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This file contains the proofs of Property 1 and 2, discussion on the robustness of the method
under different divisions of the domain, some additional simulation studies and some addi-

tional results from the data application.
S1 Proofs of Properties 1 and 2

Property 1: For any i € {1,2,...,k}, if (s,8') € G x G = L(s,¢) = {G} =

P(i,s,8') = |s =8| = Wi(s,s) = ”Z:?H = 1 and Wj(s,s’) = Oforallj # i =
¢(s,8") = ¢i(lls = s’[1)-

Property 2: If the process {X(s) : s € G C R%} is second-order stationary, then the
regional distance warping functions are identity functions (i.e., ¢;(||[s —§'||) = [|s = §'||)

= oss) = Y Wi s)ls—s=ls—sI Y Wilss)=ls—5],

GieL(s,s) Gi€L(s,8")

as the sum of the weights W; over G; € L(s,s') is guaranteed to be 1.

S2 Extended Simulation: Continuously Varying Non-
stationarity

In this section, we extend the simulation study presented in the main manuscript to explore

the improvement in prediction performance by the proposed nonstationary method over the
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stationary method when the true process departs from the locally stationary behavior to
continuously varying nonstationarity. To this end, we repeat the exact same simulation
study as presented in the main manuscript for different values of A. In particular, we report
prediction performance of both methods for A = 0.15,0.20, 0.25,0.30,0.35, 0.40, 0.45, 0.50,
and 0.60 in Figures 1, 2, 3, 4, 5, 6, 7, 8 and 9, respectively. Here, increasing the value of
A increases the continuity of the true spatially varying range parameter of the process, as
shown in Figures 1(a), 2(a), 3(a), 4(a), 5(a), 6(a), 7(a), 8(a), and 9(a).

In terms of RMSE, NMSE and MAE, the stationary model provides lower scores than
those provided by the nonstationary model for all the values of \. However, the differences
in scores are very small and the predicted values are very similar. On the other hand, the
corresponding assessment metrics mCRPS, mLogS, G, as well as the accuracy and average
width plots, show a varying degree of improvement by the nonstationary method over the sta-
tionary method for different values of A. For smaller values of A = 0.15,0.20,0.25, and 0.30,
where the true process behavior is not very far from local stationarity, the nonstationary
method is clearly advantageous over the stationary method, in terms of a collective assess-
ment of mCRPS, mLogS, G, and the accuracy and the average width plots (see Figures 1,
2, 3 and 4). As we proceed to A = 0.35, where there is a significant departure from local
stationarity, the nonstationary method still provides improved prediction performance in
terms of mLogS, G and the accuracy plot. However, the magnitude of improvement is not
very large (see Figure 5). For A = 0.35, the average width of the p—PI estimated using the
nonstationary method is slightly higher than the stationary method (see Figure 5(i)), but
when considered in conjuction with G' and the accuracy plot (see Figures 5(g) and 5(h)), the

p—PI estimated using the nonstationary method is still preferred as there is a notable gain



in coverage accuracy. Similarly, for higher values of A = 0.40,0.45, and 0.50, improvements
of the nonstationary method over the stationary method become less apparent (see Figures
6, 7 and 8). For the highest considered value of A = 0.6, where the true process exhibits
strong continuosly varying nonstationarity, the benefit of the nonstationary method over the
stationary method becomes unclear as they seem to exhibit comparable performance (see
Figure 9).

The above results suggests that the proposed nonstationary method, which is based on
the regional stationarity assumption, can outperform the stationary method in terms of pre-
diction when the true process closely exhibits local stationarity. Furthermore, the proposed
nonstationary method is beneficial over the stationary method even when there is a mild
departure from local stationarity to continously varying nonstationary, though the benefit
tends to decrease as the degree of departure increases. When the process exhibits strong con-
tinuously varying nonstationarity, the proposed nonstationary method is not advantageous
over the stationary method. In this case, a finer partition of the domain can be considered
to better capture the nonstationarity, but improvement in prediction performance can only

be expected when there is strong heterogeneity across different subregions.

