of compound into two groups so the group effect

has only one degree of freedom, thus reducing the dimensionality of the model.

3. abrasion∼group, where the only effect estimated is a one parameter group effect.

These models are just three possible parametrizations, and slgf allows the user to tailor

the set of candidate models to subject-specific considerations. When the user includes the

string group in a model specification, the SLGF is automatically considered in the context

of a group-based effect. With each such specification, the user must also specify whether

there is also latent group-based heteroscedasticity; when a 1 is indicated in the corresponding

argument of het, group-based variances will automatically be considered. It is possible to

consider group-based variances without group-based regression effects if the group term does

not appear in the corresponding usermodel. Such a model specification, along with either a

single error variance or group-based error variances, comprise a model class; see Section 3.4

for more detail.

Note that some model classes may contain one model only. For example, when the first

example given above is considered in the model space, there is only possible candidate model.

On the other hand, example 2 contains a group effect, and there are six possible grouping

schemes by compound, so this model class contains six models. If example 1 is considered with

group-based variances, there are still three possible grouping schemes for the variances but
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only one possible regression effect specification, so this class would also contain six models.

See Metzger and Franck [2019] for a more thorough description of grouping variables and

schemes.

3.1.2 Classical Approach

Let us narrow our focus to the leftmost panel, the olfactory data set. A researcher’s first

inclination for analysis might consist of the following steps:

1. Choose a signifcance level α;

2. For the age-level means {µi}5i=1, conduct an F -test to compare the null hypothesis,

H0 : µ1 = µ2 = µ3 = µ4 = µ5 vs. HA : at least one mean is different;

3. If we reject the null hypothesis, conduct a post-hoc analysis to compare the distinct

means of each age category.

In R, this analysis might is usually conducted by fitting a null model with a single mean

effect, an alternative model with an age category effect with four degrees of freedom, and

comparing the two via the anova function: We note that the p-value of the ANOVA F -test

is approximately 1.3947 × 10−11, and thus conclude that there are distinct means for any

reasonable significance level α. We then might perform a post-hoc analysis, such as the

Tukey honest significant difference test [Tukey, 1949]:

> TukeyHSD(aov(smell.alt), "as.factor(agecat)")

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = smell.alt)
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$`as.factor(agecat)`

diff lwr upr p adj

2-1 0.02824415 -0.08663923 0.143127531 0.9610275

3-1 -0.01075188 -0.14506207 0.123558306 0.9994692

4-1 -0.11580171 -0.22577846 -0.005824966 0.0335696

5-1 -0.25727569 -0.36786495 -0.146686433 0.0000000

3-2 -0.03899603 -0.17462764 0.096635579 0.9325096

4-2 -0.14404587 -0.25563257 -0.032459160 0.0043323

5-2 -0.28551984 -0.39771027 -0.173329416 0.0000000

4-3 -0.10504983 -0.23655127 0.026451604 0.1838271

5-3 -0.24652381 -0.37853793 -0.114509694 0.0000070

5-4 -0.14147398 -0.24863454 -0.034313415 0.0032756

Note this method computes (
5
2
)
2

= 10 p-values for pairwise difference comparisons, concluding,

for instance, that the means of levels 1 and 2, 1 and 3, and 2 and 3 are statistically equivalent.

On the other hand, levels 1 and 5, among many others, have statistically distinct means. The

comparison between levels 4 and 1 has a p-value significant at α = 0.05, but not α = 0.01.

And perhaps most importantly, this method does not account for the apparent group-based

heteroscedasticity.

Our proposed method and the slgf package address these concerns in a user-friendly

manner. The user can specify the model classes they wish to consider using familiar R

syntax, and posterior model probabilities are automatically computed for each model class

and grouping scheme. This can summarize both the effects that should be included in the

model, and the latent grouping structure underlying the SLGF, if it is indeed present.

The remainder of this chapter is organized as follows: Section 2 provides the mathematical

background of the SLGF approach; Section 3 outlines the functions that comprise the slgf

package; Section 4 provides detailed examples demonstrating the functionality of slgf; and

Section 5 provides discussion and future avenues to improve the package.
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3.2 Mathematical Details

3.2.1 Model Specification

We next briefly review a model framework flexible enough to account for all possible model

classes, employing the notation of Metzger and Franck [2019]. We begin with the model

Y = Xβ + ε (3.1)

where Y is an N × 1 vector of continuous observations; X is an N × P design matrix; β is

a P × 1 vector of regression effects; and ε is an N × 1 residual vector where ε ∼ N(0, Σ).

We must augment our notation to account for the full SLGF with K degrees of freedom or

a 2-degree of freedom group effect; interactions with the SLGF or group effect; other effects

of interest unrelated to the SLGF; and potential group-based heteroscedasticity. Thus we

let X = (1T |W |V |U) and β = (α,ν, τ ,ρ) to obtain

Y = 1Tα +Wν + V τ + Uρ+ ε (3.2)

where 1T is an N × 1 vector of 1s; α is a scalar intercept common to all models; ν is the

K-dimensional vector of SLGF effects; W is the corresponding K × N design matrix; τ is

the J-dimensional vector of additional effects; V is the corresponding J ×N design matrix;

ρ is the L-dimensional vector of SLGF-interaction effects; and U is the corresponding L×N

design matrix.

Not all linear models will incorporate each term; for example, the ANOVA layout in the

left panel of Figure 1 contains only a single categorical predictor so τ := 0 and ρ := 0. When

the SLGF is modeled as a group effect, denote this effect as ν̃; when there is an interaction

involving the group effect, denote it as ρ̃.

In heteroscedastic contexts, let σ2
1 and σ2

2 represent the error variances of groups 1 and
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2, respectively. Let Σ̃ denote the covariance matrix where the ith diagonal element is σ2
1 if

yi belongs to group 1, or σ2
2 if yi belongs to group 2.

3.2.2 Parameter Priors

For the usual case where prior information is unavailable, we prefer noninformative priors

on the regression effects and error variance(s); for the regression effects, this is a flat prior.

For homoscedastic models,

P (β, σ2|m) ∝ 1

σ2
(3.3)

and for a heteroscedastic models

P (β, σ2
1, σ

2
2|m) ∝ 1

σ2
1 · σ2

2

(3.4)

However, in contexts with limited data, such as the two-way unreplicated layout and BIBD

illustrated in Sections 4.3 and 4.4, respectively, we employ the Zellner-Siow mixture g-prior

[Zellner and Siow, 1980, Zellner, 1986, Liang et al., 2008], which reduces the minimal training

sample size necessary for the computation of the fractional Bayes factor (see Section 3.2.3

for further detail). For homoscedastic models,

P (α, σ2|m) ∝ 1

σ2
and β−α|Σ, g,m ∼ N(0, g(XTΣX)−1); (3.5)

for heteroscedastic models,

P (α, σ2
1, σ

2
2|m) ∝ 1

σ2
1 · σ2

2

and β−α|Σ̃, g,m ∼ N(0, g(XT Σ̃X)−1); (3.6)

and in both cases,

g ∼ IG
(1
2
,
N

2

)
. (3.7)
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3.2.3 Fractional Bayes Factors and Posterior Model Probabilities

Note that if we were to form a standard Bayes factor comparing a homoscedastic and het-

eroscedastic model, the constants associated with the noninformative priors would not cancel

one another and the Bayes factor would be defined only up to an unspecified constant. Thus

we invoke a fractional Bayes factor approach to compute well-defined posterior model prob-

abilities for each model; for a thorough review see O’Hagan [1995], and see Metzger and

Franck [2019] for a discussion of fractional Bayes factors in the context of this problem.

Let M represent the full set of models under consideration, representing all classes and

grouping schemes of interest. Denote θ as the full set of unknown parameters associated

with a model m ∈ M and π(θ) as the joint prior on these parameters. A fractional Bayes is

a ratio of two fractional marginal model probabilites, where a fractional marginal likelihood

is defined as

qb(Y |θ) =
∫
P (Y |θ,m)π(θ)dθ∫
P (Y |θ,m)bπ(θ)dθ

(3.8)

for a some fractional exponent b. Although O’Hagan [1995] provides several recommenda-

tions for choice of b, slgf exclusively implements b = m0

N
where m0 is the minimal training

sample size required for P (Y |m) to be a proper distribution. Thus we must compute the

integrals
∫
P (Y |θ,m)π(θ)dθ and

∫
P (Y |θ,m)bπ(θ)dθ for all m ∈ M. In the case of nonin-

formative regression priors, β is integrated analytically, and σ2 or σ2
1, σ

2
2 are integrated using

a Laplace approximation after a log-variance transformation. In the Zellner-Siow mixture g-

prior case, α and β−α are integrated analytically, and σ2 or σ2
1, σ

2
2 and g are again integrated

using a Laplace approximation with a log-variance transformation. Let θ̃ represent the set

of unknown parameters after the regression effects β have been integrated out. Then for

dimensionality d = 2 in the noninformative prior case and d = 3 in the Zellner-Siow mixture

g-prior case,

log

(∫
P (Y |θ̃,m)π(θ̃)dθ̃

)
≈ d

2
log(2π)− 1

2
log | −H⋆|+ log(P (Y |θ̃⋆,m)) (3.9)
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where θ̃⋆ is the mode of P (Y |θ̃,m)π(θ̃) and H⋆ is the Hessian matrix evaluated at θ̃⋆. We

compute these values with the functions optim and numDeriv::hessian, respectively. We

make a similar computation for
∫
P (Y |θ̃,m)bπ(θ̃)dθ̃ to compute the fractional marginal

model probability qb(Y |θ) for all m ∈ M, well defined for both homoscedastic and het-

eroscedastic models. Once log-fractional marginal likelihoods have been computed for all

models, we subtract the maximum from this set so that the set of log-fractional marginal

likelihoods has been rescaled to have a maximum of 0. Each value is exponentiated to obtain

a set of fractional marginal likelihoods with maximum 1. This adjustment helps to avoid

numerical underflow when computing posterior model probabilities.

3.2.4 Model Priors

With this adjusted set of fractional marginal likelihoods, we next consider the priors for the

model space. The package slgf imposes a uniform prior by model class, and for classes

containing multiple models, the prior on each class is uniformly divided among the models

it contains. We finally compute posterior model probabilities for each model:

P (m′|Y ) =
P (Y |m′)P (m′)∑
M
P (Y |m)P (m)

(3.10)

3.2.5 Parameter Estimation

We compute estimators for the regression parameters, variance(s), and g (when the Zellner-

Siow mixture g-prior is used). Estimation of the regression parameters is straightforward:

β̂ = argmax
β

P (Y |X,β,Σ) (3.11)

so that β̂ = (XTX)−1XTY . Estimation of Σ̂ and g is more intensive. Recall we transform

λ = log σ2 for one or both variances included in a model; let λ̂ := {λ̂} in homoscedastic
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models or {λ̂1, λ̂2} in heteroscedastic models. Then

λ̂ = argmax
λ

∫
P (Y |X,β,Σ)P (β)P (Σ)dβ (3.12)

or,

{λ̂, ĝ} = argmax
λ,g

∫
P (Y |X,β,Σ, g)P (α)P (β−α|Σ)P (g)dβ (3.13)

Then, σ̂2 = exp{λ̂} for σ̂2 = {σ̂2} or σ̂2 = {σ̂2
1, σ̂

2
2}.

3.3 Functionality

The function lm.slgf requires several inputs to compute and output posterior model prob-

abilities for all models and model classes of interest. The user begins with a dataframe

containing a continuous response, at least one categorical predictor, and any other covari-

ates of interest. To prevent confusion with the SLGF methodology, this dataframe cannot

contain column names with the character string “group”. The user must first identify a

suspected latent grouping factor, usually by plotting the data and noting a latent structure

within the levels of a categorical predictor as illustrated in Section 3.1. The user indicates,

via the arguments response and lgf, character strings corresponding to the response and

the suspected latent grouping factor variable names, respectively.

