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Abstract

3D-printed medical prototypes, which use synthetic metamaterials to mimic bi-
ological tissue, are becoming increasingly important in urgent surgical applications.
However, the mimicking of tissue mechanical properties via 3D-printed metamaterial
can be difficult and time-consuming, due to the functional nature of both inputs
(metamaterial structure) and outputs (mechanical response curve). To deal with this,
we propose a novel function-on-function kriging model for efficient emulation and
tissue-mimicking optimization. For functional inputs, a key novelty of our model is
the spectral-distance (SpeD) correlation function, which captures important spectral
differences between two functional inputs. Dependencies for functional outputs are
then modeled via a co-kriging framework. We further adopt shrinkage priors on
both the input spectra and the output co-kriging covariance matrix, which allows the
emulator to learn and incorporate important physics (e.g., dominant input frequencies,
output curve properties). Finally, we demonstrate the effectiveness of the proposed
SpeD emulator in a real-world study on mimicking human aortic tissue, and show that
it can provide quicker and more accurate tissue-mimicking performance compared to
existing methods in the medical literature.
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1 Introduction

Three dimensional (3D) printing is an emerging layer-by-layer additive manufacturing

technology, with growing interest in medical applications (Rengier et al., 2010). This is

because 3D-printed prototypes provide precise mimicking of organ shape at an acceptable

price and time cost. Such prototypes can be extremely helpful for doctors to practice and

be proficient in surgical procedures (Chen et al., 2018b) as well as personalized pre-surgical

planning (Qian et al., 2017). One limitation is that the mechanical property (i.e., stress-

strain curve) of printed prototypes is completely different from biological tissues (Raghavan

et al., 1996). Currently, the state-of-the-art approach is to embed metamaterial structure

to mimic the desired mechanical property of biological tissue (Wang et al., 2016; see Figure

1). However, the optimization for this mimicking may take days or even weeks to perform,

due to the functional nature of the metamaterial structure. This greatly limits the medical

applicability of tissue-mimicking prototypes since surgery timing is a critical factor for

outcome success. In this paper, we propose a novel kriging model for emulating functional

mechanical response over the design space of functional metamaterial structure, which can

be used for efficient tissue-mimicking optimization in practical turnaround times.

There are two key reasons why state-of-the-art tissue-mimicking methods are impractical

for urgent surgical needs. Firstly, such methods rely solely on both physical experiments

and computer experiments, which are expensive and/or time-intensive to run. In particular,

a single physical experiment (3D-printing and testing a prototype) takes hours to perform,

and a single computer experiment (finite element analysis) requires at least 30 minutes

for a reliable mechanical response simulation. Secondly, to optimize for a good structure

which mimics the mechanical response of biological tissue, such methods require many

experimental runs over the design space of functional metamaterial structures. This makes

current tissue-mimicking methods prohibitively expensive for urgent surgical applications,

where the tissue-mimicking prototype is needed within a day. One strategy (which we

adopt) is to train a surrogate model (or emulator, see Santner et al., 2013) which, given
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Figure 1: (a) 3D-printed aortic valve (no metamaterial structure), (b) stress-strain curves
of biological tissue and printable polymer, (c) a numerical (finite element) simulation case with
sinusoidal metamaterial, (d) 3D-printed aortic valve with tissue-mimicking metamaterial.

data over the design space, can efficiently predict the mechanical response of an untested

metamaterial structure. However, due to the expensive nature and functional complexities,

it is necessary to integrate the rich physics of the tissue-mimicking problem within the

emulator model specification, in order to achieve accurate mimicking in a timely fashion.

The proposed emulator utilizes a technique called kriging (Matheron, 1963), which

models the unknown simulation output via a Gaussian process (GP). Kriging is widely used

in computer experiment modeling for its interpolating property, and the fact that both

the predictor and its uncertainty have closed-form expressions (Santner et al., 2013). The

literature on kriging for functional outputs typically involves some form of reduced-basis

modeling (Bayarri et al., 2007; Higdon et al., 2008; Mak et al., 2018; Guillas et al., 2018)

or co-kriging framework (Stein and Corsten, 1991; Banerjee et al., 2014). There has also

been some work on modeling time series outputs (Mohammadi et al., 2019). For functional

inputs, several techniques have been proposed in functional data analysis literature (see, e.g.,

Ramsay, 2005), including varying-coefficient models (Fan and Zhang, 2008) and historical

functional linear models (Malfait and Ramsay, 2003). However, the literature on kriging

with functional inputs is scarce. For time-series inputs, Morris (2012) proposed a kriging

model with a covariance function depending on time order. Reduced-basis models were also

proposed in Muehlenstaedt et al. (2017) and Wang and Xu (2019). Such models, however,

do not incorporate prior physical knowledge of the tissue-mimicking problem, and can

therefore yield poor emulation and mimicking performance given the paucity and functional

complexities of the experimental data.
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To address this, we introduce in this work a new function-on-function kriging model

which integrates an important source of physics: the spectral information of the functional

metamaterial structure input. Specifically, we propose a new spectral-distance (or SpeD)

correlation function, which uses the spectral-distance – the (weighted) Euclidean distance

between two functional inputs in spectral domain – to model the process correlation of the

GP. This new correlation function captures the appealing property of translation-invariance,

where two input metamaterial structures which are the same except for a translation shift

have the same mechanical properties. We then integrate this within a co-kriging framework

for modeling the functional mechanical response output. This emulator-based approach

allows for timely and accurate mimicking of biological tissues, and extraction of important

physics (e.g., dominant input frequencies, output curve properties) via sparsity, which

broadens the applicability of printed prototypes for urgent surgical procedures.

The paper is structured as follows. Section 2 gives an overview of the tissue-mimicking

problem. Section 3 presents the proposed SpeD emulation model and its shrinkage prior

specification. Section 4 outlines the algorithm for parameter estimation. Section 5 investi-

gates the emulation accuracy, uncertainty quantification, physics extraction and a real-world

tissue-mimicking case study. Section 6 concludes the work.

2 Tissue-mimicking and finite element modeling

We first describe the tissue-mimicking problem (or the metamaterial design problem) and

explain the physics of this problem. We then introduce the finite element (FE) analysis as a

simulation tool, and provide a brief discussion on experimental design for the FE simulation.