S3 Simulation: Estimation of True Deformation Func-
tion

In this section, we simulate a deformation-based nonstationary process and evaluate how well
the proposed method can approximate the true underlying deformed surface. In particular,
we simulate a realization of a zero-mean Gaussian process X on a 70 x 70 regularly spaced grid
in the spatial domain G = [0, 2]%2. The nonstationary covariance function for the simulation

is specified as: Cov{X(s), X (s)} = Cp{||0(s) — 0(s')|)}, s,8" € G, where Cp(-) is chosen
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Figure 1: (a) True spatially varying range parameters (for A = 0.15). Boxplots of (b) root
mean squared error, (¢) normalized mean squared error, (d) mean absolute error, (e) mean
continuous ranked probability score, (f) mean logarithmic score, and (g) goodness statistic.
(h) Accuracy plot. (i) Average width plot. The results are based on 100 simulation runs.
Above the boxplots, we report the mean and standard deviations.
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Figure 2: (a) True spatially varying range parameters (for A = 0.20). Boxplots of (b) root
mean squared error, (¢) normalized mean squared error, (d) mean absolute error, (e) mean
continuous ranked probability score, (f) mean logarithmic score, and (g) goodness statistic.
(h) Accuracy plot. (i) Average width plot. The results are based on 100 simulation runs.
Above the boxplots, we report the mean and standard deviations.
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Figure 3: (a) True spatially varying range parameters (for A = 0.25). Boxplots of (b) root
mean squared error, (¢) normalized mean squared error, (d) mean absolute error, (e) mean
continuous ranked probability score, (f) mean logarithmic score, and (g) goodness statistic.
(h) Accuracy plot. (i) Average width plot. The results are based on 100 simulation runs.
Above the boxplots, we report the mean and standard deviations.
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Figure 4: (a) True spatially varying range parameters (for A = 0.30). Boxplots of (b) root
mean squared error, (¢) normalized mean squared error, (d) mean absolute error, (e) mean
continuous ranked probability score, (f) mean logarithmic score, and (g) goodness statistic.
(h) Accuracy plot. (i) Average width plot. The results are based on 100 simulation runs.
Above the boxplots, we report the mean and standard deviations.
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Figure 5: (a) True spatially varying range parameters (for A = 0.35). Boxplots of (b) root
mean squared error, (¢) normalized mean squared error, (d) mean absolute error, (e) mean
continuous ranked probability score, (f) mean logarithmic score, and (g) goodness statistic.
(h) Accuracy plot. (i) Average width plot. The results are based on 100 simulation runs.
Above the boxplots, we report the mean and standard deviations.
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Figure 6: (a) True spatially varying range parameters (for A = 0.40). Boxplots of (b) root
mean squared error, (¢) normalized mean squared error, (d) mean absolute error, (e) mean
continuous ranked probability score, (f) mean logarithmic score, and (g) goodness statistic.
(h) Accuracy plot. (i) Average width plot. The results are based on 100 simulation runs.
Above the boxplots, we report the mean and standard deviations.
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Figure 7: (a) True spatially varying range parameters (for A = 0.45). Boxplots of (b) root
mean squared error, (¢) normalized mean squared error, (d) mean absolute error, (e) mean
continuous ranked probability score, (f) mean logarithmic score, and (g) goodness statistic.
(h) Accuracy plot. (i) Average width plot. The results are based on 100 simulation runs.
Above the boxplots, we report the mean and standard deviations.
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Figure 8: (a) True spatially varying range parameters (for A = 0.50). Boxplots of (b) root
mean squared error, (¢) normalized mean squared error, (d) mean absolute error, (e) mean
continuous ranked probability score, (f) mean logarithmic score, and (g) goodness statistic.
(h) Accuracy plot. (i) Average width plot. The results are based on 100 simulation runs.
Above the boxplots, we report the mean and standard deviations.
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Figure 9: (a) True spatially varying range parameters (for A = 0.60). Boxplots of (b) root
mean squared error, (¢) normalized mean squared error, (d) mean absolute error, (e) mean
continuous ranked probability score, (f) mean logarithmic score, and (g) goodness statistic.
(h) Accuracy plot. (i) Average width plot. The results are based on 100 simulation runs.
Above the boxplots, we report the mean and standard deviations.
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to be a stationary Matérn covariance function with its variance, smoothness and spatial
range parameters fixed to 5, 0.8, and 0.16, respectively. The deformation functions 6 is
based on composition of elementary radial basis functions (Perrin and Monestiez, 1999). The
functional form of the specified deformation function 6 is 6(s) = 000500500, (s), where 6;(s) =
c;i+ (s —¢;){1+b; exp(—a;||s — ¢;]|?)} is an elementary radial basis function, which is defined
through parameters ¢; € R?, a; > 0, and b; € (—1,%exp%). The parameters c;, a;, b;
control the center, range and intensity of the deformation, respectively, where b > 0 leads to
stretching and b < 0 leads to shrinkage. In our setting, we set the deformation parameters
as ap = ay = ag = aq4 = 2, by =by =1, b3 =by = —05, ¢; = (1.7,0.5), ¢ = (1.7,1.5),
c3 = (0.5,0.5), and ¢4 = (0.5, 1.5), which leads to a continuously varying nonstationarity that
exhibits predominantly low and high range directional spatial dependence on the right and
left side of G, respectively. The true simulation grid s = (z,y) € G and the true deformed
surface 0(s) = (2/,y') are shown in Figures 10(a) and10(b), respectively. The simulated
realization of the nonstationary process X is shown in Figure 11.