Next the user determines the model classes they wish to evaluate. We note the distinction

between these model classes and the R class of a variable. The argument usermodels is a list

where each element contains a string of R class formula or character. The user also specifies

which classes should also be considered in a heteroscedastic context via the argument het,

which provides an indicator 1 or 0 corresponding to each model class specified in usermodels.

Together the arguments usermodels and het create the full set of model classes considered.

Next the user chooses a prior to place on the regression effects. As described in Section

3.2.2, prior="flat" (the default) implements the noninformative prior and prior="zs"
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imposes the Zellner-Siow mixture g-prior.

Finally the user must specify the minimum number of levels of the SLGF that can

comprise a group, via the argument min.levels, which defaults to 1. Because the number of

possible grouping schemes increases exponentially with K, the user can reduce the number of

candidate models, and hence speed up the computation, by increasing min.levels; however,

because we partition into two groups, note min.levels may not exceed K+1
2

. Additionally,

when considering data with limited degrees of freedom, increasing min.levels can also

ensure estimability of the specified usermodels; see Section 3.4.3 for more detail.

3.4 Illustrations

We next demonstrate the implementation of this methodology with the R package slgf.

3.4.1 ANOVA

First we revisit the dataset (denoted smell) analyzed by O’Brien and Heft [1995], who

measured olfactory acuity olf on a continuous scale as a function of age agecat, where

age groups were divided into five categorical levels. We note that levels 4 and 5 of the

categorical predictor, age category, appear to have higher variance than levels 1, 2, and

3, but most standard analyses assume homoscedasticity. We consider the usual analysis

comparing the null model, with a single mean, versus the alternative model, with 4 degrees of

freedom for the mean effects, with homoscedastic error variance. Note we obtain maximum

likelihood estimates for the single variance of σ̂2
Null = 0.04334 and σ̂2

Alt = 0.03211 for the

null and alternative models, respectively. Instead consider agecat as the suspected latent

grouping factor. The apparent latent grouping structure we observe is denoted 1,2,3:4,5 (or

equivalently, 4,5:1,2,3). The means may also differ by level, but this is more difficult to

distinguish by the plot. Thus we first consider the following model and heteroscedasticity
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Figure 3.2: O’Brien and Heft [1995] studied olfactory function by age (y-axis), where age
was divided into five categories (x-axis). The data suggests potential heteroscedasticity, with
latent grouping structure 1,2,3:4,5.

structures: smell.models <- list("olf∼1", "olf∼agecat", "olf∼group")

smell.het <- c(0, 0, 1) This elicits four model classes: a homoscedastic global mean,

homoscedastic age level means, homoscedastic group-based means, and group-based means

with group-based heteroscedasticity. Finally we note that with a relatively large sample size,

we prefer the use of noninformative priors via prior="flat", and we specify min.levels=1,

as we have no prior information on the number of levels of agecat that may be grouped

together and we wish to consider a comprehensive set of candidate models. The number of

unique classes can always be obtained as length(usermodels)+sum(het).

smell.out <- lm.slgf(df=smell, response="olf", lgf="agecat",

usermodels=smellmodels, prior="flat", het=c(0,0,1), min.levels=1)

The output is a list of class slgf, with six elements when prior="flat" and seven when

prior="zs":

• results, an M × 11 matrix containing the model selection results and information
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for each model, including Model, the formula associated with each model; Scheme,

the grouping scheme associated with each model; Variance, a string of either Homosk

or Heterosk associated with each model; logFlik, the log-factional marginal likeli-

hood associated with each model; Mod.Prior, the model prior associated with each

model; Fmodprob, the posterior fractional model probability associated with each

model; Cumulative, the cumulative posterior model probability of the models aggre-

gated in descending order; df.Index, an indicator of which element of group.dfs con-

tains the corresponding data.frame associated with each model’s scheme; mle.index,

mle.index, an indicator of which element of coefficients, variances, and gs con-

tains the estimators associated with each model; Model.Index, an indicator of each

model’s rank by posterior model probability; and Class, denoting the model class

associated with each model

• group.dfs, a list containing dataframes associated with each model class containing

the appropriate effects, including group effects

• scheme.Probs, a S× 1 data.frame containing the total probability for each grouping

scheme considered

• class.Probs, a C × 1 data.frame containing the total probability for each model

class considered

• coefficients, MLEs for each model’s regression effects

• variances, REML estimates for each model’s variance(s)

• gs, REML estimates for each model’s g; only included if prior="zs"

We summarize the five most probable models:

> smell.out$results[1:5,c(1:3,6,11)]

Model Scheme Variance modprob.FBF Class
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1 olf~group 4,5:1,2,3 Heterosk 1e+00 olf~group, Heterosk

2 olf~agecat None Homosk 1e-08 olf~agecat, Homosk

3 olf~group 5:1,2,3,4 Heterosk 0e+00 olf~group, Heterosk

4 olf~group 4:1,2,3,5 Heterosk 0e+00 olf~group, Heterosk

5 olf~group 4,5:1,2,3 Homosk 0e+00 olf~group, Homosk

Note we overwhelmingly favor the model with group-based mean effects and variances via

scheme 4,5:1,2,3. Recall that our variance MLEs were σ̂2
Null = 0.04344 and σ̂2

Alt = 0.03211.

However, with our method we obtain two REML estimators:

> smell.hats <- extract.hats(smell.out, model.index=1)

> print(smell.hats$`sigsq.4,5`)

[1] 0.05869897

> print(smell.hats$`sigsq.1,2,3`)

[1] 0.01211161

The function extract.hats provides the estimators for the coefficient(s) and variance(s) for

a given model.index, as well as g if prior="zs". That is, we compute REML estimates

σ̂2
1,2,3 = 0.05869897 and σ̂2

4,5 = 0.01211161. This suggests that the standard methods over-

estimated the variance for three levels of the categorical predictor, and underestimated the

variance for the other two.

Let us also consider the case where het=c(1,1,1); that is, we include two additional

classes: group-based variances and a single global mean, and group-based variances with

means by agecat.

> smell.out <- lm.slgf(df=smell, response="olf", lgf="agecat",

usermodels=smellmodels, prior="flat", het=c(1,1,1), min.levels=1)

> smell.out$results[1:5,c(1:3,6,11)]

Model Scheme Variance modprob.FBF Class
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1 olf~group 4,5:1,2,3 Heterosk 0.76422666 olf~group, Heterosk

2 olf~agecat 4,5:1,2,3 Heterosk 0.23577298 olf~agecat, Heterosk

3 olf~agecat 1,2:3,4,5 Heterosk 0.00000012 olf~agecat, Heterosk

4 olf~agecat 5:1,2,3,4 Heterosk 0.00000010 olf~agecat, Heterosk

5 olf~agecat 1:2,3,4,5 Heterosk 0.00000007 olf~agecat, Heterosk

Now the most probable models are a bit less conclusive, as the distinct category-means model

with scheme 4,5:1,2,3 group-based heteroscedasticity accounts for a meaningful amount of

posterior model probability. We can easily summarize the scheme and class probabilities,

which overwhelmingly favor scheme 4,5:1,2,3 and moderately favor the group-based means

and variances model class:

> smell.out$scheme.Probs

Scheme.Prob

4,5:1,2,3 0.99999968

1,2:3,4,5 0.00000012

5:1,2,3,4 0.00000010

1:2,3,4,5 0.00000007

2:1,3,4,5 0.00000001

None 0.00000001

1,3:2,4,5 0.00000000

1,4:2,3,5 0.00000000

1,5:2,3,4 0.00000000

2,3:1,4,5 0.00000000

2,4:1,3,5 0.00000000

2,5:1,3,4 0.00000000

3,4:1,2,5 0.00000000

3,5:1,2,4 0.00000000

3:1,2,4,5 0.00000000
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4:1,2,3,5 0.00000000

> smell.out$class.Probs

Class.Prob

olf~group, Heterosk 0.76422666

olf~agecat, Heterosk 0.23577328

olf~1, Heterosk 0.00000004

olf~agecat, Homosk 0.00000001

olf~1, Homosk 0.00000000

olf~group, Homosk 0.00000000

3.4.2 Analysis of Covariance (ANCOVA)

Next consider the data of Flurry [1939] in which the breaking strength of a starch chip

(measured in grams) is analyzed according to the thickness of the chip (measured in 10−4

inches) and the type of starch used to create the chip (canna, corn, or potato starch). As

usual, we begin by plotting the data to ascertain whether there is a latent grouping factor

present. By inspection we note that the potato chips, represented by squares, appear to have

a higher variability than the corn (triangles) and canna (squares) chips. A researcher’s first

approach might be analysis of covariance (ANCOVA), in which three parallel lines for each

level of starch would be fit with a common error variance:

break.anc <- lm(chips$strength ~ chips$starch + chips$film)

break.coefs <- break.anc$coefficients

This leads to the following fit and residuals: We also note that a researcher’s first inclination

when faced with this classic cone-shaped residual pattern is to use a logarithmic transfor-

mation on the response. Let us implement this transformation and consider whether it has

improved the apparent heteroscedasticity within the data:

logbreak.anc <- lm(log(chips$strength) ~ chips$starch + chips$film)
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Figure 3.3: The Flurry [1939] data suggests potential heteroscedasticity or a latent group
interaction, with scheme potato:corn,canna.
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Figure 3.4: An ANCOVA model fit to the Flurry [1939] data leads to a problematic residual
pattern.
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Figure 3.5: Residuals on the log-transformed Flurry [1939] data set show an alleviated cone
shape, but the heteroscedasticity pattern remains by the levels of starch.

Although the conical shape appears to have been alleviated, we note that a more subtle

pattern remains. As film thickness increases, the canna chips do not appear to show a similar

increase in variance, so a log-transformation has failed to account for the variance structure

that is a function of the categorical covariate, rather than the continuous film thickness. Thus

we instead consider starch as a latent grouping factor. Additionally, we consider models with

and without interactions between the categorical and continuous predictors:

break.models <- list("strength~1", "strength~film", "strength~film+starch",

"strength~film+group", "strength~film+starch+film*starch",

"strength~film+group+film*group")

break.out <- lm.slgf(df=chips, response="strength", lgf="starch",

usermodels=break.models, het=c(0,0,0,1,0,1), prior="flat", min.levels=1)
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We note that the posterior model probabilities favor group-based heteroscedasticity with the

scheme canna,corn:potato:

> break.out$results[1:5, c(1:3,6)]

Model Scheme Variance modprob.FBF

1 strength~film+group potato:canna,corn Heterosk 0.68750513

2 strength~film+group+film*group potato:canna,corn Heterosk 0.27416483

3 strength~film None Homosk 0.01314140

4 strength~film+group+film*group corn:canna,potato Homosk 0.00864297

5 strength~film+starch+film*starch None Homosk 0.00455575

> break.out$scheme.Probs

Scheme.Prob

potato:canna,corn 0.96646025

None 0.02066285

corn:canna,potato 0.01080258

canna:corn,potato 0.00207431

> break.out$class.Probs

Class.Prob

strength~film+group, Heterosk 0.68750513

strength~film+group+film*group, Heterosk 0.27416483

strength~film, Homosk 0.01314140

strength~film+group+film*group, Homosk 0.01180418

strength~film+group, Homosk 0.00586300

strength~film+starch+film*starch, Homosk 0.00455575

strength~film+starch, Homosk 0.00296570

strength~1, Homosk 0.00000000

Thus we strongly conclude group-based heteroscedasticity with scheme potato:canna,corn

along with main effects for film and group. The inclusion of a film*group interaction is
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less certain; we briefly revisit this uncertainty in Chapter ??.