2.1 Tissue-mimicking problem

As discussed, 3D-printing technology can print patient-specific prototypes with precise

geometry (Figure 1 (a)), but the mechanical properties of these printed prototypes can
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differ greatly from that for true organs (Figure 1 (b)). The considered mechanical property

is the stress-strain curve (Malvern, 1969), defined as stress (external tensile load per area)

as a function over strain (tensile displacement as a percentage of the specimen length). The

stress-strain curve of the biological tissue typically possesses the property of strain-stiffening,

which means the curve is concave upward (see solid blue line in Figure 1 (b)), indicating it

becomes stiffer as more load is introduced (Raghavan et al., 1996). However, for 3D-printable

material, an opposite property of strain-softening is exhibited (see dotted red line in Figure

1 (b)) due to the plastic-slipping effect and energy dissipation (Hill, 1998).

To achieve the strain-stiffening property of the biological tissues, one approach is to

introduce metamaterial structure (i.e., printed enhancement sub-structure) within the

prototypes (Wang et al., 2016). Figure 1 (c) shows an example of a metamaterial with

sinusoidal structure. Here, the stiffer enhancement fiber is designed to have a sinusoidal

shape, inside the cuboid matrix of a soft material. In this work, we treat the structure

(or shape) of the enhancement fiber (assumed to have uniform diameter) as the functional

input for our SpeD model. Our goal is to mimic the target mechanical property of human

tissues, by carefully choosing the shape of the enhancement fiber. Figure 1 (d) shows a

printed “tissue-mimicking” aortic valve with the optimal metamaterial structure.

2.2 Finite element modeling and experimental design

In this work, FE modeling is used to simulate the output stress-strain curve of a given

metamaterial structure. FE modeling is frequently used for stress analysis in solid mechanics;

it transforms the partial differential equations to their integral form, so that a piece-wise

linear formula can be used to approximate the true deformation profile (Zienkiewicz et al.,

1977). The key advantage of FE simulations, compared to physical experiments, is that

high accuracy can be achieved with no material cost or human error.

Here, FE simulations are performed using COMSOL Multiphysics. The overall size of

the metamaterial cuboid (with one enhancement fiber inside) is 20mm by 4mm by 2mm,
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with physics-based quadratic tetrahedral elements for meshing. To compute the stress-strain

curve of the metamaterial, one end of the cuboid is fixed while a series of load levels (up to

15% uniaxial deformation) is applied to the other end. The total computation time for one

metamaterial is around 30 minutes on 24 Intel Xeon E5-2650 2.20GHz processing cores.

We use a sinusoidal wave structure for designing the training metamaterial structures,

as such a form exhibits the best strain-stiffening property from a recent study (Wang

et al., 2016). The design space has four parameters (Chen et al., 2018a): the diameter

of the enhancement fiber d ∈ [0.2, 2] mm, and the amplitude A ∈ [0, 1] mm, frequency

ω ∈ [0, 0.8] mm−1 and initial phase φ ∈ [0, 2π] of the sinusoidal wave:

I(t) = A sin(2πωt+ φ). (1)

The experimental design adopted for the sinusoidal coefficients is the maximum projection

(MaxPro, Joseph et al., 2015) design, which has good space-filling properties on design

projections, thereby enabling good predictions from a GP model. Note that the parametric

sinusoidal form (1) is used only to generate data for training the emulator; we will explore a

bigger non-parametric input space for prediction and tissue-mimicking optimization. A total

of n = 58 metamaterial structures are simulated as the training dataset. An 18-run Sobol’

sequence (Sobol’, 1967) is used as the testing dataset, since it provides a low-discrepancy

coverage of the design space, disjoint from the training MaxPro design. Despite the

relatively small training dataset (n = 58 samples), we show later that the functional stress-

strain predictions from the proposed emulator are quite accurate, and provide noticeable

improvements over a standard kriging model with four sinusoidal coefficients as inputs.

3 Emulation model

We present the proposed emulation model in three parts. First, we introduce the proposed

model for functional inputs, using the simplified setting of scalar outputs. We then
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extend this for functional outputs using a co-kriging structure. Finally, we discuss a prior

specification for model parameters which encourages sparsity.

3.1 Spectral-distance kriging model

We introduce first the proposed kriging model for functional inputs I(·) ∈ I, where I is the

functional input space (to be defined later). For simplicity, assume first the case of scalar

outputs (functional outputs are introduced next). For the map y(·) : I 7→ R from functional

inputs to scalar outputs, we propose the following GP model:

y(·) ∼ GP{µ, σ2ρ(·, ·)}, (2)

where µ is the scalar process mean and σ2 is the process variance. Here, ρ(·, ·) : I × I 7→ R

is the proposed spectral-distance (SpeD) correlation function, defined as:

ρ(I1(·), I2(·)) = Corr{y(I1(·)), y(I2(·))} = exp
(
−D2 (|F [I1(·)]| , |F [I2(·)]| ; θ)

)
. (3)

Here, D(·, ·; θ) is a distance function (defined later), |ai + b| is the modulus of a complex

number ai + b (where i =
√
−1 is the unit imaginary number), and F [·] : I → Î is the

Fourier transform from the input space of integrable functions, I = {I(·) :
∫
|I(t)|dt <∞},

to its spectral space Î. We will use the following definition of a Fourier transform for an

input function I(·):

Î(ξ) = F [I(t)] =

∫
I(t)e−2πitξdt, ξ ∈ R. (4)

Similar to the scale-parametrized distance function in the Gaussian correlation (which

is widely used for GP emulation of computer experiments, see Santner et al., 2013), we will

use the following scale-parametrized l2 distance function in the spectral domain:

D(|F [I1(·)]| , |F [I2(·)]| ; θ) =

[∫
θ(ξ)

(∣∣∣Î1(ξ)∣∣∣− ∣∣∣Î2(ξ)∣∣∣)2 dξ]1/2 . (5)

7



Figure 2: An illustration of the translation-invariance property: for the two input structures
which are equivalent up to a translation shift of t0, their mechanical responses are the same.

Here, θ(·) is a weight function in spectral space, with a larger value of θ(ξ) indicating greater

importance of frequency ξ in the SpeD correlation function. In contrast to the standard

Gaussian correlation, we assign importance to each frequency component of a functional

input, rather than to each input variable. Plugging (5) into (3), the SpeD correlation

function becomes:

ρ(I1(·), I2(·)) = exp

(
−
∫
θ(ξ)

(∣∣∣Î1(ξ)∣∣∣− ∣∣∣Î2(ξ)∣∣∣)2 dξ) . (6)

In our implementation (see Section 4), this correlation is computed via a discrete approxi-

mation of the integral in (6).