The primary task is to recover the deformation function 6, shown in Figure 10(b), by
applying the proposed method to the simulated realization. We randomly select a training
sample of 1200 data points and use them to estimate the deformation function 6 for all
of the 4900 grid point locations in G. While applying the proposed method, we divide G
into two subregions G; = [0,1.2) x [0,2] and Gy = [1.2,2] x [0, 2], and keep all of the other
methodological specifications the same as in Section 3 of the main manuscript. The com-
parison of the true and the estimated deformation functions (in the first two dimensions of
maximum variation) are shown in Figure 12. The deformed space estimated using the pro-

posed method, shown in Figure 12(b), reasonably recovers the large scale pattern of the true

13
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Figure 11: Simulated realization on the geographic space.

deformed space, shown in Figure 12(a); it mimics the local contractions in the left portion
of G and expansions in the right portion of G of the true deformation function. However, the
estimated deformation is not able to capture the small pattern of the true deformed space,
which causes local anisotropies. As a result, the estimated deformed space does not exactly

match the true deformed space. This is expected, because the true deformation function
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Figure 12: (a) True deformed space. (b) Estimated deformed space (first two dimensions of
maximum variation).

leads to continuously varying nonstationarity, whereas the proposed method works under
the assumption of regional stationarity; the estimated deformed space is a good “regionally
stationary” approximation of the true “continuously varying nonstationary” deformation
function.

We fit a stationary Matérn covariance function in the estimated deformed space via MLE
using the training set, and visualize the comparison of true and estimated nonstationary
correlations in Figure 13. We randomly select three reference locations from the grid points
in G, and show the true and estimated nonstationary correlations between the reference
locations and all other grid point locations in G as heatmaps. The estimated nonstationary
correlations effectively recover the varying strength of spatial dependence in different regions
of G. However, they ignore the varying direction of dependence (anisotropies) because of the
underlying regional stationarity assumption. Overall, like the estimated deformed space, the

estimated nonstationary correlations are reasonable “regionally stationary” approximations
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Figure 13: Estimated nonstationary correlations (top row) and true nonstationary correla-
tions (bottom row) of three randomly selected reference locations on the simulation grid,
s € G, with every other location on a fine grid.

of the “continuously varying nonstationary” correlations.

S4 Robustness of Estimated Deformation to Domain
Division

Let us consider a stochastic process {X(s), s € G} with regional stationarity and global
nonstationarity. Thus, it is possible to divide the entire domain G into subregions Gy, ..., G
such that Ule G; = G, and each of the k regional processes {X(s), s € G;} are stationary
processes admitting distinct isotropic variograms (|| - ||), ¢ = 1,2,...,k. Here, let the
partitioning {Gy, ..., G} be referred to as the True Partitioning, which is often unknown.