3.4.3 Two-way Replicated Layouts

We revisit the two-way replicated layout of Meek and Ozgur [1991] illustrated in the right

panel of Figure 3.1, where the torque required to tighten a locknut was measured as a function

of a plating process and a threading method. As usual, we begin by plotting the data to

assess for a latent grouping structure in Figure 3.6. Perhaps the first characteristic we note is

Figure 3.6: The torque (y-axis) required to tighten a locknut is presented as a function
of two predictors. First, the fixture on which the nut was threaded, either a bolt or a
conical mandrel, and second, one of three plating methods including cadmium and wax,
heat treating, and phosphate and oil, denoted CW, HT, and PO, respectively. Lines connect
the means of the plating treatments at each level of fixture. The observations at level bolt
appear to have a higher error variance than those of mandrel.

that the variance of the torque measured on locknuts fitted on bolts appear higher than those

fitted on a mandrel. If we neglected to account for this potential heteroscedasticity, and fit
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only a standard homoscedastic interaction model, we would obtain the following coefficients

and error variance estimate:

> locknut.twoway <- lm(Torque~Fixture+Plating+Fixture*Plating, data=locknut)

> locknut.twoway$coefficients

(Intercept) Fixturemandrel PlatingHT PlatingPO Fixturemandrel:PlatingHT

17.4 -0.5 17.3 13.1 -4.8

Fixturemandrel:PlatingPO

-15.9

> summary(locknut.twoway)$sigma^2

[1] 36.57778

Instead we treat the fixture as the latent grouping factor. Note that with only two lev-

els of the categorical predictor, there is only one trivial grouping scheme, bold:mandrel.

Moreover, we can only consider distinct variances by group, as a group effect with one de-

gree of freedom would be isomorphic to the standard fixture effect; thus it is important

that we do not include the group term in the usermodels argument, but rather spec-

ify heteroscedastic models and lgf="Fixture". Regarding the regression effects, there

appears to be an interaction between fixture and plating, as indicated by the relatively

non-parallel lines. Thus we consider usermodels=list("Torque∼1", "Torque∼Fixture",

"Torque∼Fixture+Plating", "Torque∼Fixture*Plating") and het=c(1,1,1,1). Be-

cause there are 10 replicates at each combination of factor levels of fixture and plating, we

use the noninformative prior prior="flat".

locknutmodels <- list("Torque~1", "Torque~Fixture", "Torque~Fixture+Plating",

"Torque~Fixture+Plating+Fixture*Plating")

locknut.out <- lm.slgf(df=locknut, response="Torque", lgf="Fixture",

usermodels=locknutmodels, het=c(1,1,1,1),

prior="flat", min.levels=1)
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With relatively few models, and only one trivial grouping scheme in heteroscedastic classes,

we view all eight candidate models’ posterior probability. Because each model class contains

only a single model, each model probability is also its corresponding class probability:

> locknut.out$results[, c(1:3,6)]

Model Scheme Variance modprob.FBF

1 Torque~Fixture+Plating+Fixture*Plating bolt:mandrel Heterosk 0.97976751

2 Torque~Fixture+Plating bolt:mandrel Heterosk 0.01655156

3 Torque~Fixture+Plating+Fixture*Plating None Homosk 0.00364617

4 Torque~Fixture+Plating None Homosk 0.00003476

5 Torque~Fixture None Homosk 0.00000000

6 Torque~Fixture bolt:mandrel Heterosk 0.00000000

7 Torque~1 None Homosk 0.00000000

8 Torque~1 bolt:mandrel Heterosk 0.00000000

> locknut.out$scheme.Probs

Scheme.Prob

bolt:mandrel 0.99631907

None 0.00368093

The most probable model accounts for approximately 98% of the posterior mass, indicating

distinct variances between bolt and mandrel, along with a fixture by plating interaction.

Our estimates for the coefficients are equivalent to the least squares estimates obtained from

lm:

> locknut.out$coefficients[[9]]

(Intercept) Fixturemandrel PlatingHT

17.4 -0.5 17.3

PlatingPO Fixturemandrel:PlatingHT Fixturemandrel:PlatingPO

13.1 -4.8 -15.9
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On the other hand, let us inspect this data more carefully. The most probable model, in the

set locknut.models as parametrized earlier, is Torque∼Fixture+Plating+Fixture*Plating

with heteroscedasticity between bolt and mandrel. We observe the residuals of this model;

for the sake of plotting the data efficiently, we append a factor onto the locknut data that

denotes the interaction using either “b” or “m” for bolt and mandrel:

Figure 3.7: The residuals (y-axis) under the full interaction model Torque∼Fixture+Plating
+ Fixture*Plating indicate there may be a more subtle heteroscedasticity structure than
bolt:mandrel; we color-code for emphasis. We consider Fixture * Plating as the lgf instead.

locknut$`Fixture*Plating` <- paste0(substr(as.character(locknut$Fixture), 1, 1),

"*", locknut$Plating)

It appears the latent grouping factor may in fact be the levels of the interaction itself, with

equivalent means and distinct variances by scheme b*CW,m*CW,m*HT,m*PO:b*HT,b*PO.

So alternatively we let usermodels contain only the full interaction model, and let
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lgf="Fixture*Plating".

> locknut.int <- list("Torque~Fixture+Plating+Fixture*Plating")

> locknut.int.out <- lm.slgf(df=locknut, response="Torque",

lgf="Fixture*Plating", usermodels=locknut.int, het=1, prior="flat", min.levels=1)

> locknut.int.out$results[1,c(2,3,6)]

Scheme Variance modprob.FBF

1 b*HT,b*PO:b*CW,m*CW,m*HT,m*PO Heterosk 0.7939723

As expected from the residual boxplot, we place nearly 80% of the posterior mass on the

model we suspected from the visual inspection. This illustrates the flexibility of the SLGF

method, even allowing for latent groupings by the levels of an interaction effect. Additionally,

our method can be implemented as a post-hoc analysis on the residuals of the levels of a

categorical predictor based on an existing model.

3.4.4 Two-way Unreplicated Layouts

Next we restrict our two-way approach to an unreplicated context, which was the inspiration

for the SLGF method. Consider the data analyzed by Franck [2018], where six dogs with

lymphoma were studied. Two individual samples were taken from healthy and tumor tissue

within each dog, and the copy number variation was measured for each sample. Without loss

of generality, we arrange dogs into rows and tissue types into columns of a two-way layout.

We first plot the data to determine whether a latent grouping structure underlies the data:

We strongly suspect that dogs 1, 2, and 5 behave distinctly from dogs 3, 4, and 6. The tell-

tale non-parallel lines suggest an underlying interaction, but with only a single observation

in each cell, we lack the degrees of freedom to fit a standard row by column interaction term.

Instead, we let dog represent the SLGF, exclude the column effect, and specify a group-by-

column interaction term, isomorphic to fitting distinct column effects by group. Thus we

consider four reasonable model classes: a dog and tissue effect, a dog and tissue-by-column
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Figure 3.8: The data analyzed by Franck et al. [2013] measured a continuous gene expression
response (y-axis) in six dogs with lymphoma. Tissue samples were taken from tumor and
normal tissue in each dog.
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interaction, and the heteroscedastic counterparts of each class. We accomplish this with

the arguments usermodels=list("gene∼dog+tissue", "gene∼dog+group:tissue") and

het=c(1,1). Additionally, we must specify min.levels=2 or min.levels=3 to ensure suffi-

cient degrees of freedom to estimate the group:col effect. Here we consider min.levels=2

in the interest of assessing a more complete set of candidate models.

Because of the limited amount of data, our choice of prior is more impactful in this case.

We impose prior="zs" to utilize the Zellner-Siow mixture g-prior, as the fractional Bayes

factor exponent would require a prohibitively high proportion of the data for model training.

We first put the two-way layout into a data.frame format compatible with the slgf

function, and then implement this approach:

> lymphoma.tall <- maketall(lymphoma)

> lymphoma.tall <- data.frame("gene"=lymphoma.tall[,1], "dog"=lymphoma.tall[,2],

"tissue"=lymphoma.tall[,3])

> lymphoma.models <- list("gene~dog+tissue", "gene~dog+group:tissue")

> lymphoma.out <- lm.slgf(df=lymphoma.tall, response="gene", lgf="dog",

usermodels=lymphoma.models, prior="zs", het=c(1,1), min.levels=2)

Note the : operator in the usermodels syntax, which does not automatically include the

main effects group and tissue which are not both estimable. As expected, we conclude with

high probability that scheme 1,2,5:3,4,6 underlies the data. The five most probable models

are given by:

> lymphoma.out$results[1:5, c(1:3,6)]

Model Scheme Variance modprob.FBF

1 gene~dog+group:tissue 1,2,5:3,4,6 Heterosk 0.77731156

2 gene~dog+group:tissue 1,2,5:3,4,6 Homosk 0.18489612

3 gene~dog+group:tissue 1,2:3,4,5,6 Heterosk 0.00683924

4 gene~dog+group:tissue 2,5:1,3,4,6 Heterosk 0.00580652
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5 gene~dog+tissue None Homosk 0.00429596

while the class and five highest scheme probabilities are

> lymphoma.out$class.Probs

Class.Prob

gene~dog+group:tissue, Heterosk 0.79638854

gene~dog+group:tissue, Homosk 0.19069556

gene~dog+tissue, Heterosk 0.00861996

gene~dog+tissue, Homosk 0.00429596

> head(lymphoma.out$scheme.Probs, 5)

Scheme.Prob

1,2,5:3,4,6 0.96631751

1,2:3,4,5,6 0.00790504

2,5:1,3,4,6 0.00723547

None 0.00429596

1,5:2,3,4,6 0.00365555

The group.dfs element of lymphoma.out contains data.frames associated with each model

and grouping scheme. We first determine which element of lymphoma.out$group.dfs con-

tains the data.frame of interest via the column df.Index:

> lymphoma.out$results[1,c(1:3,6,8)]

Model Scheme Variance modprob.FBF df.Index

1 gene~dog+group:tissue 1,2,5:3,4,6 Heterosk 0.7773116 18

This tells us that element 18 of lymphoma.out$group.dfs contains the data.frame with

the 1,2,5:3,4,6 group effect:

> lymphoma.out$group.dfs[[18]]
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gene dog tissue group

1 9.3278 1 1 1,2,5

2 9.2168 1 2 1,2,5

3 9.5108 2 1 1,2,5

4 9.3942 2 2 1,2,5

5 8.7535 3 1 3,4,6

6 9.4158 3 2 3,4,6

7 8.6372 4 1 3,4,6

8 9.2480 4 2 3,4,6

9 9.4981 5 1 1,2,5

10 9.4626 5 2 1,2,5

11 8.7322 6 1 3,4,6

12 9.3439 6 2 3,4,6

3.4.5 Balanced Incomplete Block Design (BIBD)

Finally we illustrate the utility of the Zellner-Siow mixture g-prior in another context with

limited data, the balanced incomplete block design (BIBD). Recall the data described in the

center panel of Figure 3.1 by Davies [1954], which measured the wear on tires as a function

of the compound from which they were manufactured. Four tires were used in the study and

treated as blocks. Four compounds were studied, but due to manufacturing limitations, each

tire was divided into thirds and the sections made from three different compounds. Let us

first visualize the data: We note that the abrasion appears higher for compounds C and D,

and for tire 4. Compounds C and D behave quite similarly over tires as well, as indicated by

their similar V-shapes. A standard frequentist analysis considers a linear model with factors

compound and as.factor(tire):

> roadwear.lm <- lm(abrasion ~ compound + as.factor(tire), data=roadwear)

> anova(roadwear.lm)
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Figure 3.9: The data analyzed by Davies [1954] measured the abrasion on four tires (blocks),
each manufactured from three of four compounds, in a road wear test.
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Analysis of Variance Table

Response: abrasion

Df Sum Sq Mean Sq F value Pr(>F)

compound 3 38814 12938.0 36.946 0.0007763 ***

as.factor(tire) 3 21038 7012.6 20.026 0.0032406 **

Residuals 5 1751 350.2

The analysis of variance indicates that the blocking factor tire was and important inclusion

to account for variability in the data. Additionally, compound is a significant source of

variation in the model. A reasonable follow-up is to conduct multiple comparisons with

a post-hoc pairwise comparisons method; here we illustrate the Tukey’s honest significant

difference method, which indicates that compounds A and B are statistically equivalent, C

and D are statistically equivalent, but all other pairwise comparisons (A vs. C, A vs. D, B

vs. C, and B vs. D) show a significant difference.