One advantage of the SpeD correlation function is that it can capture known properties

of the tissue-mimicking problem. First, recall that the translation-shifting property of

Fourier transform (Bracewell and Bracewell, 1986): for any t0 > 0, if I2(t) = I1(t− t0), then

Î2(ξ) = e−2πit0ξ Î1(ξ). (7)

For two metamaterial structures with a shift, i.e., I1(t) = I(t) and I2(t) = I(t− t0), we can

then show that their outputs are perfectly correlated, i.e.:

ρ(I1(·), I2(·)) = exp

(
−
∫
θ(ξ)

(∣∣∣Î1(ξ)∣∣∣− ∣∣∣e−2πit0ξ Î1(ξ)
∣∣∣)2 dξ) = 1. (8)
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We call this the translation-invariance property of the SpeD correlation. As illustrated

in Figure 2, this is a desirable property, since we know from physical knowledge that any

translation of the metamaterial structure does not affect the output mechanical response. To

contrast, the existing functional input models in Section 1 do not enjoy this property. Second,

it is known that the stress-strain curve depends largely on frequency ω and amplitude A,

but not on initial phase φ in the sinusoidal parametrization (1) (Wang et al., 2016; Chen

et al., 2018a). One can therefore expect that (i) the Fourier frequencies ξ are significant, and

(ii) variations in mechanical response are largely due to differences in frequency intensities

|Î(ξ)|. The proposed correlation function (6) nicely captures both of these properties.

For our tissue-mimicking problem, the specific choice of the Fourier transform with l2

distance of the modulus gives an intuitive parametrization of known physical properties. For

other applications, the SpeD correlation (6) can also be used with other spectral transforms

(e.g., wavelet transforms) and other distance metrics (e.g., l1 distance). The choice of

spectral transform and distance should be made on a case-by-case basis, motivated by prior

information from the problem at hand.

The following theorem ensures that the SpeD correlation function ρ(·, ·) (6) is a valid

positive semi-definite kernel.

Theorem 1. The SpeD correlation function ρ(·, ·) : I × I 7→ R in (6), is a positive

semi-definite kernel, i.e.:
n∑
i=1

n∑
j=1

cicjρ(Ii(·), Ij(·)) ≥ 0, (9)

holds for any n ∈ N, c1, · · · , cn ∈ R and any distinct functions I1(·), · · · , In(·) ∈ I.

The proof of Theorem 1 is provided in Appendix A. This positive semi-definite property

ensures the validity of ρ(·, ·) as a proper correlation function to use for GP modeling. Note

that ρ(·, ·) is not (strictly) positive-definite, in that an equality in (9) does not imply ci = 0

for all i = 1, · · · , n. This can be seen by setting all input functions (Ii(·))ni=1 to be the

same modulo a translation shift; the resulting correlation matrix [ρ(Ii(·), Ij(·))]ni=1
n
j=1 then
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becomes a matrix of ones, which is clearly not positive definite. The fact that ρ(·, ·) is not

positive-definite is not an issue, since for most space-filling designs (including the adopted

MaxPro design, see Joseph et al. 2015), all training input functions are distinct even after

translation shifts.

3.2 Spectral-distance co-kriging model

For the tissue-mimicking problem, the output (i.e., the stress-strain curve) is of functional

form as well. Below, we generalize the scalar model in Section 3.1 to account for functional

outputs. Denote the functional input as I(·) ∈ I and functional output as O(·), where

O(s) is the output stress at strain level s. For our training dataset of n = 58 simulated

structures, the functional outputs Oi(·), i = 1, · · · , n are discretized into m levels, yielding

output vectors yi ∈ Rm, i = 1, · · · , n. We assume the following SpeD co-kriging model on

y(·) : I 7→ Rm:

y(·) ∼ GP{µ,C(·, ·)}, (10)

where µ ∈ Rm is the process mean vector and C(·, ·) : I × I 7→ Rm×m is the corresponding

covariance matrix function.

Consider first the specification of the covariance matrix function C(·, ·). Let

C(I1(·), I2(·)) = Cov(y(I1(·)),y(I2(·))) = ρ(I1(·), I2(·))Σ and Σ � 0. (11)

Here, ρ(·, ·) is the SpeD correlation kernel in (6), and Σ ∈ Rm×m is a symmetric, positive

definite co-kriging covariance matrix quantifying correlations between different output levels.

Equation (11) implicitly assumes separability in the co-kriging covariance structure. Here,

separability means the covariance between output levels observed at different functional

inputs can be decomposed as the product of the covariance between output levels and the

covariance between functional inputs. This separability assumption is used extensively in

the literature for reducing computational complexity (Banerjee et al., 2014).
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Consider next the specification of mean µ. We assume µ follows the basis representation:

µ = Pβ, (12)

where each column of P ∈ Rn×q represents a pre-specified basis function and β ∈ Rq denotes

its coefficients. This basis representation is similar to the modeling framework of Liu and

Guillas (2017). The choice of basis functions in P should be guided by prior knowledge on the

form of output stress-strain curves. We will describe in Section 5.1 a specific parametrization

of µ which incorporates monotonicity information on the stress-strain curve.

Now, we derive the equations for prediction and UQ. Let y1:n =
[
yT1 ,y

T
2 , ...,y

T
n

]T
denote

the vector of functional outputs of the whole training set. Using the conditional distribution

formula of the multivariate normal distribution, the discretized functional response ynew at

a new functional input Inew(·) ∈ I follows the multivariate normal distribution:

ynew|y1:n ∼ N
(
Pnewβ + (rθ ⊗Σ)T

(
R−1θ ⊗Σ−1

)
(y1:n − 1n ⊗Pβ) ,

Σ− (rθ ⊗Σ)T
(
R−1θ ⊗Σ−1

)
(rθ ⊗Σ)

)
,

(13)

where ⊗ is the Kronecker product, 1n denotes 1-vector of n elements, Pnew denotes the regres-

sion matrix at the new input, β and Σ are regression coefficients and co-kriging covariance

matrix, rθ =
[
ρ(Inew(·), I1(·)), · · · , ρ(Inew(·), In(·))

]T
and Rθ = [ρ(Ii(·), Ij(·))]ni=1

n
j=1. After

algebraic manipulations, the posterior mean ŷnew = E{ynew|y1:n} and posterior variance

Var{ynew|y1:n} can be written in a more concise form:

ŷnew = E{ynew|y1:n} =Pnewβ +
(
rTθ R−1θ ⊗ Im

)
(y1:n − 1n ⊗Pβ) , (14)