Let us assume that the regional variograms {~(|| - ||), ¢ = 1,2, ..., k} are either known or
can be estimated reasonably well enough. We align the & distinct variograms {v;(|| - [|), i =

1,....,k} to estimate k distinct regional distance warping functions {¢;(|| - ||), i = 1, ..., k}.
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Further, we define the GDWF for the True Partitioning as
o(s,8) = > Wils,shaillls—s'l)), (s,8) € G x G, (54.1)
Gi€L(s,s')
where L(s,s’) is the set of subregions G; such that the line segment joining the locations
s and s’ passes through all of the subregions in this set, and W;(s,s’) are the location-
dependent weights for the 7" regional distance warping function. We define the weights as

Wis,s') = P45 where P(i,s,s') is the length of the segment joining s and ' in G;.

l[s—s"ll

Now, let us consider finer divisions of the domain where the i subregion {G;, i = 1,..., k}

is further divided into m; subregions G, ..., G, such that

m; k my
Ugi=6.i=12. kand | J|JG;=0 (54.2)
j=1 i=1j=1

Here, we refer to the partitioning {G;;, i = 1,....,k, j = 1,...,m;} as the Guessed Partition-
ing. Then, the Zle m; regional processes {X(s), s € G;;},1=1,2,...,k, j=1,2,...,m; are
also stationary processes admitting the variograms ~v;;(|| - ||), ¢ =1,2,....k, j=1,2,....,m,,
. . k . . . .

respectively. We align the >, m; regional variograms {v;(|| - ), ¢ = 1,2...,k, j =
1,2,...,m;} to obtain Zle m; regional distance warping functions {¢;;(||-]], i = 1,2....k, j =
1,2,...,m;}. The GDWF for the Guessed Partitioning is given by

o(s,s) = D Wy(s,)ei(lls—5), (s,8) €G %G, (54.3)

Gij€L(s,s")

where L(s,s’) is the set of guessed subregions G;; such that the line segment joining the
locations s and s’ passes through all of the subregions in this set, and W;;(s,s’) are the
location-dependent weights for the (ij)™ regional distance warping function. We define the

P(ij7S7S,)
[s=s'll

weights as W;(s,s’) = where P(ij,s,s’) is the length of the line segment joining s

and s’ that lies in subregion Gj;.
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Figure 14: (a) True Partitioning. (b) Guessed Partitioning.

Note that vi;(|| - [|) = %] - ), 7 = 1,...,m4, @ = 1,2...,k because the sub-processes
{X(s), s € G;;} will have the same spatial dependence structure as that of the parent
stationary process {X(s), s € G;}, and consequently, we will obtain many identical regional
distance warping functions such that ¢;(|| - ||) = & - ), j = 1,...m;, i = 1,2..,k.
Therefore, because Z;Zl P(ij,s,s’) = P(i,s,s’), for alli = 1,..., k, Equation S4.3 becomes

= . wass@ns—snu ) eGxG,

GieL(s,;s) J

YD ”’S,S” (ls =), (5,8) €G %G

G:€L(s,8") j=1

_ Z P<Z S S) (”S—S/H), (S,S,) c g % g

ooy s =51 5T ¢

Y Wils,s)aills —sll), (s.8) € G x G,

G, €L(s,8")

leading to the same GDWF as given in Equation S4.1. This indicates robustness of our
approach under finer subdivisions of the domain. Generally, the true partitioning {Gy, ..., Gy }

is unknown. However, depending on the size of the data, we can divide the entire domain
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into very fine guessed subregions {G;;, ¢ = 1,...,k, j = 1,...,m;} such that Equation S4.2
approximately holds true.