> TukeyHSD(aov(roadwear.lm), "compound")

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = roadwear.lm)

$`compound`

diff lwr upr p adj

B-A 25.00000 -31.37911 81.37911 0.4385215

C-A 115.33333 58.95422 171.71244 0.0024729

D-A 133.00000 76.62089 189.37911 0.0012750

C-B 90.33333 33.95422 146.71244 0.0074160

D-B 108.00000 51.62089 164.37911 0.0033397
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D-C 17.66667 -38.71244 74.04578 0.6755282

Alternatively, we consider our proposed method with compound treated as the SLGF:

roadwear.models <- list("abrasion~1", "abrasion~tire", "abrasion~compound",

"abrasion~group", "abrasion~tire+compound", "abrasion~tire+group")

roadwear.out <- lm.slgf(df=roadwear, response="abrasion", lgf="compound",

usermodels=roadwear.models, het=c(0,0,1,1,1,1), prior="zs", min.levels=1)

Many models receive a non-negligible proportion of the posterior model probability. The ten

most probable models are given by:

> roadwear.out$results[1:10, c(1:3, 6)]

Model Scheme Variance modprob.FBF

1 abrasion~tire+group A,B:C,D Heterosk 0.24842160

2 abrasion~tire+compound None Homosk 0.21495758

3 abrasion~tire+group A,B:C,D Homosk 0.12682158

4 abrasion~tire+compound D:A,B,C Heterosk 0.05072768

5 abrasion~tire+compound A,B:C,D Heterosk 0.04032375

6 abrasion~tire+compound A:B,C,D Heterosk 0.04031812

7 abrasion~tire+compound A,C:B,D Heterosk 0.03974173

8 abrasion~tire+compound C:A,B,D Heterosk 0.03718444

9 abrasion~tire+compound A,D:B,C Heterosk 0.03625826

10 abrasion~tire+compound B:A,C,D Heterosk 0.03478117

Note the most probable grouping structure, A,B:C,D, is the same one implied by the results

of the TukeyHSD post-hoc comparison. However, note that nearly 60% of the posterior class

probability belongs to heteroscedastic classes:

> roadwear.hetprob <- sum(roadwear.out$class.Probs[which(grepl("Heterosk",
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rownames(roadwear.out$class.Probs))),])

> print(roadwear.hetprob)

[1] 0.5989437

In this context, our fully Bayesian analysis mostly agrees with the standard frequentist

approach, but the package slgf easily allows the user to explore a red flag regarding potential

latent heteroscedasticity.

3.5 Summary

We provide a user-friendly and intuitive R package, slgf, for researchers to implement the

SLGF methodology in practice. The SLGF approach provides an intuitive, easy to implement

analysis that has shown to be reasonable and beneficial in many common linear model

examples. By partitioning the levels of a categorical predictor into two groups, we can detect

latent structures including group-based regression effects, interactions, heteroscedasticity,

and combinations of these. By selecting probable model classes and partitioning schemes

with common priors, fractional Bayes factors, and Bayesian models selection, we provide

a straightforward Bayesian approach. The package uses syntax similar to the lm function

and allows for users to specify a broad range of model parametrizations that are highly

customizable for varying needs, scientific contexts, and prior knowledge.



Chapter 4

Conclusions

4.1 Summary

This work has aimed to provide an intuitive, flexible, mathematically and computationally

feasible alternative to classical linear model analysis methods. Through the use of a combi-

natoric grouping approach, fractional Bayes factors, and Bayesian model selection, we can

detect a wide variety of latent grouping structures underlying a dataset.

We first noted that there is a lack of literature addressing the specific concerns of latent

group-based effects describe here. A foundation was then laid supporting our approach,

including derivation of the posterior model probabilities, a fractional Bayes factor approach

that accounts for our noninformative comparison between homoscedastic and heteroscedas-

tic models, and a computational strategy for efficient and accurate calculations. We have

demonstrated the applicability of our method through numerous real datasets that manifest

the group-based effects we have described, illustrating a great utility for this work in a vari-

ety of applications. A simulation study was also undertaken to show our method’s ability to

detect a range of group-based effects in linear models of diverse types. Finally, an intuitive

R package, slgf, was written and thoroughly described so that researchers from many fields,
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particularly those outside of statistics, might be able to implement our methodology on their

data.

4.2 Future Work

Future avenues of research are numerous and promising. We revisit the data of Flurry

[1939] in Figure 4.1 to motivate our first future goal. Recall that we placed approximately

69% posterior model probability on the model with the film and a group-based effect, and

group-based variances, with scheme canna,corn:potato. The next most probable model had

the same heteroscedasticity scheme, with a film by group interaction as well. Thus we

are quite confident in the group-based heteroscedasticity, but the regression effects are less

certain. As we inspect Figure 4.1, we suspect that an issue may be that corn actually has

a distinct regression effect from canna and potato. We thus propose a more flexible SLGF

approach whereby there are two distinct suspected latent grouping factors: a regression effect

SLGF and a variance SLGF. This could allow us not only to model the regression effects

and variances with completely different categorical effects, but also do so with the same

categorical effect but distinct schemes. We are optimistic that the existing methodology and

R code is sufficient to make this extension with relative simplicity.

Next, we hope to explore statistical inference on parameters under the SLGF framework;

promising preliminary results have been described by Franck [2018]. In many cases, the most

difficult component of model averaging is computing model weights; that is, posterior model

probabilities for the model in question. We believe the method described by Hoeting et al.

[1999] has promise in our context.

A third future goal is to continually improve the R package. The R package slgf was

developed over several months by aggregating three separate functions that had originally

been written to accommodate only one-way ANOVA, ANCOVA, and two-way unreplicated

data, respectively. These functions were then generalized so that they could accommodate
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Figure 4.1: On closer examination of the Flurry data [Flurry, 1939], it appears that the
latent heteroscedasticity by scheme canna,corn:potato can be improved upon if we also model
regression effects via the scheme corn:canna,potato.
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a broader class of linear models with a categorical predictor, as we have carefully developed

our method so that it is very general and flexible. In its current form, although user-friendly

and functional, there are many places to make the code and computations more efficient.

For example, a first sequence computes the design matrices and regression effect MLEs for

each model. Next a second sequence performs two tasks: it first estimates the variance

and, if necessary, g, for each model, and then computes the posterior model probability for

each model. This computation requires a relatively costly optimization over two or three

dimensions, possibly for many model classes and grouping schemes. These sequences could be

combined into one for loop, and, more efficient methods of optimization could be employed.

Generalization to three latent groups is another reasonable extension. Mathematically,

this would be straightforward and could allow for more complex grouping structures to be

accounted for. We are currently in search of datasets that reasonably illustrate such a latent

grouping structure.

Finally, Gaussian process (GP) modeling is a burgeoning area of statistics. Latent cat-

egorical (qualitative) factors were recently discussed by Zhang et al. [2019], where they are

modeled similarly to numeric variables with the goal of dimension reduction and eliciting

parsimony. With our approach, we might consider distinct GPs according to the levels of a

categorical predictor, perhaps with distinct group-based lengthscales, covariance functions,

or nuggets.

It is our belief that the SLGF methodology outlined in this work can become a staple of

many researchers’ statistical analysis repertoires. Because of its broad scope, clear applica-

tion in real datasets, and straightforward implementation in practice, we are optimistic that

this work can assist researchers in many fields.
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Appendix A

Appendix: lm.slgf Code

lm.slgf <- function(df,response,lgf=NA,

usermodels,prior="flat",

het=rep(0,length(usermodels)),

min.levels=1){

#Ensure variable types are correct

df[,which(colnames(df)==response)] <- as.numeric(

as.character(df[,which(colnames(df)==response)]))

df[,which(colnames(df)==lgf)] <- as.factor(df[,which(colnames(df)==lgf)])

#Create a vector for the LGF

lgf <- as.factor(df[,which(colnames(df)==as.character(lgf))])

#K = number of levels of LGF

K <- length(levels(lgf))

#Create a centered vector with the response

y <- df[,which(colnames(df)==as.character(response))]
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ybar <- mean(y)

# y <- y-ybar

#Sample size

N <- length(y)

if(min.levels>=3){

d_groups <- groupings(matrix(NA,nrow=K,ncol=1))

while(length(d_groups[[1]][,1])>min.levels){

d_groups <- (d_groups[-length(d_groups)])

} }

if(min.levels==2){

d_groups <- groupings(matrix(NA,nrow=K,ncol=1))

if(K==3){d_groups[[1]][,3] <- c(2,3)}

}

if(min.levels==1){

d_groups <- as.list(c(NA,groupings(matrix(NA,nrow=K,ncol=1))))

d_groups[[1]] <- as.matrix(combn(K,1))

}

if(min.levels<1){print("Enter a valid value for min.levels.")}

if(K==2){

d_groups <- list(matrix(1,nrow=1,ncol=1))

}

#Deterimine the number of possible groupings

if(min.levels>=3){ngroups <- sum(unlist(lapply(d_groups, ncol)))}

if(min.levels==2){ngroups <- (2^(K-1))-K-1}

if(min.levels==1){ngroups <- (2^(K-1))-1}
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#break if there are too many grouping schemes

if(ngroups>1024){

paste0("There are too many grouping schemes (", ngroups,");

try increasing min.levels to reduce the number of schemes.")

break

}

#Create a minimial training sample size of 0 and

#fractional exponent b = m0/N that will be

#updated by more complex models as needed

m0 <- 2

b <- m0/N

#Fix for heteroscedastic models but no group-based FEs

fix <- 0

if(sum(het)>0 & sum(grepl("group", usermodels))==0){

fix.model <- paste0(response,"~group")

usermodels <- as.list(c(unlist(usermodels), fix.model))

het.orig <- het

het=c(het, 0)

fix=1

}

#Determine which models do and do not contain a group-based fixed effect

index.lgf <- which(grepl("group",usermodels))

index.no.lgf <- which(!(1:length(usermodels)%in%index.lgf))
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#Determine which models should have a heteroscedastic counterpart

if(sum(het)>0){

index.het <- seq(1:sum(het)) + length(usermodels)

}else{

index.het <- NA

}

allmodels <- unlist(usermodels)

allmodels <- c(allmodels,paste0(allmodels[which(het==1)]))

#Create vector indicating how many models are in each class

repvec <- rep(1,length(allmodels))

repvec[c(index.lgf,index.het)] <- ngroups

#Create vector indicating which models will be fit, including

#duplicates for group-based models

modelvec <- rep(allmodels,times=repvec)

#Create indicator for heteroscedastic models

if(sum(het)>0){

hetvec <- rep(FALSE,length(modelvec))

hetvec[(length(modelvec)-sum(het==1)*ngroups+1):length(modelvec)] <- TRUE

}else{

hetvec <- rep(FALSE, length(modelvec))

}

#Create vector for each model's scheme
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schemevec <- rep("None",length(modelvec))

#Create vector to store each model's marginal probability

marginalvec <- rep(0,length(modelvec))

classvec <- rep(1:length(repvec),times=repvec)

#Create result output matrix

result.mat <- as.data.frame(cbind(modelvec,schemevec,classvec,hetvec,

marginalvec))

result.mat$marginalvec <- as.numeric(as.character(result.mat$marginalvec))

result.mat$schemevec <- as.character(result.mat$schemevec)

fitted.models <- as.list(rep(NA,length(unique(usermodels))))

names(fitted.models) <- unlist(unique(usermodels))

#How can we determine whether the model results in an

#expansion or a contraction?

group.dfs <- as.list(rep(NA,ngroups + length(index.no.lgf)))

all.coefs <- as.list(rep(NA, nrow(result.mat)))

all.vars <- as.list(rep(NA, nrow(result.mat)))

#Create list for the models with a group effect

#Fit the models, compute m0 - noninformative prior case

for(tempmod in unlist(usermodels)){

m <- which(tempmod==names(fitted.models))
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#Determine the class of the model in question.