Var{ynew|y1:n} =
(
1− rTθ R−1θ rθ

)
Σ, (15)

where Im denotes an m × m identity matrix. Equation (14) can be used to predict (or

emulate) the stress-strain curve for a new metamaterial structure, while Equation (15) can

be used to construct a confidence band for quantifying the uncertainty of this prediction.
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3.3 Prior specification

Finally, we provide a prior specification for the model parameters (θ(·),Σ,β). Consider

independent priors on each parameter in (θ(·),Σ,β). For the weight function θ(·), we assign

independent exponential priors at each frequency ξ, i.e.:

θ(ξ)
i.i.d.∼ Exp(λI), (16)

where λI is a rate parameter for the exponential priors. Similar to the Bayesian LASSO

(Park and Casella, 2008), the shrinkage prior (16) encourages sparsity in the maximum

a posteriori estimate of θ(·). This sparsity is desired for two reasons. First, this allows

us to identify dominant frequencies in metamaterial structure which influence mechanical

response. Second, sparsity in θ(·) greatly speeds up the tissue-mimicking procedure using

the proposed emulator, which is paramount for efficient tissue-mimicking in urgent surgical

applications. We note that, in other applications where the time budget allows for a fully

Bayesian implementation (see Section 4), a spike-and-slab prior (Ishwaran and Rao, 2005)

could be used.

For the covariance matrix Σ, we assign the following prior:

π (Σ) ∝ exp(−λo‖Σ−1‖1). (17)

Here, λo is a rate parameter, and ‖ · ‖1 is the element-wise l1 norm. The prior (17) on

Σ can be viewed as a shrinkage prior which encourages sparsity on the elements of the

inverse covariance matrix Σ−1 (Wang, 2012). This corresponds to the widely-used graphical

LASSO (Friedman et al., 2008) method for sparse covariance estimation. For our problem,

this sparsity can be used to identify important and interpretable physical couplings in the

stress-strain relationship (see Section 5.3.1).

For the regression coefficients β, we assign a non-informative flat prior π(β) ∝ 1, since

little information is known on β prior to data in our problem. A more informative prior
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can be used on β, if additional domain knowledge is available on the mean trend of the

stress-strain curve.

4 Parameter estimation

In implementation, the functional inputs I(·) are also discretized to p levels. Let x1 = (xk1)p−1k=0

and x2 = (xk2)p−1k=0 denote the discretized input vectors for both I1(·) and I2(·), respectively.

The proposed SpeD kernel ρ(I1(·), I2(·)) in (6) can be approximated as:

ρ(x1,x2) = exp

− (p−1)/2∑
k=0

θk
(∣∣x̂k1∣∣− ∣∣x̂k2∣∣)2

 , (18)

where θ = (θk)
(p−1)/2
k=0 is the discretized weight vector, and x̂k =

∑p−1
l=0 x

le−
2πi
p
lk is the k-th

entry of the discrete Fourier transform x̂ for x. Note that x̂ is symmetric because x is

real-valued (Sorensen et al., 1987); hence, only the first half of x̂ is used in (18).

With this input discretization, we adopt a maximum a posteriori (MAP) approach for

estimating the parameters (β,θ,Σ). The main reason we prefer MAP over a fully Bayesian

approach is computational efficiency, for both parameter estimation and tissue-mimicking

optimization. For parameter estimation, a fully Bayesian approach typically requires Markov

chain Monte Carlo sampling (MCMC; Gelman et al., 1995). Given the complexities of

functional inputs and outputs, MCMC sampling can take several days, which is more time-

consuming than a single computer experiment run! Furthermore, the primary application of

the proposed emulator is for tissue-mimicking optimization, which typically requires many

evaluations of the emulation predictor. Therefore, it can be very time-consuming in a fully

Bayesian implementation, since each evaluation involves an average over all MCMC samples.

In urgent surgical planning, the MAP approach (described next) offers a quicker way to

survey the metamaterial design space, which enables timely tissue-mimicking optimization.

From the GP model in (10) and (13), the MAP estimation of (β,θ,Σ) boils down to
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minimizing the following penalized negative log-posterior (Santner et al., 2013):

min
β,θ≥0,Σ�0

lλ(β,θ,Σ) = min
β,θ≥0,Σ�0

[
n log det Σ +m log det Rθ + λI‖θ‖1 + λo‖Σ−1‖1

+ (y1:n − 1n ⊗Pβ)T
(
R−1θ ⊗Σ−1

)
(y1:n − 1n ⊗Pβ)

]
.

(19)

Here, Rθ is the correlation matrix in (13) with scale parameters θ, and λI and λo are the

rate parameters for the shrinkage priors in Section 3.3.

From a regularization perspective, the two prior terms λI‖θ‖1 and λo‖Σ−1‖1 in the

negative log-posterior (19) can equivalently be viewed as penalty terms on θ and Σ−1, with

the rate parameters λI and λo corresponding to penalization parameters. In this sense, the

parameters λI and λo control the degree of sparsity imposed on θ and Σ−1, with a larger

λI (or λo) resulting in a sparser estimate of θ (or Σ−1), and vice versa. In practice, these

penalization parameters can be estimated from the data itself, or specified from the problem

at hand. For example, if predictive accuracy of the emulator is the end goal, then λI and

λo can be estimated based on cross-validation techniques (Friedman et al., 2001). However,

if the extraction of important physics is desired, then λI and λo can be set so that a desired

number of physical features can be learned. We will return to this in Section 5.3.

Consider now the MAP optimization in (19) for fixed λI > 0 and λo > 0. We will use

the following blockwise coordinate descent (BCD) optimization algorithm, described below.

