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The supplementary material contains a list of assumptions and proofs of Theorems 1

and 2, along with some additional numerical results.

In the description below, the notation An ∼ Bn means that An/Bn and Bn/An are both

bounded (in probability) as n → ∞. The notations “≳” and “≲” are similarly defined.

A Assumptions

In the discussion, the jump magnitudes {δ∗j} and the true number of jumps J∗ are allowed

to be dependent on n, while we keep the variance σ2 as fixed. If σ2 is changing in n, we

could replace δ∗j by δ∗j /σ in the following asymptotic analysis. For simplicity, the design
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points are assumed to be equidistant in [0, 1], i.e., ti = i/n for i = 1, . . . , n. The required

assumptions on the model and the smoothing techniques are listed below.

Assumption S.1 (Noises). There exist some constants θ ≥ 3 and Cε > 0 such that

E(|ε1/σ|θ) ≤ Cε.

Assumption S.2 (Kernel). K(·) is a nonnegative, bounded and Lipschitz-1 continuous

function with support [0, 1] such that
∫ 1

0
K(u)du = 1 and K(0) > 0.

Assumption S.3 (Bandwidth). The bandwidth h > 0 satisfies the conditions that h → 0,

nh → ∞ and nh5/ log n → 0, as n → ∞.

Assumption S.4 (Jump distance). The minimum distance between two successive jumps,

min0≤j≤J∗{t∗j+1 − t∗j}, satisfies the condition that min0≤j≤J∗{t∗j+1 − t∗j}/h tends to infinity

as n → ∞, where t∗0 = 0 and t∗J∗+1 = 1.

Assumption S.5 (Smoothness). The underlying regression curve f(t) is twice differen-

tiable and f ′′(t) is uniformly bounded in its support except at the jump points {t∗j : j =

1, . . . , J∗}, at which f(t) has bounded left and right second-order derivatives.

Assumption S.6 (Jump magnitudes). The jump magnitudes satisfy the conditions that

(a) max1≤j≤J∗ |δ∗j | = O(1) and (b) min1≤j≤J∗ |δ∗j |/
√
log n/(nh) → ∞, as n → ∞.

Assumption S.1 is used to control the supremum of the noise terms in the local linear

smoothers. Assumptions S.2, S.3 and S.5 are standard in the kernel smoothing literature.

Assumptions S.4 and S.6 are technical conditions required to achieve consistency. Assump-

tion S.4 allows the minimum distance between two consecutive jumps to go to zero as n
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increase, but the rate converging to zero should be slower than h to facilitate asymptotic

analysis. Assumption S.6 requires that the minimum jump magnitude should dominate

the noise level of the one-sided LLK estimate of f(t). In a simplified scenario that there

are two true jumps with equal jump magnitudes δ∗ > 0 and both jumps are precisely iden-

tified by a jump detection procedure, it can be checked that δ̂O(t̂Oj ) = δ∗ + Op{(nh)−1/2}

and δ̂E(t̂Oj ) = δ∗ + Op{(nh)−1/2} for j = 1, 2. To avoid underfitting, it is required that

C(2;ZO,ZE) < C(1;ZO,ZE) with an overwhelming probability. A necessary condition is

δ∗/(nh)−1/2 → ∞ such that the jump magnitudes δ∗ are distinguishable from the noises.

Assumption S.6 is close to this rate up to a logarithmic factor log n, which is required since

we need a uniform dominance over the noise level at multiple design points. If the locations

{t∗j} and magnitudes {δ∗j} of jumps are assumed to be fixed, then Assumptions S.4 and

S.6 hold naturally (Xia and Qiu, 2015). In a closely-related problem that the signal is a

piecewise constant function, Niu and Zhang (2012) proposed their detection statistic based

on the difference between a right- and a left-sided local average, and the number of jumps

was selected by a thresholding rule. They constructed the selection consistency under the

normality assumption, the following assumption on the jump magnitudes

min
1≤j≤J∗

|δ∗j /σ| ×
√

min
0≤j≤J∗

{t∗j+1 − t∗j}/h >
√
32 log n/(nh), (S.1)

and some other requirements on the bandwidth h and the threshold parameter. Assump-

tions S.4 and S.6 can guarantee the assumption (S.1). For our proposed method, it requires

a future study regarding whether the assumptions on both the minimum jump distance and

the minimum jump magnitude can be weakened.
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B Proofs

B.1 Proof of Theorem 1

For notional convenience, rewrite Model (1) as

Y2i−1 = f(tOi ) + Ui and Y2i = f(tEi ) + Vi, i = 1, . . . , n,

where tOi = (i− 0.5)/n, tEi = i/n and Ui’s and Vi’s are i.i.d. with mean 0 and variance σ2.

Note that the original sample size is assumed to be N = 2n for some integer n. Write for

short that ti = tOi , fi = f(tOi ) for i = 1, . . . , n and t̂j = t̂Oj (cf. Eq. (4)) for j = 1, 2, . . ..

For a sequence of quantities {g1, . . . , gn}, we introduce

ĝ±(t) =

∑n
i=1w

O
i (t;K±) gi∑n

i=1 w
O
i (t;K±)

and ĝE±(t) =

∑n
i=1w

E
i (t;K±) gi∑n

i=1w
E
i (t;K±)

,

and d̂g(t) = ĝ+(t)− ĝ−(t) and d̂gE(t) = ĝE+(t)− ĝE−(t).