#If it's a class that contains only one model,

#there is no LGF so the model is fit accordingly.

if(grepl("group",tempmod)==FALSE){

templm <- lm(as.formula(tempmod),data=df)

tempmm <- model.frame(templm)

group.dfs[[ngroups+which(index.no.lgf==which(tempmod==

usermodels))]] <- tempmm

names(group.dfs)[[ngroups+which(index.no.lgf==

which(tempmod==usermodels))]] <- tempmod

#Update m0 if model is more complex

if((length(templm$coefficients)+2)>m0){

m0 <- length(templm$coefficients)+2

b <- m0/N

}

#For group-based variances only

if(het[m]==TRUE){

index <- 1

templist <- as.list(rep(NA,ngroups))

for(i in 1:length(d_groups)){
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for(j in 1:ncol(d_groups[[i]])){

{

#Create the distinct group effect

group <- as.numeric(as.numeric(lgf)%in%d_groups[[i]][,j])

tempscheme1 <- paste(unique(lgf[group==1]),collapse=",")

tempscheme0 <- paste(unique(lgf[group==0]),collapse=",")

group[group==1] <- tempscheme1

group[group==0] <- tempscheme0

#Update m0 if necessary

if((length(templm$coefficients)+4)>m0){

m0=length(templm$coefficients)+4

b=m0/N

}

#Name the model

tempscheme <- paste(c(tempscheme1,tempscheme0),collapse=":")

result.mat$schemevec[which(modelvec==tempmod&hetvec==

TRUE)[index]] <-

paste0(tempscheme1,":",tempscheme0)

names(all.coefs)[[which(modelvec==tempmod&result.mat$

schemevec==tempscheme)]] <- tempscheme

names(all.vars)[[which(modelvec==tempmod&result.mat$

schemevec==tempscheme)]] <- tempscheme

tempscheme <- paste0("scheme=",tempscheme)
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names(templist)[[index]] <- paste(tempscheme)

index=index+1

} } } }

fitted.models[[m]] <- templm

}

#Group-based fixed effect models

if(grepl("group",tempmod)==TRUE){

index <- 1

templist <- as.list(rep(NA,ngroups))

for(i in 1:length(d_groups)){

for(j in 1:ncol(d_groups[[i]])){

{

#Create the distinct group effect

group <- as.numeric(as.numeric(lgf)%in%d_groups[[i]][,j])

tempscheme1 <- paste(unique(lgf[group==1]),collapse=",")

tempscheme0 <- paste(unique(lgf[group==0]),collapse=",")

group[group==1] <- tempscheme1

group[group==0] <- tempscheme0

tempdf <- data.frame(df,"group"=as.factor(group))

templm <- lm(as.formula(tempmod),data=tempdf)

templist[[index]] <- templm
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tempdf[,which(colnames(tempdf)==response)] <- tempdf[,

which(colnames(tempdf)==response)] # + ybar

group.dfs[[index]] <- tempdf

names(group.dfs)[index] <- paste(tempscheme1, tempscheme0, sep=":")

#Update m0 if necessary

if((length(templm$coefficients)+2)>m0){

m0=length(templm$coefficients)+2 #<-need to delete coefs with NA

b=m0/N

}

#Name the model

tempscheme <- paste(c(tempscheme1,tempscheme0),collapse=":")

result.mat$schemevec[which(modelvec==tempmod&hetvec==FALSE)[index]]

<- tempscheme

result.mat$schemevec[which(modelvec==tempmod&hetvec==

TRUE)[index]] <- tempscheme

nameindex <- which(modelvec==tempmod&result.mat$schemevec==

tempscheme)

names(all.coefs)[nameindex] <- rep(tempscheme, length(nameindex))

names(all.vars)[nameindex] <- rep(tempscheme, length(nameindex))

# names(all.coefs)[[which(modelvec==tempmod&hetvec==

TRUE&result.mat$schemevec==tempscheme)]] <- tempscheme
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# names(all.coefs)[[which(modelvec==tempmod&hetvec==

FALSE&result.mat$schemevec==tempscheme)]] <- tempscheme

#

# names(all.vars)[[which(modelvec==tempmod&hetvec==TRUE&

result.mat$schemevec==tempscheme)]] <- tempscheme

# names(all.vars)[[which(modelvec==tempmod&hetvec==FALSE&

result.mat$schemevec==tempscheme)]] <- tempscheme

tempscheme <- paste0("scheme=",tempscheme)

names(templist)[[index]] <- paste(tempscheme)

index <- index+1

} } }

fitted.models[[m]] <- templist

} }

#Have smaller m0 if using ZS prior

if(prior=="zs"){

m0 <- 2 + 1 + 1 #two variances + g + intercept

b <- m0/N

all.gs <- as.list(rep(NA, nrow(result.mat)))

names(all.gs) <- paste0(result.mat$modelvec,", ", result.mat$schemevec)

}

names(all.coefs) <- paste0(result.mat$modelvec,", ", result.mat$schemevec)

names(all.vars) <- paste0(result.mat$modelvec,", ", result.mat$schemevec)

#Compute marginal model probabilities - noninformative prior case
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#Store fixed effect and variance MLEs

if(prior=="flat"){

for(tempmod in unlist(usermodels)){

m <- which(tempmod==names(fitted.models))

tempfit <- fitted.models[[m]]

#Compute marginal model probability for homoscedastic

#models with global fixed effects

if(grepl("group",tempmod)==FALSE){

tempSSResid <- sum(tempfit$residuals^2)

tempP <- length(tempfit$coefficients)

templogPY <- (-N*(1-b)/2)*log(pi) + log(b^((N*b-1)/2)) +

(lgamma((N-tempP)/2)) - (lgamma((N*b-tempP)/2)) +

((-N*(1-b)/2)*log(tempSSResid))

result.mat$marginalvec[which(result.mat$modelvec==tempmod&

result.mat$hetvec==FALSE)] <- templogPY

all.coefs[[which(result.mat$modelvec==tempmod&result.mat$

schemevec=="None")]] <- tempfit$coefficients

all.vars[[which(result.mat$modelvec==tempmod&result.mat$

schemevec=="None")]] <- summary(tempfit)$sigma^2

}

#Heteroscedastic models with global fixed effects

if(grepl("group",tempmod)==FALSE & het[m]==TRUE){



98

index <- 1

for(i in 1:length(d_groups)){

for(j in 1:ncol(d_groups[[i]])){

{

#Create the distinct group effect

MM <- model.matrix(tempfit)

tempdf <- group.dfs[[index]]

group <- as.numeric(as.numeric(lgf)%in%d_groups[[i]][,j])

tempscheme1 <- paste(unique(lgf[group==1]),collapse=",")

tempscheme0 <- paste(unique(lgf[group==0]),collapse=",")

tempscheme <- paste(c(tempscheme1,tempscheme0),collapse=":")

level1 <- tempscheme0

y1 <- tempdf[tempdf$group==level1,which(names(tempdf)==response)]

n1 <- sum(tempdf$group==level1)

level2 <- tempscheme1

y2 <- tempdf[tempdf$group==level2,which(names(tempdf)==response)]

n2 <- sum(tempdf$group==level2)

tempP <- ncol(MM)

f3 =function(arg){

why=c(y1,y2)

bee=1

gam1=arg[1]
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gam2=arg[2]

Sigma=diag(c(rep(gam1,n1),rep(gam2,n2)))

d=det(bee*t(MM)%*%Sigma%*%MM)^-.5

s=(gam1^((bee*n1/2)-1))*(gam2^((bee*n2/2)-1))

e1=bee*t(why)%*%Sigma%*%why

e2=bee*t(why)%*%Sigma%*%MM%*%

solve(t(MM)%*%Sigma%*%MM)%*%t(MM)%*%Sigma%*%why

e=exp(-.5*as.numeric(e1-e2))

return(d*s*e)

}

f3b=function(arg){

why=c(y1,y2)

bee=b

gam1=arg[1]

gam2=arg[2]

Sigma=diag(c(rep(gam1,n1),rep(gam2,n2)))

d=det(bee*t(MM)%*%Sigma%*%MM)^-.5

s=(gam1^((bee*n1/2)-1))*(gam2^((bee*n2/2)-1))

e1=bee*t(why)%*%Sigma%*%why

e2=bee*t(why)%*%Sigma%*%MM%*%

solve(t(MM)%*%Sigma%*%MM)%*%t(MM)%*%Sigma%*%why

e=exp(-.5*as.numeric(e1-e2))

return(d*s*e)

}

lvf3 =function(arg){

phi1=arg[1]

phi2=arg[2]



100

gam1=exp(-phi1)

gam2=exp(-phi2)

J=exp(-(phi1+phi2))

why=c(y1,y2)

bee=1

Sigma=diag(c(rep(gam1,n1),rep(gam2,n2)))

d=det(bee*t(MM)%*%Sigma%*%MM)^-.5

s=(gam1^((bee*n1/2)-1))*(gam2^((bee*n2/2)-1))

e1=bee*t(why)%*%Sigma%*%why

e2=bee*t(why)%*%Sigma%*%MM%*%

solve(t(MM)%*%Sigma%*%MM)%*%t(MM)%*%Sigma%*%why

e=exp(-.5*as.numeric(e1-e2))

return(d*s*e*J)

}

lvf3b=function(arg){

phi1=arg[1]

phi2=arg[2]

gam1=exp(-phi1)

gam2=exp(-phi2)

J=exp(-(phi1+phi2))

why=c(y1,y2)

bee=b

Sigma=diag(c(rep(gam1,n1),rep(gam2,n2)))

d=det(bee*t(MM)%*%Sigma%*%MM)^-.5

s=(gam1^((bee*n1/2)-1))*(gam2^((bee*n2/2)-1))

e1=bee*t(why)%*%Sigma%*%why

e2=bee*t(why)%*%Sigma%*%MM%*%

solve(t(MM)%*%Sigma%*%MM)%*%t(MM)%*%Sigma%*%why
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e=exp(-.5*as.numeric(e1-e2))

return(d*s*e*J)

}

lvlogf3 =function(arg){

phi1=arg[1]

phi2=arg[2]

gam1=exp(-phi1)

gam2=exp(-phi2)

J=exp(-(phi1+phi2))

why=c(y1,y2)

bee=1

Sigma=diag(c(rep(gam1,n1),rep(gam2,n2)))

d=det(bee*t(MM)%*%Sigma%*%MM)^-.5

s=(gam1^((bee*n1/2)-1))*(gam2^((bee*n2/2)-1))

e1=bee*t(why)%*%Sigma%*%why

e2=bee*t(why)%*%Sigma%*%MM%*%solve(t(MM)%*%

Sigma%*%MM)%*%t(MM)%*%Sigma%*%why

e=exp(-.5*as.numeric(e1-e2))

return(log(d)+log(s)+(-.5*as.numeric(e1-e2))+log(J))

}

lvlogf3b=function(arg){

phi1=arg[1]

phi2=arg[2]

gam1=exp(-phi1)

gam2=exp(-phi2)

J=exp(-(phi1+phi2))

why=c(y1,y2)
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bee=b

Sigma=diag(c(rep(gam1,n1),rep(gam2,n2)))

d=det(bee*t(MM)%*%Sigma%*%MM)^-.5

s=(gam1^((bee*n1/2)-1))*(gam2^((bee*n2/2)-1))

e1=bee*t(why)%*%Sigma%*%why

e2=bee*t(why)%*%Sigma%*%MM%*%

solve(t(MM)%*%Sigma%*%MM)%*%t(MM)%*%Sigma%*%why

e=exp(-.5*as.numeric(e1-e2))

return(log(d)+log(s)+(-.5*as.numeric(e1-e2))+log(J))