First, assign initial values for β, θ and Σ. Next, iterate the following three steps until

the convergence is achieved: (i) for fixed GP parameters θ and regression coefficients β,

compute the correlation matrix Rθ and then optimize for covariance matrix Σ using the

graphical LASSO algorithm (Friedman et al., 2008); (ii) for fixed θ and Σ, compute β using

closed-form expressions (see Santner et al., 2013 for details); and (iii) for fixed β and Σ,

optimize for θ using the L-BFGS algorithm (Liu and Nocedal, 1989). The full optimization

procedure is provided in Algorithm 1. Since (19) is a non-convex optimization problem, the

proposed BCD algorithm only converges to a stationary solution (Tseng, 2001). Because of

this, we suggest performing multiple runs of Algorithm 1 with random initializations for each
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Algorithm 1 BCD algorithm for minimizing the penalized negative log-likelihood (19)

1: • Set initial values β ← 0q, Σ← Im and θ ← 1p, and set Y ← [y1,y2, ...,yn]T

2: repeat
3: Optimizing Σ:

4: • Set Rθ =

[
exp

(
−
∑(p−1)/2

k=0 θq

(∣∣x̂ki ∣∣− ∣∣∣x̂kj ∣∣∣)2)]n
i=1

n

j=1

with x̂k =
∑p−1

l=0 x
le
− 2πi

p
lk

5: • Set µ = Pβ
6: • Set W0 ← 1

n(Y − 1n ⊗ µT )TR−1θ (Y − 1n ⊗ µT ) + λo · Im
7: • Estimate W by Graphical LASSO using W0 as initialization
8: • Update Σ←W−1

9: Optimizing β:

10: • Set S = (P⊗ 1n)T
(
R−1θ ⊗W

)
(P⊗ 1n)

11: • Update β ← S−1(P⊗ 1n)T
(
R−1θ ⊗W

)
y1:n

12: Optimizing θ:
13: • Update θ ← argminθ lλ(β,Σ,θ) with L-BFGS
14: until β, Σ and θ converge

15: • return β, Σ and θ

run, then taking the converged estimates for the run with smallest negative log-likelihood.

5 Emulation results

In this section, we present the numerical performance of the proposed model for tissue-

mimicking. This is presented in four parts. First, we compare the predictive performance

of the proposed SpeD emulation model with two baseline emulation models. Second, we

provide a comparison of the uncertainty quantification from these three emulation models.

Third, we analyze the physical properties learned via shrinkage priors on θ and Σ. Finally,

we demonstrate the usefulness of the fitted model for mimicking human aortic tissue.

5.1 Prediction accuracy

As mentioned in Section 2.2, the proposed SpeD model is fitted using the training data

of n = 58 FE simulations. The input function I(·) ∈ I is discretized to p = 81 parts at

{0, 0.25, 0.5, · · · , 20} mm, which we denote as a vector x ∈ R81. This corresponds to the
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discretized θ at frequencies {0, 0.05, 0.1, · · · , 2} mm−1. In the specific tissue-mimicking

problem, the diameter of the metamaterial enhancement d ∈ R (assumed to be uniform

over the whole functional curve I(·)) is also important. To account for this extra design

variable, we use the following separable correlation function ρs(·, ·) : R82 × R82 7→ R:

ρs([d1,x1], [d2,x2]) = ρ(x1,x2) exp
(
−θd (d1 − d2)2

)
, (20)

where ρ(·, ·) is the discretized SpeD kernel in (18) and θd is the scale parameter for diameter

d. Let s ∈ Rm=41 denote the vector of strain levels equally spaced from s = 0 to s = 15%,

and let y = O(s) ∈ R41 be the discretized stress function O(·). Here, the input and output

discretization levels are selected heuristically to capture features of the input and output

functions: the output functions are quite smooth require less levels, and the input functions

are more rugged and require more levels.

From the underlying physics of the stress-strain relationship, it is known that (i) the

stress O(s) is always positive, (ii) the stress is zero when the strain is zero (this is known

as the free-standing state, see Malvern, 1969), and (iii) stress-strain curves are typically

monotone and non-decreasing, since a larger force is needed to stretch further. To account

for (i), a standard log-transformation of stress O(s) is performed prior to modeling and

parameter estimation, and the final results are transformed back to ensure the predicted

stress is always positive. To account for (ii) and (iii), we choose the basis functions in (12)

to be P = [1m, log(s)], along with an additional constraint of β2 > 0 to ensure the mean

function is monotone and non-decreasing. This is equivalent to assuming the mean stress-

strain curve takes the following form O(s) = asb, a, b > 0, which is a typical parametrization

in biomedical literature (Rengier et al., 2010; Chen et al., 2018a). This provides a simple

and effective way to encourage monotonicity via the mean function specification; one can

also extend the shape-constrained GP model in Wang and Berger (2016) to impose sample

path monotonicity, but this is beyond the scope of this work.

For comparison, we also fit two different emulators as baseline methods, using the same
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Figure 3: Predicted stress-strain curves for the l2-distance emulator (“l2”), feature-based emulator
(“Feature”), and the proposed SpeD emulator (“SpeD”) on two test metamaterial structures. The
corresponding MAREs are included in the legends.

dataset. The inputs of the first emulator are the parameters from the sinusoidal wave

design xp = [d,A, ω, φ]T ∈ R4, which represents the diameter of the metamaterial fiber,

amplitude, period and initial phase of the sinusoidal wave (see Figure 1 and Equation (1)).

This emulator uses a GP model with correlation function:

ρp(x1,x2) = exp

(
−

4∑
k=1

θk
(
xk1 − xk2

)2)
. (21)

The same correlation function (with scalar output) is used in Chen et al. (2018a). We refer

this as the feature-based method. The second emulator also assumes a GP model with

correlation function:

ρf (I1(·), I2(·)) = exp

(
−
∫
θ(t) (I1(t)− I2(t))2 dt

)
. (22)

This correlation (22) is essentially the Gaussian correlation function, with distance taken to

be the l2-distance between input functions. A similar correlation function is used in Morris

(2012) for time-series inputs, with additional dependencies on time order. We refer this

as the functional l2-distance method. Both baseline methods assume the same separable

co-kriging structure for discretized outputs y1:n, along with MAP parameter estimation.
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Figure 4: Boxplots of the MARE ratio between the base-
line emulators and SpeD emulator on the 18-run test set.
The red line marks the MARE ratio of 1.0, where the base-
line emulator has the same MARE as the SpeD emulator.

Median MARE

SpeD 0.11
Feature-based 0.19
l2-distance 0.26

Table 1: The median MARE of the
SpeD emulator and two baseline emu-
lators over the 18-run test set.

5.1.1 Predicting stress-strain curve

To test the performance of the proposed emulator, we compare the predictions of stress-strain

curves (using Equation (14)) for the metamaterial designs from the test set (see Section 2.2).