The above result is further illustrated using a simple pictorial example. In Figure
14(a), the true partitioning is given by G = U?Zl Gi, k. = 4. We let s € G; and
s’ € Gy. Then, L(s,s”) = {Gi1,G2}, P(1,s,8’) = |s—c| and P(2,s,8") = [[c—5|,

resulting in weights W(s,s’) = ls=<ll - and Wy(s,s’) = le=='ll - This gives the GDWF

l[s—s’l l[s—s’

o(s,8’) = HS_CI|¢1(l‘s_s"l‘lif!ﬁfs’H@(HS_S,”). Next, we compute the GDWF for a finer guessed

partitioning of the domain as shown in Figure 14(b): G = -, Ui, Gijy k=4, m; =4, i.
We let s € Gy and 8’ € Goy. Then, L(s,8’) = {G11,G12,G21,G2}, P(11,s,8’) = [|s — a||,
P(12,s,8’) = |la—cl|, P(21,s,8’) = ||c — b|| and P(22,s,s’) = ||b — s’||, resulting in weights
Wii(s,s’) = ”E 3“", Wia(s,s’) = “: SC||||, Whi(s,s’) = ”:::ZH and Was(s,s’) = “::::l‘l‘. This

gives the GDWF o(s, s") — ls=alen(s=sl)+la-cloia(ls=s|+le—blon (ls=s'|)+[b-s'loan(ls=s1) ~ A,

lIs=sll

plying @ii(|| - 1) = 6l 1) i = 1, K, j = 1,...,ms, we obtain

1
06,5 = =7 * s = allon(ls = 1) + ] = elj(lis = ')
Hle = bliga(lls = 5I) + lIb ~ llgx(lls ~ ')}
= g {ls = ellon(ls = ') + e = 'aa(s = 1)}

which is the same as before.

However, in practice, we cannot estimate the variograms exactly even if the true processes
share an identical spatial dependence. Therefore, while replacing v;;(||.||), ¢ = 1,...,k, j =
1,...,m; with the estimated variograms %;;(||.||), ¢ = 1,...,k, j = 1,...,m;, the exact equality
Yis(I-1) =), 7 =1,...,mi, i =1,2..., k, becomes 53;([| - [) = % ([l -[]), j =1,...,ms, i =

1,2..., k. Consequently, the estimated regional distance warping functions follow qujﬂl ) =
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QASZ(H ), 5=1,...,m;, i =1,2..., k instead of ¢;;(|| - [|) = (]| - ||), 7 =1,....m4, i =1,2..., k.
This approximation leads to slightly different deformations for the true partitioning and the
guessed partitioning. Thus, accuracy of the estimation of regional variograms affects the
robustness of our method under finer subdivisions of the domain.

There is a clear trade-off between the number of subregions and the amount of available
data for estimation within each subregion. The guessed partitioning can be forced to consist
of very small subregions such that Equation S4.2 approximately holds true. However, very
small subregions lead to fewer data points per subregion and poor estimation of regional
variograms. This is consequently reflected in the estimation of the regional distance warping
functions and the final deformation. Therefore, the number of subregions must be driven
by the extensiveness of available spatial data. This point is further demonstrated in the

following simulation study.

S4.1 Simulation: Variogram Estimation Under Finer Subdivisions
of the Domain

We consider a zero-mean Gaussian process X over a domain G = [0, 8]?, with the following

nonstationary Matérn covariance function (Paciorek and Schervish, 2006):
[S(sa)[V1E(s5) [V B(s1) + B(s;) |1/

G (58 1) = 0(si)o(85) =5, 2

(24/vQij)" K, (24/vQi5),
(S4.4)

where 7] is the vector of parameters, o(s) is a location-dependent standard deviation, v is the
smoothness parameter, ();; is the Mahalanobis distance between two locations s; = (z;,y;)
and s; = (z;,y,), K, is a modified Bessel function of the second order, and X(s) is a spatially
varying kernel matrix that supervises the range and direction of spatial dependence.

To obtain realizations from a regionally stationary process with nonstationarity only in
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the spatial range, we simulate 50 realizations of X on a regular grid of 70 x 70 points on G,

with v = 0.5, {o(s) =1, s € G} and

(S = {d?ag(().lz, 0.12), i'f x <4
diag(0.45%,0.45?), if x > 4.