}

gam1hat <- sum(fitted.models[[m]]$residuals^2)/(N-tempP)

gam2hat <- gam1hat

lvhat <- log(c(gam1hat, gam2hat))

mode3=optim(lvhat,lvlogf3,

control=list(fnscale=-1),

method="Nelder-Mead")$par

mode3b=optim(lvhat,lvlogf3b,

control=list(fnscale=-1),

method="Nelder-Mead")$par

H3=det(-1*optim(mode3,lvlogf3,

control=list(fnscale=-1),hessian=TRUE,

method="Nelder-Mead")$hessian)^-.5

H3b=det(-1*optim(mode3b,lvlogf3b,

control=list(fnscale=-1),hessian=TRUE,
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method="Nelder-Mead")$hessian)^-.5

templogPY <- log(((2*pi)^(-(N-tempP)/2)))-

log(((2*pi)^(-(N*b-tempP)/2)))+

# log(H3*(lvf3(mode3))/(H3b*lvf3b(mode3b)))

log(H3) + lvlogf3(mode3) - log(H3b) - lvlogf3b(mode3b)

result.mat$marginalvec[which(result.mat$modelvec==tempmod&

result.mat$hetvec==

TRUE)[index]] <- templogPY

all.coefs[[which(result.mat$modelvec==tempmod&

result.mat$schemevec==tempscheme&

result.mat$hetvec==TRUE)]] <-

tempfit$coefficients

all.vars[[which(result.mat$modelvec==tempmod&

result.mat$schemevec==tempscheme&

result.mat$hetvec==TRUE)]] <-

exp(c(mode3[2], mode3[1]))

index=index+1

} } }

}

#Homoscedastic models, group-based fixed effects

if(grepl("group",tempmod)==TRUE){

index <- 1
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result.mat.rows <- which(result.mat$modelvec==tempmod &

result.mat$hetvec==FALSE)

for(i in 1:length(d_groups)){

for(j in 1:ncol(d_groups[[i]])){

{

group <- as.numeric(as.numeric(lgf)%in%d_groups[[i]][,j])

tempscheme1 <- paste(unique(lgf[group==1]),collapse=",")

tempscheme0 <- paste(unique(lgf[group==0]),collapse=",")

tempscheme <- paste(c(tempscheme1,tempscheme0),collapse=":")

tempfit.scheme <- tempfit[[index]]

tempSSResid <- sum(tempfit.scheme$residuals^2)

tempP <- length(tempfit.scheme$coefficients)

templogPY <- (-N*(1-b)/2)*log(pi)+((N*b-1)/2)*log(b)+

(lgamma((N-tempP)/2))-(lgamma((N*b-tempP)/2))+

((-N*(1-b)/2)*log(tempSSResid))

result.mat$marginalvec[result.mat.rows[index]] <- templogPY

index <- index+1

all.coefs[[which(result.mat$modelvec==tempmod&

result.mat$schemevec==tempscheme&

result.mat$hetvec==FALSE)]] <-

tempfit.scheme$coefficients

all.vars[[which(result.mat$modelvec==tempmod&

result.mat$schemevec==tempscheme&
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result.mat$hetvec==FALSE)]] <-

summary(tempfit.scheme)$sigma^2

} } }

}

#Heteroscedastic models, group-based fixed effects

if(grepl("group",tempmod)==TRUE & het[m]==TRUE){

index <- 1

result.mat.rows <- which(result.mat$modelvec==tempmod &

result.mat$hetvec==TRUE)

for(i in 1:length(d_groups)){

for(j in 1:ncol(d_groups[[i]])){

{

#Create the distinct group effect

MM <- model.matrix(tempfit[[index]])

tempdf <- group.dfs[[index]]

group <- as.numeric(as.numeric(lgf)%in%d_groups[[i]][,j])

tempscheme1 <- paste(unique(lgf[group==1]),collapse=",")

tempscheme0 <- paste(unique(lgf[group==0]),collapse=",")

tempscheme <- paste(c(tempscheme1,tempscheme0),collapse=":")

level1 <- tempscheme0

y1 <- tempdf[tempdf$group==level1,which(names(tempdf)==response)]

n1 <- sum(tempdf$group==level1)
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level2 <- tempscheme1

y2 <- tempdf[tempdf$group==level2,which(names(tempdf)==response)]

n2 <- sum(tempdf$group==level2)

tempP <- ncol(MM)

f3 =function(arg){

why=c(y1,y2)

bee=1

gam1=arg[1]

gam2=arg[2]

Sigma=diag(c(rep(gam1,n1),rep(gam2,n2)))

d=det(bee*t(MM)%*%Sigma%*%MM)^-.5

s=(gam1^((bee*n1/2)-1))*(gam2^((bee*n2/2)-1))

e1=bee*t(why)%*%Sigma%*%why

e2=bee*t(why)%*%Sigma%*%MM%*%

solve(t(MM)%*%Sigma%*%MM)%*%t(MM)%*%Sigma%*%why

e=exp(-.5*as.numeric(e1-e2))

return(d*s*e)

}

f3b=function(arg){

why=c(y1,y2)

bee=b

gam1=arg[1]

gam2=arg[2]

Sigma=diag(c(rep(gam1,n1),rep(gam2,n2)))

d=det(bee*t(MM)%*%Sigma%*%MM)^-.5

s=(gam1^((bee*n1/2)-1))*(gam2^((bee*n2/2)-1))
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e1=bee*t(why)%*%Sigma%*%why

e2=bee*t(why)%*%Sigma%*%MM%*%

solve(t(MM)%*%Sigma%*%MM)%*%t(MM)%*%Sigma%*%why

e=exp(-.5*as.numeric(e1-e2))

return(d*s*e)

}

lvf3 =function(arg){

phi1=arg[1]

phi2=arg[2]

gam1=exp(-phi1)

gam2=exp(-phi2)

J=exp(-(phi1+phi2))

why=c(y1,y2)

bee=1

Sigma=diag(c(rep(gam1,n1),rep(gam2,n2)))

d=det(bee*t(MM)%*%Sigma%*%MM)^-.5

s=(gam1^((bee*n1/2)-1))*(gam2^((bee*n2/2)-1))

e1=bee*t(why)%*%Sigma%*%why

e2=bee*t(why)%*%Sigma%*%MM%*%

solve(t(MM)%*%Sigma%*%MM)%*%t(MM)%*%Sigma%*%why

e=exp(-.5*as.numeric(e1-e2))

return(d*s*e*J)

}

lvf3b=function(arg){

phi1=arg[1]

phi2=arg[2]

gam1=exp(-phi1)
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gam2=exp(-phi2)

J=exp(-(phi1+phi2))

why=c(y1,y2)

bee=b

Sigma=diag(c(rep(gam1,n1),rep(gam2,n2)))

d=det(bee*t(MM)%*%Sigma%*%MM)^-.5

s=(gam1^((bee*n1/2)-1))*(gam2^((bee*n2/2)-1))

e1=bee*t(why)%*%Sigma%*%why

e2=bee*t(why)%*%Sigma%*%MM%*%

solve(t(MM)%*%Sigma%*%MM)%*%t(MM)%*%Sigma%*%why

e=exp(-.5*as.numeric(e1-e2))

return(d*s*e*J)

}

lvlogf3 =function(arg){

phi1=arg[1]

phi2=arg[2]

gam1=exp(-phi1)

gam2=exp(-phi2)

# J=exp(-(phi1+phi2))

logJ=-(phi1+phi2)

why=c(y1,y2)

bee=1

Sigma=diag(c(rep(gam1,n1),rep(gam2,n2)))

# d=det(bee*t(MM)%*%Sigma%*%MM)^-.5

logd=-.5*log(det(bee*t(MM)%*%Sigma%*%MM))

# s=(gam1^((bee*n1/2)-1))*(gam2^((bee*n2/2)-1))

logs=((bee*n1/2)-1)*log(gam1) + ((bee*n2/2)-1)*log(gam2)
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e1=bee*t(why)%*%Sigma%*%why

e2=bee*t(why)%*%Sigma%*%MM%*%

solve(t(MM)%*%Sigma%*%MM)%*%t(MM)%*%Sigma%*%why

e=exp(-.5*as.numeric(e1-e2))

return(logd+logs+(-.5*as.numeric(e1-e2))+logJ)

}

lvlogf3b=function(arg){

phi1=arg[1]

phi2=arg[2]

gam1=exp(-phi1)

gam2=exp(-phi2)

J=exp(-(phi1+phi2))

logJ=-(phi1+phi2)

why=c(y1,y2)

bee=b

Sigma=diag(c(rep(gam1,n1),rep(gam2,n2)))

# d=det(bee*t(MM)%*%Sigma%*%MM)^-.5

logd=-.5*log(det(bee*t(MM)%*%Sigma%*%MM))

# s=(gam1^((bee*n1/2)-1))*(gam2^((bee*n2/2)-1))

logs=((bee*n1/2)-1)*log(gam1) + ((bee*n2/2)-1)*log(gam2)

e1=bee*t(why)%*%Sigma%*%why

e2=bee*t(why)%*%Sigma%*%MM%*%

solve(t(MM)%*%Sigma%*%MM)%*%t(MM)%*%Sigma%*%why

e=exp(-.5*as.numeric(e1-e2))

return(logd+logs+(-.5*as.numeric(e1-e2))+logJ)

}

lv1hat <- log(sum(tempfit[[index]]$residuals
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[tempdf$group==level1]^2))

lv2hat <- log(sum(tempfit[[index]]$residuals

[tempdf$group==level2]^2))

mode3=optim(c(lv1hat,lv2hat),lvlogf3,

control=list(fnscale=-1),

method="Nelder-Mead")$par

mode3b=optim(c(lv1hat,lv2hat),lvlogf3b,

control=list(fnscale=-1),

method="L-BFGS-B")$par

H3=det(-1*optim(mode3,lvlogf3,

control=list(fnscale=-1),hessian=TRUE,

method="Nelder-Mead")$hessian)^-.5

H3b=det(-1*optim(mode3b,lvlogf3b,

control=list(fnscale=-1),hessian=TRUE,

method="Nelder-Mead")$hessian)^-.5

templogPY <- log(((2*pi)^(-(N-tempP)/2)))-

log(((2*pi)^(-(N*b-tempP)/2)))+

# log(H3*(lvf3(mode3))/(H3b*lvf3b(mode3b)))

log(H3) + lvlogf3(mode3) - log(H3b) - lvlogf3b(mode3b)

result.mat$marginalvec[which(result.mat$modelvec==tempmod&

result.mat$hetvec==TRUE)

[index]] <- templogPY
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tempfit.scheme <- tempfit[[index]]

all.coefs[[which(result.mat$modelvec==tempmod&

result.mat$schemevec==tempscheme&

result.mat$hetvec==TRUE)]] <-

tempfit.scheme$coefficients

all.vars[[which(result.mat$modelvec==tempmod&

result.mat$schemevec==tempscheme&

result.mat$hetvec==TRUE)]] <-

exp(c(mode3[2], mode3[1]))

index=index+1

} } } } }

}

#total sum of squares

SST <- sum((y-mean(y))^2)

Z <- rep(1,N)

#Compute marginal model probabilities - Zellner-Siow mixture g-prior case

if(prior=="zs"){

for(tempmod in unlist(usermodels)){

m <- which(tempmod==names(fitted.models))

tempfit <- fitted.models[[m]]

#done 3/23
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#Homoscedsatic models, group-based effects

if(grepl("group",tempmod)==FALSE){

# tempSSResid <- sum(tempfit$residuals^2)

tempP <- length(tempfit$coefficients)