Figure 3 shows the emulated stress-strain curves for two test metamaterial structures, along

with the true stress-strain curve (ground truth) from FE simulations. To quantitatively

measure the difference between the predicted and true curves, we use the following mean

absolute relative error (MARE) metric:

MARE =

∫
s
|O(s)− Ô(s)|ds∫

s
|O(s)|ds

, (23)

where s is the strain level, O(s) is the stress at strain s from FE simulation (ground truth),

and Ô(s) is the predicted stress from the emulators. The MARE values for the two test

cases in Figure 3 are included in the legends. Table 1 reports the median MARE values

for the three considered emulators, over the whole test set. The proposed SpeD emulator

appears to perform very well, in that it achieves noticeably lower median MARE than

the two existing emulators. Figure 4 shows the boxplots of the MARE ratio between the

baseline emulators and the SpeD emulator for the 18 test cases (note that a ratio of 1.0

means the SpeD model yields similar MARE to a baseline model). We see that these ratios

are mostly larger than one, which suggests that the proposed emulator is noticeably better
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Figure 5: (a) visualizes the three characteristics of mechanical performance: moduli E1 and E9,
and curvature κ. (b) and (c) show the pairwise absolute relative error for E1 and E9 between the
two baseline emulators and the SpeD emulator. The red line marks a relative error ratio of 1.0.

in predicting the true stress-strain output curve. This is not surprising, since our model

captures known physical properties of the tissue-mimicking problem.

5.1.2 Predicting physical characteristics

In addition to predicting stress-strain curve O(s), engineers are also interested in predicting

key physical characteristics. An accurate prediction of these characteristics can be as

important as emulating the stress-strain curve itself, because it provides interpretability to

the black-box emulation model. Two important physical characteristics of interest are (i)

the elastic modulus of the stress-strain curve, and (ii) the classification of material type as

strain-stiffening or strain-softening. For (i), the modulus, i.e., the slope of the stress-strain

curve at different strain levels, can be interpreted as the stiffness or hardness of the material

(Raghavan et al., 1996). Here, we are interested in the elastic moduli E1 and E9 at strain

levels 1% and 9%, respectively, where Ek = ∂O(s)/∂s
∣∣
s=k%

; this allows us to evaluate the

elastic moduli prediction over a wide range of strain levels. For (ii), we wish to classify

the stress-strain curve as strain-stiffening or strain-softening ; this is particularly important

given the goal of mimicking biological tissues (see Section 2.1). One way to classify is to

use the curvature of the stress-strain curve, which can be approximated by the slope of the

two moduli, κ = ∂2O/∂s2 ≈ (E9 −E1)/(9%− 1%). Assuming no fluctuations in s ∈ [1, 9]%

(Malvern, 1969), a positive curvature κ suggests a strain-stiffening property is present (due
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SpeD Feature-based l2-distance

True positive % 12/12=100% 11/12=91.7% 7/12=58.3%
True negative % 6/6=100% 5/6=83.3% 5/6=83.3%
Classification % 18/18=100% 16/18=88.9% 13/18=72.2%

Table 2: The true positive rate, true negative rate, and classification rate of strain-stiffening and
strain-softening, for the three considered emulators.

to increasing moduli), while a negative κ suggests a strain-softening property is present.

Figure 5 (a) visualizes these physical characteristics from a stress-strain curve.

We now compare three emulators (SpeD and baselines) for predicting the moduli and

material type. The moduli Ê1 and Ê9, computed from the emulated stress-strain curves, are

compared with the moduli E1 and E9 from FE simulation. Figures 5 (b) and (c) show the

pairwise absolute relative error |Ê − E|/E, between the baselines and the SpeD emulator.

We see that most of these ratios are larger than 1.0 in the test set, which shows that the

proposed SpeD model outperforms both baseline emulators. For classification, the predicted

curvature κ̂, computed from the emulated curves, are compared with the true curvature κ

from FE simulation. Table 2 shows the correct classification rates for the three emulators.

The SpeD model has a perfect 18/18 = 100% classification accuracy: it identified the

correct strain-softening/-stiffening property for all 18 test structures. On the other hand,

the feature-based model and the l2-distance model achieves only a 16/18 = 88.9% and

13/18 = 72.2% classification accuracy rate, respectively. One reason why the proposed SpeD

model can better capture these physical characteristics (compared to existing emulators) is

because it directly incorporates the underlying physics via the SpeD correlation function.

5.2 Uncertainty quantification

Particularly in healthcare applications, the quantification of predictive uncertainty can

be as important as the prediction itself. For the proposed model, Equations (14) and

(15) can be used to construct 90% pointwise highest posterior density predictive intervals
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Figure 6: A comparison of the 90% pointwise HPD-PIs for the three emulation models (left:
SpeD, middle: feature-based, right: l2-distance). Different rows are for different test cases.

(HPD-PIs) for the emulated stress-strain curves. Figure 6 shows the 90% HPD-PI for the

three emulation models. Note that there is little predictive uncertainty at low strain, with

uncertainty increasing as strain levels increase. This is consistent with the physical intuition

in Section 5.1: the stress always equals to zero when strain equals zero, i.e., no force at

free-standing condition. The increasing uncertainty for higher strain levels may be due to

the log-transformation of the functional output.

Comparing the predictive intervals for the three emulators, we see that the proposed

SpeD model returns narrower predictive intervals compared to both the l2-distance model

and the feature-based model. This is particular evident for the test case in the top row

of Figure 6. Moreover, the 90% HPD-PIs of the SpeD emulator covers the true stress-

strain curves in 16/18 of the test cases, whereas the coverage for the feature-based and

l2-distance emulators are only 12/18 and 14/18, respectively. For example, the bottom

row of Figure 6 shows a test case where feature-based emulator fails to cover the true

stress-strain curve. Over the whole test set, our SpeD emulator appears to give reliable

coverage of the true stress-strain curve, with relatively low predictive uncertainty. The

reasons for this may be two-fold: (i) the SpeD correlation captures the physics of the
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Figure 7: (a) The sparsity pattern visualization of the inverse covariance matrix Σ−1 by
graphical LASSO with 40% of non-zero entries. The pattern indicates three different regions of the
stress-strain curve, colored yellow, green and red. (b) The partition of strain-stress curves for soft
materials into toe, elastic, and yield regions up to strain level of 15%.

tissue-mimicking problem, which can be viewed as an additional source of data, and (ii) the

shrinkage priors on spectral coefficients screens out inert frequencies, which also helps reduce

predictive uncertainty. It is worth noting that the predictive intervals here do not account

for parameter uncertainties in the emulator; accounting for such uncertainties would require

a fully Bayesian implementation, which would entail much more computational resources.

5.3 Learning physics via sparsity

The SpeD emulator also provides a data-driven approach to learn important physics, via

the shrinkage priors on both the covariance matrix Σ and frequency coefficients θ.