For this simulation, the true partitioning consists of two disjoint regions, i.e., “True Region
1”7=[0,4] x [0,8] and “True Region 2”"=(4, 8] x [0,8]. We consider three cases for domain
partitioning, starting with the true partitioning and progressing to finer subdivisions. For
the true partitioning case we estimate the isotropic Matérn variogram for “True Region 17
and “True Region 2”7 for each of the 50 simulated realizations using Maximum Likelihood
Estimation (MLE). During estimation, we fix the smoothness parameter v = 0.5 to avoid
identifiability issues (Zhang, 2004). We then estimate the regional distance warping functions
for “True Region 1”7 and “True Region 2”7 by aligning their respective estimated regional
variograms. The estimated regional variograms become numerically constant for distances
greater than /8, and therefore, we set the value ||hy| = v/8 and assign identity regional
distance warping functions for ||h|| > v/8. Figure 15(a) shows one realization of the simulated
process, with a solid black line indicating the true partitioning. The estimated regional
distance warping functions are shown in Figure 15(b). The 50 pairs of regional distance
warping functions are nearly identical for each run indicating that enough data is available
per subregion to efficiently estimate the regional variograms.

For the second case, we consider a finer subdivision of the domain into four equal sub-
regions {G1, Gs,Gs,Gs}. Following the same estimation procedure as described for the true
partitioning, we estimate the isotropic Matérn regional variograms and regional distance

warping functions for the four subregions. Figure 16(a) shows one realization of the simulated
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Figure 15: (a) One realization of the simulated process, with a solid black line depicting the
true partitioning. (b) Estimated regional distance warping functions for the two subregions.
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Figure 16: (a) One realization of the simulated process, with solid black lines depicting the
partitioning. (b) Estimated regional distance warping functions. (c) Pointwise IL? distances
between regional distance warping functions. (d) Boxplots of pairwise RMSE values.
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Figure 17: (a) One realization of the simulated process, with solid black lines depicting
partitioning. (b) Estimated regional distance warping functions.

process, with solid black lines depicting the partitioning. The estimated regional distance
warping functions are shown in Figure 16(b) for each of the 50 runs; they show very similar
behavior within subregions (G, G3) and (G4, G4), which is expected because of the common
true underlying variograms for the pair of sub-processes ({X(s),s € Gi},{X(s),s € G3})
and ({X(s),s € Go},{X(s),s € G4}). The very similar pairs of regional distance warping
functions in Figure 16(b), as well as the closeness of Figure 15(b) and Figure 16(b) in terms
of their shapes, demonstrate that the finer partitioning and the true partitioning lead to
nearly identical deformations.

Figure 16(c) shows the pointwise 1.2 distance between the regional distance warping
functions for every pair of subregions in the finer partitioning, averaged over 50 runs and
evaluated up to |h¢||. Figure 16(d) shows the boxplot for the root mean squared error
(RMSE) between every pair of the regional distance warping functions evaluated up to ||hy||.
The L? distances and the boxplots of RMSE values for the pairs (G, Gs) and (G, G4) are
concentrated near 0, which provides quantitative validation of the pairwise proximity of the

corresponding regional distance warping functions.
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For the third case, we consider an even finer subdivision of the domain into sixteen
subregions {G;;, i,7 = 1,...,4.}. Figure 17(a) shows one realization from the simulated
process, with solid black lines depicting this partitioning. Similarly to the other two cases
considered previously, we estimate the regional distance warping functions and show them
in Figure 17(b). The estimated regional distance warping functions show more variability
in this case due to fewer data points in each subregion, resulting in an inefficient estimation
of the regional variograms. The sub-processes {X(s),s € G;;, j = 1,...,4} have a common
true underlying variogram for each ¢ = 1, ..., 4, but their poor estimation results in regional
distance warping functions that differ from those displayed in Figure 15(b) and Figure 16(b).
Consequently, the estimated deformations in this case will look different than in the previous
two cases. This shows the trade-off between the number of subregions chosen to partition

the original domain and the accuracy of estimation of the true regional variograms.
S5 Effectiveness of Classical Multidimensional Scaling

Our method relies on mapping the transformed distance matrix A, = {¢(s;, Sj)}i ;=1 to the
deformed coordinates é(si), i =1,...,n, (in some finite dimensional space), which we achieve
using classical multidimensional scaling (CMDS). The algorithmic step-by-step description
of CMDS is given as follows:

Step 1: Compute A® | which is the Hadamard square of A.