R2A <- summary(tempfit)$r.squared

#Mode of additive marginal distribution

faddmode <- function(gee){

Q <- 1-R2A

value <- -Q*(tempP+3)*(gee^3)+

(N-tempP-4-2*(1-R2A))*(gee^2)+

((N*(2-R2A)-3)*gee)+N

return(value)

}

#Mode of fractional additive marginal distribution

faddbmode=function(gee){

Q <- 1-R2A

value=-Q*(b^2)*(tempP+3)*(gee^3)+

(b*(N*b-tempP-4)-2*Q)*(gee^2)+

(N*b*(2-R2A)-3)*gee+N

return(value)

}

addmode <- uniroot(faddmode,c(0,1e9),check.conv=TRUE,

tol=1e-10)$root

addbmode <- uniroot(faddbmode,c(1e-9,1e9),check.conv=TRUE,

tol=1e-10)$root
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logfadd <- function(gee){

value <- ((N-tempP-1)/2)*log(1+gee) +

(-(N-1)/2)*log(1+(1-R2A)*gee) +

-1.5*log(gee) +

(-N/(2*gee))

return(value)

}

logfaddb <- function(gee){ #Put on log-scale

value <- ((N*b-1-tempP)/2)*log(1+b*gee) +

(-(N*b-1)/2)*log(1+b*gee*(1-R2A)) +

-1.5*log(gee) + (-N/(2*gee))

return(value)

}

faddH <- function(gee){

value <- .5*((((N-1)*(1-R2A)^2)/((1+gee*(1-R2A))^2))-

((N-tempP-1)/((1+gee)^2))+

(3/(gee^2))-

((2*N)/(gee^3)))

return(value)

}

faddHb <- function(gee){

value <- .5*((((N*b-1)*(b^2)*(1-R2A)^2)/((1+gee*b*(1-R2A))^2))-

((N*b-tempP-1)*(b^2)/((1+b*gee)^2))+

(3/(gee^2))-

((2*N)/(gee^3)))
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return(value)

}

addH <- (-1*faddH(addmode))^-.5

addHb <- (-1*faddHb(addbmode))^-.5

qaddLA <- lgamma((N-1)/2) + .5*log(N/2) + (-(N-1)/2)*log(SST) +

.5*log(N) - ((N-1)/2)*log(pi) - lgamma(.5) + log(sqrt(2*pi)) +

log(addH) + logfadd(addmode)

qaddbLA <- lgamma((N*b-1)/2) + .5*log(N/2) + (-(N*b-1)/2)*log(SST) +

.5*log(N) - ((N*b-1)/2)*log(pi) - lgamma(.5) + log(sqrt(2*pi)) +

log(addHb) + logfaddb(addbmode) + (-N*b/2)*log(b)

templogPY <- qaddLA - qaddbLA

result.mat$marginalvec[which(result.mat$modelvec==tempmod&

result.mat$hetvec==FALSE)] <- templogPY

all.coefs[[which(result.mat$modelvec==tempmod&result.mat$

schemevec=="None")]] <- tempfit$coefficients

all.vars[[which(result.mat$modelvec==tempmod&result.mat$

schemevec=="None")]] <- summary(tempfit)$sigma^2

all.gs[[which(result.mat$modelvec==tempmod&result.mat$

schemevec=="None")]] <- addmode

}

#Heteroscedastic models with global fixed effects

if(grepl("group",tempmod)==FALSE & het[m]==TRUE){
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index <- 1

#done 3/24

for(i in 1:length(d_groups)){

for(j in 1:ncol(d_groups[[i]])){

{

#Create the distinct group effect

MM <- model.matrix(tempfit)

tempdf <- group.dfs[[index]]

tempP <- ncol(MM)

R2A <- summary(tempfit)$r.squared

gamhat <- 1/(((1-R2A)*SST)/(N-tempP))

lvhat <- log(1/gamhat)

level1 <- levels(tempdf$group)[1]

y1 <- tempdf[tempdf$group==level1,which(names(tempdf)==response)]

n1 <- sum(tempdf$group==level1)

level2 <- levels(tempdf$group)[2]

y2 <- tempdf[tempdf$group==level2,which(names(tempdf)==response)]

n2 <- sum(tempdf$group==level2)

scheme <- as.numeric(tempdf$group==level1)

tempscheme1 <- levels(tempdf$group)[1]

tempscheme0 <- levels(tempdf$group)[2]

lvlogf3 <- function(arg){

gee <- arg[1]

u <- arg[2]

v <- arg[3]
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gam1 <- exp(-u)

gam2 <- exp(-v)

J <- exp(-(u+v))

logJ <- -(u+v)

gamvec <- rep(NA,N)

gamvec[scheme==1] <- gam1

gamvec[scheme==0] <- gam2

S <- diag(gamvec)

Z_S <- S%*%Z%*%solve(t(Z)%*%S%*%Z)%*%t(Z)%*%S

value <- (n1/2-1)*(-u)+(n2/2-1)*(-v)-((tempP/2)*log(gee))+

.5*determinant(t(MM)%*%S%*%MM, logarithm=TRUE)$modulus -

.5*determinant(t(Z)%*%S%*%Z, logarithm=TRUE)$modulus -

.5*determinant(((gee+1)/gee)*t(MM)%*%S%*%MM-

t(MM)%*%Z_S%*%MM,

logarithm=TRUE)$modulus -

.5*(t(y)%*%S%*%y-t(y)%*%Z_S%*%y-

t(y)%*%(S-Z_S)%*%MM%*%solve(

((gee+1)/gee)*t(MM)%*%S%*%MM-

t(MM)%*%Z_S%*%MM)%*%t(MM)%*%(S-Z_S)%*%y)-

1.5*log(gee)-(N/(2*gee))+logJ

return(value)

}

lvlogf3b <- function(arg){

gee <- arg[1]

u <- arg[2]

v <- arg[3]

gam1 <- exp(-u)



117

gam2 <- exp(-v)

J <- exp(-(u+v))

logJ <- -(u+v)

gamvec <- rep(NA,N)

gamvec[scheme==1] <- gam1

gamvec[scheme==0] <- gam2

S <- diag(gamvec)

Z_S <- S%*%Z%*%solve(t(Z)%*%S%*%Z)%*%t(Z)%*%S

bg <- b*gee

value <- (n1*b/2-1)*(-u)+(n2*b/2-1)*(-v)-

((tempP/2)*log(gee))+

.5*determinant(t(MM)%*%S%*%MM, logarithm=TRUE)$modulus -

.5*determinant(t(Z)%*%S%*%Z, logarithm=TRUE)$modulus -

.5*determinant(((bg+1)/bg)*t(MM)%*%S%*%MM-

t(MM)%*%Z_S%*%MM,logarithm=TRUE)$modulus -

.5*b*(t(y)%*%S%*%y-t(y)%*%Z_S%*%y-

t(y)%*%(S-Z_S)%*%MM%*%solve(

((bg+1)/bg)*t(MM)%*%S%*%MM-

t(MM)%*%Z_S%*%MM)%*%t(MM)%*%(S-Z_S)%*%y)-

1.5*log(gee)-(N/(2*gee))+logJ

return(value)

}

lvmode3 <- optim(c(N,lvhat,lvhat),

lvlogf3,

control=list(fnscale=-1),

method="L-BFGS-B",
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lower=c(1e-9,-1e6,-1e6),

upper=c(1e9,1e6,1e6))$par

lvmode3b <- optim(c(N,lvhat,lvhat),

lvlogf3b,

control=list(fnscale=-1),

method="L-BFGS-B",

lower=c(1e-6,-1e6,-1e6),

upper=c(1e9,1e6,1e6))$par

H3 <- (-1*det(hessian(lvlogf3,lvmode3)))^-.5

logH3 <- -.5*determinant(-1*hessian(lvlogf3,lvmode3),

logarithm=TRUE)$modulus

H3b <- (-1*det(hessian(lvlogf3b,lvmode3b)))^-.5

logH3b <- -.5*determinant(-1*hessian(lvlogf3b,lvmode3b),

logarithm=TRUE)$modulus

q3LA <- (-(N-1)/2)*log(2*pi) + .5*log(N/2) - lgamma(.5) +

1.5*log(2*pi) + logH3 + lvlogf3(lvmode3)

q3bLA <- (-(N*b-1)/2)*log(2*pi) + (-(tempP+1)/2)*log(b) +

.5*log(N/2) - lgamma(.5) + 1.5*log(2*pi) +

logH3b + lvlogf3b(lvmode3b)

templogPY <- q3LA - q3bLA

result.mat$marginalvec[which(result.mat$modelvec==tempmod&

result.mat$hetvec==TRUE)[index]]

<- templogPY
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tempscheme <- names(group.dfs[index])

all.coefs[[which(result.mat$modelvec==tempmod&

result.mat$schemevec==tempscheme&

result.mat$hetvec==TRUE)]] <-

tempfit$coefficients

all.vars[[which(result.mat$modelvec==tempmod&

result.mat$schemevec==tempscheme&

result.mat$hetvec==TRUE)]] <-

exp(c(lvmode3[2], lvmode3[1]))

all.gs[[which(result.mat$modelvec==tempmod&

result.mat$schemevec==tempscheme&

result.mat$hetvec==TRUE)]] <- lvmode3[1]

index=index+1

} } }

}

#Group-based fixed effects

if(grepl("group",tempmod)==TRUE){

index <- 1

result.mat.rows=which(result.mat$modelvec==tempmod &

result.mat$hetvec==FALSE)

#homoscedastic group-based effects

for(i in 1:length(d_groups)){

for(j in 1:ncol(d_groups[[i]])){
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{

{

tempscheme <- gsub("scheme=","",names(tempfit)[index])

tempfit.scheme <- tempfit[[index]]

tempSSResid <- sum(tempfit.scheme$residuals^2)

tempP <- length(tempfit.scheme$coefficients)

R2A=1-(tempSSResid/SST)

Q <- 1-R2A

#Mode of additive marginal distribution

faddmode <- function(gee){

Q <- 1-R2A

value <- -Q*(tempP+3)*(gee^3)+

(N-tempP-4-2*(1-R2A))*(gee^2)+

((N*(2-R2A)-3)*gee)+N

return(value)

}

#Mode of fractional additive marginal distribution

faddbmode=function(gee){

Q <- 1-R2A

value=-Q*(b^2)*(tempP+3)*(gee^3)+

(b*(N*b-tempP-4)-2*Q)*(gee^2)+

(N*b*(2-R2A)-3)*gee+N

return(value)

}
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addmode <- uniroot(faddmode,c(0,1e9),check.conv=TRUE,

tol=1e-10)$root

addbmode <- uniroot(faddbmode,c(1e-9,1e9),check.conv=TRUE,

tol=1e-10)$root

logfadd <- function(gee){

value <- ((N-tempP-1)/2)*log(1+gee) +

(-(N-1)/2)*log(1+(1-R2A)*gee) +

-1.5*log(gee) +

(-N/(2*gee))

return(value)

}

logfaddb <- function(gee){ #Put on log-scale

value <- ((N*b-1-tempP)/2)*log(1+b*gee) +

(-(N*b-1)/2)*log(1+b*gee*(1-R2A)) +

-1.5*log(gee) + (-N/(2*gee))

return(value)

}

faddH <- function(gee){

value <- .5*((((N-1)*(1-R2A)^2)/((1+gee*(1-R2A))^2))-

((N-tempP-1)/((1+gee)^2))+

(3/(gee^2))-

((2*N)/(gee^3)))

return(value)

}

faddHb <- function(gee){
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value <- .5*((((N*b-1)*(b^2)*(1-R2A)^2)/((1+gee*b*(1-R2A))^2))-

((N*b-tempP-1)*(b^2)/((1+b*gee)^2))+

(3/(gee^2))-

((2*N)/(gee^3)))

return(value)