5.3.1 Segmentation of stress-strain curve

We first analyze the important correlations selected by the shrinkage prior on the co-kriging

covariance matrix Σ. Setting the penalty parameter λo such that 40% of the entries of Σ−1

are non-zero, Figure 7 (a) visualizes the selected (important) covariances in Σ−1. Each

entry of Σ−1 represents the corresponding covariance between two stress-strain curve points

conditional on all other curve points; note that this covariance quantifies the deviation of

the curve from the parametric model O(s) = asb. We see that the stress-strain curve can be
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roughly segmented into three regions: small strain (from 0% to 3%) with high conditional

correlation, medium strain (from 3% to 9%) with moderate conditional correlation and

large strain (from 9% to 15%) with high conditional correlation.

These three regions suggest a connection to known physical properties in material

strength (Malvern, 1969; Martin et al., 1998), where the mechanical response of the soft

bio-mimicking material can also be divided to three regions: the toe region, the elastic

region and the yield region (see Figure 7 (b)). We see from Figure 7 (a) that there are fewer

significant conditional correlations in the elastic region compared to the other two regions.

One reason for this is that, within the elastic region, the stress-strain curve can be better

approximated by the form O(s) = asb (which corresponds to the choice of basis functions in

P). Figure 7 (a) also suggests the presence of conditional correlations between the elastic

and yield regions. One plausible explanation of this is the migration of strain-stiffening or

strain-softening property to straightening.

5.3.2 Learning dominant frequencies

The proposed approach can also learn important frequencies ξ which influence mechanical

response, via the shrinkage priors on the weight function θ(ξ) (see Section 3.3). Figure 8

(c) shows the MAP estimate of θ(·) in the spectral space, where the rate parameter λI is

chosen via cross-validation. We see that θ(·) shrinks to zero at low and high frequencies,

with non-zero estimates only for medium frequencies between 50m−1 to 400m−1. For these

two endpoint frequencies, Figures 8 (a) and (b) show the metamaterial structures with

frequencies ξ ≈ 50m−1 and ξ ≈ 400m−1, respectively.

The selected frequencies in θ(ξ) are also in line with the physical understanding of the

problem. For low frequencies (Figure 8 (a)), the fluctuation in metamaterial design is too

weak to induce any effect on the stress-strain curve, whereas for high frequencies (Figure

8 (b)), the resulting strong fluctuation in metamaterial leads to mechanical properties

similar to a straight fiber (given nonzero diameter d, see Chen et al., 2018a). While it is

known that different frequencies affect mechanical response in different ways, a strict law
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Figure 8: Examples of metamaterial structure with very low (a) or very high (b) frequency. (c)
MAP estimates of spectral parameters θ, where medium frequencies are non-zero.

is difficult to find for engineers. Here, our SpeD emulator sheds light on the influential

frequencies, i.e., from 50m−1 to 400m−1, so those frequencies should be carefully chosen for

metamaterial design. We note that these selected frequencies may be sensitive to the choice

of experimental design, so further analyses should be taken to confirm such findings from a

physics perspective. This identification of important frequencies also allows us to greatly

speed up optimization for tissue-mimicking, which we show next.

5.4 Mimicking aortic tissue via optimization

We now tackle the motivating task of mimicking the mechanical properties of a target tissue

with the proposed emulator. Here, the SpeD model can be used to find a good metamaterial

design (both structure I(·) and diameter d) whose stress-strain curve matches the desired

mechanical property y∗. This is achieved via the following optimization problem:

(d∗, I∗(·)) = argmin
dnew,Inew(·)∈I

E
{
‖y([dnew, Inew(·)])− y∗‖22|y1:n

}
, (24)

where I∗(·) is the optimal metamaterial structure, d∗ is the optimal fiber diameter, and

y([dnew, Inew(·)])|y1:n is the conditional (discretized) stress-strain curve in (13) with diameter

dnew and structure Inew(·). In words, equation (24) aims to find the optimal metamaterial

design whose stress-strain curve from the proposed model (conditional on data) is closest to

the target curve y∗ in terms of mean-squared error (MSE).
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This MSE criterion can be further decomposed as follows:

‖ŷ([dnew, Inew(·)])− y∗‖22 + tr (Var{y([dnew, Inew(·)])|y1:n}) . (25)

Here, ŷ([dnew, Inew(·)]) and Var{y([dnew, Inew(·)])|y1:n} are the conditional mean and variance

of y([dnew, Inew(·)])|y1:n, respectively, and tr(A) =
∑

iAi,i is the trace of the matrix A.

The first term can be interpreted as trying to minimize the l2-norm between the emulated

stress-strain curve and the target curve. The second term can be viewed as trying to

minimize the predictive variance of the emulated curve. Such a decomposition is quite

intuitive, since we wish to find a metamaterial design whose emulated curve matches the

desired curve, but also has low predictive uncertainty from the emulation model.

One difficulty in solving (24) is that the variable I(·) is functional in form, and its

discretization x ∈ Rp, p = 81 can be too high dimensional to optimize numerically. Here is

where the extracted important frequencies from Section 5.3.2 come into play. Let x̂new ∈ R7

denote the seven non-zero Fourier coefficients (see Figure 8). Using these coefficients as

inputs for optimization (and ignoring the other inert coefficients), we get the following

lower-dimensional optimization problem:

(d∗, x̂∗) = argmin
dnew∈R,x̂new∈R7

E
{
‖y([dnew, x̂new])− y∗‖22|y1:n

}
, (26)

where y([dnew, x̂new])|y1:n is the conditional random vector taking the frequencies as input.

While this problem is non-convex, it is much lower-dimensional, and can be effectively

optimized using standard quasi-Newton methods (e.g., L-BFGS) and random initializations.

This framework (using the proposed SpeD model) offers significant speeds up for

tissue-mimicking over the current state-of-the-art methods. To see why, consider first

the optimization of (24) using only numerical FE simulations: this requires hundreds of

evaluations of the optimization objective function, each of which requires around 30 minutes

of computation time. This means tissue-mimicking with only FE simulations can require
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Figure 9: A case study which uses the proposed SpeD model for mimicking human aortic tissue.
(a) shows the stress-strain curves of the target aortic tissue (black), the mimicked curve from an
existing method (blue) and the curve optimized from the SpeD method (red). (b) shows the optimal
metamaterial design from our approach.

many days of computation, which is clearly unsuitable for urgent surgical planning (Chen

et al., 2018a). To contrast, each evaluation of the proposed emulator requires only seconds

of computation, which greatly speeds up the mimicking process. Furthermore, by exploiting

sparsity in spectral coefficients, the dimension of the optimization problem reduces from 82

to 8 variables. This dimension reduction greatly cuts down on the number of predictions

from the emulator, which yields significant reductions in computation time. Such speed-ups

are paramount for performing tissue-mimicking in an accurate and timely manner. Section

5.5 provides a further comparison of timing.