Step 2: Compute B = —%FA(Z)F, where F' =1 — %11’ is the centering matrix.

Step 3: For a specified dimension dp, compute dp largest eigenvalues Ay,..., A\g,, and the

corresponding dp eigenvectors ey, ..., €qy,.

Step 4: Compute K = EdDA}i/D 2, where I, is the matrix of the dp eigenvectors and Ag4,
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Figure 18: Original space with two subregions.

is the diagonal matrix of dp eigenvalues. Then, K is the desired coordinate matrix. The
CMDS can be easily performed in R using the function cmdscale from the stats package.

In this simulation, we investigate the effectiveness of CMDS in mapping the transformed
distance matrix to deformed coordinates. We consider 30 x 30 regularly spaced points in the
domain [0,2]?, shown in Figure 18, and divide it into two subregions using the line x = 1.

We consider two different types of parametric regional distance warping functions:

1. Case 1:
calbll/VE_1 .
e —— if 0
o) = V3T e
), fa=0
e—albl/VE_] .
Evra—— if a 0
oalllh]) = { V3T #
), fa=0
2. Case 2:

1)) = VBBE(|b]|/V8lar, 51)  ¢2(|hl) = VSBE(|[hl/V8|az, b2),

where BY(-|, B) is the cumulative distribution function of the Beta distribution for given
shape parameters o and 5. The parameter |a| controls the intensity of warping in Case 1,

whereas the parameters («q, 01, g, 82) control the shape of the regional distance warping
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Case Parameter setting Max NMSE Dimension for Max NMSE
1 (1) 1 2
1 (2) 0.9971 3
1 (3) 0.9791 3
1 (4) 0.946 3
2 (1) 0.9428 3
2 (2) 0.9682 2
2 (3) 0.681 30
2 (4) 0.8258 30

Table 1: Quantitative assessment of the estimated deformed space based on CMDS for
different types of regional distance warping functions.

functions in Case 2. We consider four settings for these parameters in each case: Case
1 |a] = (1) O (identity warping), (2) 0.5, (3) 1.5, (4) 2.5; Case 2 («q, 1, a2, 52) = (1)
(0.7,1.5,1,1/2.5), (2) (1,1.4,1,1/2.5), (3) (0.25,1.4,8,2), (4) (0.25,1.4,2,1). For each of the
parameter settings, we compute the GDWF ¢(s, s’) using the proposed method, and estimate

the deformed space in dimensions dp = 2, ....,30. We then compute the normalized mean

900
i,j=1

squared error (NMSE) between the transformed distance matrix Aggoxgoo = {¢P(si,s;)
and the distance matrix of the estimated deformed space under different values of dp. A
value of NMSE equal to 1 indicates perfect mapping of distances to the coordinates using
CMDS.

Table 1 reports the maximum NMSE and the dimension dp at which the maximum
NMSE is attained for all of the eight simulated situations. Figures 19-22 show the summary
of results for Case 1 (2) and (4) and Case 2 (1) and (3), respectively (we do not show figures
for the other parameter settings for brevity). We observe that, for Case 1, as we increase
the value of |a| (i.e., the intensity of regional distance warping functions), the performance

of CMDS decreases. However, even in Case 1 (4) with considerable amount of warping, the

NMSE is 0.946 for a deformed space of dimension 3, a value very close to 1 indicating a very
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Figure 19: Case 1 (2): (a) Regional distance warping function (black: warping for subregion
1, red: warping for subregion 2). (b) Deformed space in 2d. (c¢) Deformed space in 3d. (d)
Plot of NMSE vs. dimension of deformed space.