}

addH <- (-1*faddH(addmode))^-.5

addHb <- (-1*faddHb(addbmode))^-.5

qaddLA <- lgamma((N-1)/2) + .5*log(N/2) +

(-(N-1)/2)*log(SST) +

.5*log(N) - ((N-1)/2)*log(pi) - lgamma(.5) +

log(sqrt(2*pi)) +

log(addH) + logfadd(addmode)

qaddbLA <- lgamma((N*b-1)/2) + .5*log(N/2) +

(-(N*b-1)/2)*log(SST) +

.5*log(N) - ((N*b-1)/2)*log(pi) - lgamma(.5) +

log(sqrt(2*pi)) +

log(addHb) + logfaddb(addbmode) + (-N*b/2)*log(b)

templogPY <- qaddLA - qaddbLA

result.mat$marginalvec[result.mat.rows[index]] <- templogPY

all.coefs[[which(result.mat$modelvec==tempmod&

result.mat$schemevec==tempscheme&
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result.mat$hetvec==FALSE)]] <-

tempfit.scheme$coefficients

all.vars[[which(result.mat$modelvec==tempmod&

result.mat$schemevec==tempscheme&

result.mat$hetvec==FALSE)]] <-

summary(tempfit.scheme)$sigma^2

all.gs[[which(result.mat$modelvec==tempmod&

result.mat$schemevec==tempscheme&

result.mat$hetvec==FALSE)]] <- addmode

index <- index+1

} } }

}

#Heteroscedastic models, group-based fixed effects

if(grepl("group",tempmod)==TRUE & het[m]==TRUE){

index <- 1

result.mat.rows=which(result.mat$modelvec==tempmod &

result.mat$hetvec==TRUE)

for(i in 1:length(d_groups)){

for(j in 1:ncol(d_groups[[i]])){

{

tempscheme <- gsub("scheme=","",names(tempfit)[index])

tempfit.scheme <- tempfit[[index]]
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tempSSResid <- sum(tempfit.scheme$residuals^2)

tempP <- length(tempfit.scheme$coefficients)

MM <- model.matrix(tempfit.scheme)

tempdf <- group.dfs[[index]]

R2A <- summary(tempfit.scheme)$r.squared

gamhat <- 1/(((1-R2A)*SST)/(N-tempP))

lvhat <- log(1/gamhat)

level1 <- levels(tempdf$group)[1]

y1 <- tempdf[tempdf$group==level1,

which(names(tempdf)==response)]

n1 <- sum(tempdf$group==level1)

level2 <- levels(tempdf$group)[2]

y2 <- tempdf[tempdf$group==level2,

which(names(tempdf)==response)]

n2 <- sum(tempdf$group==level2)

scheme <- as.numeric(tempdf$group==level1)

lvlogf3 <- function(arg){

gee <- arg[1]

u <- arg[2]

v <- arg[3]

gam1 <- exp(-u)

gam2 <- exp(-v)

J <- exp(-(u+v))

logJ <- -(u+v)

gamvec <- rep(NA,N)

gamvec[scheme==1] <- gam1
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gamvec[scheme==0] <- gam2

S <- diag(gamvec)

Z_S <- S%*%Z%*%solve(t(Z)%*%S%*%Z)%*%t(Z)%*%S

value <- (n1/2-1)*(-u)+(n2/2-1)*(-v)-((tempP/2)*log(gee))+

.5*determinant(t(MM)%*%S%*%MM, logarithm=TRUE)$modulus -

.5*determinant(t(Z)%*%S%*%Z, logarithm=TRUE)$modulus -

.5*determinant(((gee+1)/gee)*t(MM)%*%S%*%MM-

t(MM)%*%Z_S%*%MM,

logarithm=TRUE)$modulus -

.5*(t(y)%*%S%*%y-t(y)%*%Z_S%*%y-

t(y)%*%(S-Z_S)%*%MM%*%solve(

((gee+1)/gee)*t(MM)%*%S%*%MM-

t(MM)%*%Z_S%*%MM)%*%t(MM)%*%(S-Z_S)%*%y)-

1.5*log(gee)-(N/(2*gee))+logJ

return(value)

}

lvlogf3b<- function(arg){

gee <- arg[1]

u <- arg[2]

v <- arg[3]

gam1 <- exp(-u)

gam2 <- exp(-v)

J <- exp(-(u+v))

logJ <- -(u+v)

gamvec <- rep(NA,N)

gamvec[scheme==1] <- gam1

gamvec[scheme==0] <- gam2
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S <- diag(gamvec)

Z_S <- S%*%Z%*%solve(t(Z)%*%S%*%Z)%*%t(Z)%*%S

bg <- b*gee

value <- (n1*b/2-1)*(-u)+(n2*b/2-1)*(-v)-

((tempP/2)*log(gee))+

.5*determinant(t(MM)%*%S%*%MM, logarithm=TRUE)$modulus -

.5*determinant(t(Z)%*%S%*%Z, logarithm=TRUE)$modulus -

.5*determinant(((bg+1)/bg)*t(MM)%*%S%*%MM-t(MM)%*%Z_S%*%MM,

logarithm=TRUE)$modulus -

.5*b*(t(y)%*%S%*%y-t(y)%*%Z_S%*%y-

t(y)%*%(S-Z_S)%*%MM%*%solve(

((bg+1)/bg)*t(MM)%*%S%*%MM-

t(MM)%*%Z_S%*%MM)%*%t(MM)%*%(S-Z_S)%*%y)-

1.5*log(gee)-(N/(2*gee))+logJ

return(value)

}

lvmode3 <- optim(c(N,lvhat,lvhat),

lvlogf3,

control=list(fnscale=-1),

method="L-BFGS-B",

lower=c(1e-9,-1e6,-1e6),

upper=c(1e9,abs(lvhat),abs(lvhat)))$par

lvmode3b <- optim(c(N,lvhat,lvhat),

lvlogf3b,

control=list(fnscale=-1),

method="L-BFGS-B",
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lower=c(1e-3,-1e2,-1e2),

upper=c(1e6,abs(lvhat),abs(lvhat)))$par

H3 <- (-1*det(hessian(lvlogf3,lvmode3)))^-.5

logH3 <- -.5*determinant(-1*hessian(lvlogf3,lvmode3),

logarithm=TRUE)$modulus

H3b <- (-1*det(hessian(lvlogf3b,lvmode3b)))^-.5

logH3b <- -.5*determinant(-1*hessian(lvlogf3b,lvmode3b),

logarithm=TRUE)$modulus

q3LA <- (-(N-1)/2)*log(2*pi) + .5*log(N/2) - lgamma(.5) +

1.5*log(2*pi) + logH3 + lvlogf3(lvmode3)

q3bLA <- (-(N*b-1)/2)*log(2*pi) + (-(tempP+1)/2)*log(b) +

.5*log(N/2) - lgamma(.5) + 1.5*log(2*pi) +

logH3b + lvlogf3b(lvmode3b)

templogPY <- q3LA - q3bLA

result.mat$marginalvec[which(result.mat$modelvec==tempmod&

result.mat$hetvec==TRUE)[index]] <- templogPY

tempscheme <- names(group.dfs[index])

all.coefs[[which(result.mat$modelvec==tempmod&

result.mat$schemevec==tempscheme&

result.mat$hetvec==TRUE)]] <-

tempfit.scheme$coefficients

all.vars[[which(result.mat$modelvec==tempmod&

result.mat$schemevec==tempscheme&
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result.mat$hetvec==TRUE)]] <-

exp(c(lvmode3[2], lvmode3[1]))

all.gs[[which(result.mat$modelvec==tempmod&

result.mat$schemevec==tempscheme&

result.mat$hetvec==TRUE)]] <- lvmode3[1]

index=index+1

} } } } } }

}

#remove fix model if necessary

if(fix==1){

delete <- which(as.character(result.mat$modelvec)==

paste0(response,"~group"))

result.mat <- result.mat[-delete,]

row.names(result.mat) <- 1:nrow(result.mat)

result.mat$classvec <- droplevels(result.mat$classvec)

result.mat$classvec <- as.factor(rep(1:length(

levels(result.mat$classvec)), times=table(result.mat$classvec)))

}

modevs <- exp(result.mat$marginalvec-(max(result.mat$marginalvec)))

#Create uniform prior by class

modpriors <- rep(NA,length(modevs))

modprobs <- rep(NA,length(modevs))

modpriors[result.mat$scheme=="None"] <-
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1/length(levels(unique(result.mat$classvec)))

modpriors[result.mat$scheme!="None"] <-

1/(ngroups*length(levels(unique(result.mat$classvec))))

for(i in 1:length(modevs)){

modprobs[i]=(modevs[i]*modpriors[i])/(modevs%*%modpriors)

}

result.mat$modpriors <- modpriors

result.mat$modprobs <- round(modprobs,8)

#Aggregate probabilities by grouping

#scheme to obtain class probabilities

classprobs <- rep(NA,length(unique(result.mat$classvec)))

names(classprobs) <- levels(result.mat$classvec)

for(c in as.numeric(as.character(unique(result.mat$classvec)))){

classprobs[c] <- sum(modprobs[as.numeric(

as.character(result.mat$classvec))==c])

}

result.mat$mle.index <- seq(1:nrow(result.mat))

sorted <- result.mat[order(-modprobs),]

mle.index <- sorted$mle.index

sorted$cumuprob <- cumsum(sorted$modprobs)

sorted <- sorted[,-c(3,8)]

variance <- rep(NA, length(result.mat$hetvec))
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variance[sorted$hetvec==TRUE] <- c("Heterosk")

variance[sorted$hetvec==FALSE] <- c("Homosk")

sorted$hetvec <- variance

sorted$df.Index <- rep(NA, nrow(result.mat)) #nrow(result.mat)

for(i in 1:nrow(result.mat)){

if(sorted$schemevec[i]!="None"){

sorted$df.Index[i] <- which(names(group.dfs)==sorted$schemevec[i])

}

if(sorted$schemevec[i]=="None"){

sorted$df.Index[i] <- which(names(group.dfs)==sorted$modelvec[i])

}

}

sorted$mle.index <- mle.index

sorted$model.index <- 1:nrow(sorted)

sorted$class <- paste0(sorted$modelvec, ", ", sorted$hetvec)

names(sorted) <- c("Model", "Scheme", "Variance", "logFlik",

"Mod.Prior", "Fmodprob", "Cumulative",

"df.Index", "mle.index", "Model.Index", "Class")

row.names(sorted) <- NULL

classprobs <- rep(NA, length(levels(as.factor(sorted$Class))))

names(classprobs) <- levels(as.factor(sorted$Class))

for(class in levels(as.factor(sorted$Class))){

tempprobs <- sum(as.numeric(as.character(

sorted$modprob.FBF[sorted$Class==class])))
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classprobs[which(names(classprobs)==class)] <- tempprobs

}

schemeprobs <- rep(NA, length(levels(as.factor(sorted$Scheme))))

names(schemeprobs) <- levels(as.factor(sorted$Scheme))

for(scheme in levels(as.factor(sorted$Scheme))){

tempprobs <- sum(as.numeric(as.character(

sorted$modprob.FBF[sorted$Scheme==scheme])))

schemeprobs[which(names(schemeprobs)==scheme)] <- tempprobs

}

schemeprobs <- data.frame("Scheme.Prob"=sort(schemeprobs, decreasing=TRUE))

classprobs <- data.frame("Class.Prob"=sort(classprobs, decreasing=TRUE))

if(prior=="flat"){

out <- list("results"=sorted, "group.dfs"=group.dfs,

"class.Probs"=round(classprobs, 8),

"scheme.Probs"=schemeprobs,

"coefficients"=all.coefs, "variances"=all.vars)

}

if(prior=="zs"){

out <- list("results"=sorted, "group.dfs"=group.dfs,

"class.Probs"=round(classprobs, 8),

"scheme.Probs"=schemeprobs,

"coefficients"=all.coefs, "variances"=all.vars, "gs"=all.gs)

}

class(out) <- "slgf"

return(out)
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}