Figure 9 (a) shows the stress-strain curve of a target aortic tissue (in black) from

Hockaday et al. (2012), the stress-strain curve from the proposed mimicking procedure (in

red), and the curve from an existing mimicking method (in blue) in Wang et al. (2016).

The latter method performs mimicking using only the four sinusoidal metamaterial features

(see Section 2.2). Compared to the existing approach, which has an MARE (see Equation

23) of 0.528, the proposed SpeD approach achieves a much smaller MARE of 0.089. This

improved tissue-mimicking performance can be seen in Figure 9 (a): the red curve (from

the proposed method) closely mimics the desired black curve, whereas the blue curve (from

Wang et al., 2016) overestimates stress at all strain levels. In particular, our method gives

much better mimicking in small strain regions – this is important in medical applications
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Modeling Step Computation Time (in minutes)

Parameter estimation 21.72
Prediction & UQ at one input setting 0.01
Tissue-mimicking of a target material 2.69

Table 3: Computation time for different modeling steps of the proposed emulator, parallelized
over 24 processing cores.

due to the relatively small strain deformations in the human body.

There are two reasons for this improved performance. First, the existing mimicking

approach in Wang et al. (2016) is too restrictive, in that it uses only four sinusoidal features

and not the full functional form of the input. Second, given a fixed timeframe, the proposed

emulation-based approach permits a larger number of objective evaluations via the proposed

SpeD model. Figure 9 (b) shows the optimal (discretized) metamaterial design x∗ from our

emulation-based approach, which is clearly not a sinusoidal function. By considering the

broader class of functional inputs as well as allowing for more objective evaluations, the

proposed method can identify better metamaterial designs for tissue-mimicking.

5.5 Computation time

Another appeal of the SpeD emulator is its computational efficiency. Table 3 summarizes the

computation time required for each step of the emulation process, with timing performed on

a parallelized system of 24 Intel Xeon E5-2650 2.20GHz processing cores. The computation

time required for parameter estimation (with cross-validation on λI) is 21.72 minutes, which

is typically performed before the arrival of the patient. Once the model is fit, we can

predict for multiple settings very quickly (0.01 minutes for each structure). To contrast,

FE simulations require 30 minutes for each structure, and a fully Bayesian implementation

of the emulator, which averages over a large amount of MCMC samples (say, 2000), takes

at least 0.01× 2000 = 20 minutes per structure. Because of this, our SpeD emulator can

effectively perform the tissue-mimicking procedure using only 3 minutes of computation; this
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greatly improves upon the standard tissue-mimicking approach with only FE simulations,

which may require hours or even days to perform (Wang et al., 2016) with much poorer

mimicking performance (see Figure 9)! Therefore, the proposed SpeD model can provide

effective and personalized pre-surgical practicing and planning (Qian et al., 2017; Chen

et al., 2020) with dramatically lower costs, which then mitigates risk in complex surgical

procedures.

6 Conclusion

We propose in this paper a novel function-on-function Gaussian process emulation model

for tackling the challenging tissue-mimicking optimization, under urgent surgical demands.

The key challenge is the functional input metamaterial structures and the functional output

mechanical responses. To address this, the proposed co-kriging model uses a new spectral-

distance (SpeD) correlation function, which integrates spectral information by directly

modeling the effect of metamaterial frequencies on mechanical response. One appealing

feature of this new correlation function is its translation-invariance property, which accounts

for the fact that two metamaterial structures, which are equivalent modulo a translation

shift, have the same mechanical properties. For parameter estimation, we use MAP with

shrinkage priors, which identifies key frequencies and thereby reduces the large functional

input space. This reduction greatly speeds up the tissue-mimicking optimization using the

proposed emulator. Applied to a real-world tissue-mimicking study, the proposed SpeD

emulator outperforms existing models in (i) emulating and quantifying uncertainty on

mechanical response, (ii) extracting meaningful physical insights, and (iii) providing efficient

and accurate mimicking performance for human aortic tissue. One direction for future

work is the exploration of a more elaborate design method for functional inputs, which

may further improve emulation performance. With the development of multi-material 3D-

printing technology, this new emulator can play an important role in furthering the impact

of 3D-printing in important biomedical applications in surgery planning and healthcare.
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Appendices

A Proof of Theorem 1

For any n ∈ N, c1, · · · , cn ∈ R and function I1(·), · · · , In(·) ∈ I, we have

n∑
i=1

n∑
j=1

cicjρ(Ii(·), Ij(·)) (A.1)

=
n∑
i=1

n∑
j=1

cicj exp

(
−
∫
θ(ξ)

(∣∣∣Îi(ξ)∣∣∣− ∣∣∣Îj(ξ)∣∣∣)2 dξ) . (A.2)

Note that the Fourier transform F : I 7→ I, where I is the space of integrable functions

I(·) : R 7→ C, has a unique inverse F−1 : I 7→ I. Denote the standard Gaussian kernel as

K(·, ·) : |I| × |I| 7→ R,

K (F1(·), F2(·)) = exp

(
−
∫
θ(t)(F1(t)− F2(t))

2dt

)
, (A.3)

where |I| is the space of integrable functions F (·) : R 7→ R. Since K(·, ·) is a positive

definite kernel, for the selected n and c1, · · · , cn in Equation (A.1), and any function

F1(·), · · · , Fn(·) ∈ I, we have,

n∑
i=1

n∑
j=1

cicjK(Fi(·), Fj(·)) ≥ 0. (A.4)

Now let Fk(·) =
∣∣∣Îk(·)∣∣∣, where k = 1, 2, · · · , n. This is possible because Îk(·) ∈ I and

therefore
∣∣∣Îk(·)∣∣∣ ∈ I. Thus, we have

n∑
i=1

n∑
j=1

cicjK
(∣∣∣Îi(·)∣∣∣ , ∣∣∣Îj(·)∣∣∣) =

n∑
i=1

n∑
j=1

cicj exp

(
−
∫
θ(ξ)

(∣∣∣Îi(ξ)∣∣∣− ∣∣∣Îj(ξ)∣∣∣)2 dξ) ≥ 0

(A.5)
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In other words,

n∑
i=1

n∑
j=1

cicjρ(Ii(·), Ij(·)) =
n∑
i=1

n∑
j=1

cicjK(Fi(·), Fj(·)) ≥ 0, (A.6)

i.e., the proposed SpeD correlation function is positive semi-definite.
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