good approximation. For Case 2 (1) and (2), CMDS performs very well and produces NMSE
values close to 1. However, for Case 2 (3) and (4) with extreme regional warping functions (in
parts of the subdomain the warping functions become nearly vertical or horizontal), CMDS
does not perform well. These settings correspond to extreme deformations of the geographic

space, which we do not expect in realistic applications.
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Figure 21: Case 2 (1): (a)-(d) Same as in Figure 19.
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S6 Computation Timings

In this section, we provide a brief discussion of the computational cost of the proposed ap-
proach for the simulation studies and the data application shown in the main paper as well
as in the supplementary material. Since the proposed method of estimation of deformation
consists of various steps, and each step requires some level of tuning by the user, it is not
easy to generalize the computational complexity of the proposed approach. For instance,
the user can choose from (1) least square method, (2) weighted least square method, (3)
maximum likelihood estimation, etc., for the estimation of regional variograms and the com-
putational cost would be different based on this choice. Similarly, the choice of the shape
of subregions might also affect the computational cost while computing the weights in the

GDWF. Additionally, there are costs associated with the alignment algorithm and CMDS.

Section No. of training | No. of points in Time to estimate
points the deformed space the deformed space
4 (main paper) 254 2754 203.21s
3 (main paper) 1200 4900 ~ 500s (per simulation run)
S2 (supplementary) 1200 4900 ~ 500s (per simulation run)
S3 (supplementary) 1200 4900 302.53s

Table 2: Run times to estimate the deformed space in Section 4 of the main paper (first row),
Section 3 of the main paper (second row), Section S2 of the supplementary material (third
row) and Section S3 of the supplementary material (fourth row). Note that Section 3 of the
main paper and Section S2 of the supplementary material involve multiple simulation runs,
and therefore, the reported time is the approximate time per simulation run. The timings
are based on computations in R (R Core Team, 2020) on a MacBook Pro laptop with 2.3
GHz Intel Core i9 processor and 16 GB of 2667TMHz DDR4 RAM.

However, to provide some perspective on the computational cost, we report the computa-
tional timings in Table 2 for the simulation studies and the data application considered. The
reported timings reflect the computational cost as a function of the size of the training data

and the number of points to be estimated in the deformed space, when regional variograms
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are estimated via MLE and subregions share a linear boundary.
S7 Additional Figures from the Data Application

In this section, we present some additional results from the Section 4 of the main manuscript.
The alignment results based on the entire data are shown in Figure 23. The estimated
regional Matérn variogram models, standardized using their respective regional variances
are shown in Figure 23(b). The estimated variance parameter varies slightly for the two
subregions; however, due to their negligible difference, we chose to ignore this insignificant
nonstationarity in variance. The estimated regional variograms show long range spatial
dependence for the Eastern subregion and relatively shorter range spatial dependence for
the Western subregion. Figure 23(d) shows the two estimated regional distance warping
functions obtained via registration of the standardized estimated regional variograms. The
large deviation of regional distance warping functions from identity warping confirms a high
degree of nonstationarity when the entire region is considered. Based on these regional
distance warping functions, we can infer that modeling the two subregions with a common
stationary variogram in the geographic space is clearly an imprecise approach to describe
the spatial dependence of this process.

The entire data-based estimated deformed space for locations corresponding to the ob-
served data, and the fine grid of locations chosen for interpolation, are shown in Figure
24 for the first three dimensions of maximum variation; the optimal value of 1 is chosen
to be 15. We observe that the deformation leads to a very tight configuration of highly
correlated points corresponding to the Eastern subregion and a highly sparse configuration

corresponding to the Western subregion. This results in an approximately constant spatial
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Figure 23: (a) Standardized log-transformed total annual precipitation data with the solid
black line depicting the chosen partitioning. The grey colored lines depict the additional
grid locations for the interpolation. (b) Estimated standardized regional variograms. (c)
Registered variograms. (d) Regional distance warping functions.

range and smoothness over the entire deformed space, making it suitable for modeling using

a stationary model.
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Figure 24: Standardized log-transformed total annual precipitation data in the estimated
deformed space (first three dimensions of maximum variation).
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