Our goal is to show that, with an overwhelming probability, C(J∗) < C(J) in cases when

either 1 ≤ J < J∗ or J∗ < J ≤ J̄ , where

C(J) := C(J ;ZO,ZE) =
J∑

j=1

{
δ̂E(t̂j)− δ̂O(t̂j)

}2

+
J̄∑

j=J+1

{
δ̂E(t̂j)

}2

.

The definitions of δ̂O(t) (or δ̂E(t)), together with wO
i (t;K±) (or wE

i (t;K±)) can be found

in Eq. (3).

First, we give some lemmas that will be used in the proof of Theorem 1.

Recall that the two one-sided kernels are defined as K+(u) = K(u)I(u ∈ [0, 1]) and

K−(u) = K(−u)I(u ∈ [−1, 0)), where K(u) is defined in Assumption S.2. Denote µr =∫ 1

0
urK(u)du, for r = 0, 1, 2. Let s±r(t) be either sOr (t;K±) or sEr (t;K±) (cf. Eq. (3)), and
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w±i(t) be either wO
i (t;K±) or wE

i (t;K±). By the boundedness and Lipschitz-1 continuity

of K(·), it is straightforward to have the following result.

Lemma S.1. Under Assumption S.2, we have, for t ∈ [h, 1− h],

(i) s±r(t) = nhr+1[µ±r +O{(nh)−1}], where µ±r = (±1)rµr;

(ii)
∑n

i=1w±i(t) = n2h4[µ2µ0 − µ2
1 +O{(nh)−1}].

Let

K̃(u) =
µ2 − µ1u

µ2µ0 − µ2
1

K(u), for u ∈ [0, 1],

and we introduce two one-sided kernels K̃+(u) = K̃(u)I(u ∈ [0, 1]) and K̃−(u) = K̃(−u)I(u ∈ [−1, 0)).

For any sequence {g1, . . . , gn}, define

g̃±(t) = (nh)−1

n∑
i=1

K̃±{(ti − t)/h}gi and g̃E±(t) = (nh)−1

n∑
i=1

K̃±{(tEi − t)/h}gi.

Then, in cases when nh ∼ nη for some η > 0, we have the following result.

Lemma S.2. Under Assumptions S.1–S.2, we have

Pr

{
max
t∈G

|Ũ+(t)| > C

(√
log n

nh

)}
= O(n1−ηθ/2),

for some large C > 0.

Proof. Let A = {maxi |Ui| ≤ Mn}, where Mn = n1/(θ−γ) for some small γ > 0. By

Assumption S.1 and the Markov’s inequality, we have

Pr(A) ≥ 1− nPr(|Ui|θ > M θ
n) ≥ 1− Cεn

1− θ
θ−γ .
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Conditional on the event A, the Bernstein inequality yields

Pr
{
|Ũ+(t)| > x/

√
nh
}

(S.2)

≤ 2 exp

(
− nhx2

2σ2
∑n

i=1 K̃
2
+ {(ti − t)/h}+ 2/3Mn(nh)1/2x

)
,

for any x > 0. By Lemma S.1,
∑n

i=1 K̃
2
+ {(ti − t)/h} = O(nh) uniformly for all t ∈ G.

Taking x = C(log n)1/2 for some sufficiently large C > 0, (S.2) leads to

Pr

(
max
t∈G

|Ũ+(t)| > x/
√
nh

)
≤

n∑
i=1

Pr
{
|Ũ+(i/n)| > x/

√
nh
}

≤ 2n exp

(
− nh log n

C1nh+ C2Mn(nh log n)1/2

)
≤ 2n exp(−C ′ log n) = o(n1− θ

θ−γ ),

where C1, C2 and C ′ are some constants and 0 < γ < θ − 2η−1.

Lemma S.3. Under Assumption S.2, if h → 0 and nh → ∞, then we have

max
t∈[h,1−h]

|Ũ+(t)− Ũ−(t)| ≳
√

log n

nh
.

Proof. For a given t ∈ [h, 1 − h], let ∆(t) = Ũ+(t) − Ũ−(t), and Gn be the distribution of
√
nh∆(t)/s, where s = σ

√
2
∫ 1

0
K̃2(u)du. Then, it is easy to check that Gn converges to

N(0, 1) in distribution. Let M = sup{m : 2mh ≤ 1− h}. Then, M = O(h−1), and

max
t∈[h,1−h]

|∆(t)| ≥ max
i=1,...,M

|∆(2ih)|,

where the terms {∆(2ih)} are independent. Let ξn be a sequence such that
√
nhξn → ∞.
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Then,

Pr

(
max

t∈[h,1−h]
|∆(t)| < ξn

)
≤ Pr

(
max

i=1,...,M
|∆(2ih)| < ξn

)
=

M∏
i=1

Pr (|∆(2ih)| < ξn)

≤
{
Gn

(√
nhξn/s

)}M

.

By the Berry-Esseen bound that supx |Gn(x) − Φ(x)| ≤ C(nh)−1/2 and by the fact that

Φ(x) < 1− x/(1 + x2)ϕ(x), we have

Pr

(
max

t∈[h,1−h]
|∆(t)| < ξn

)
≤
{
sup
x

|Gn(x)− Φ(x)|+ Φ
(√

nhξn/s
)}M

→ 0,

where we can set ξn =
√

log n/(ζnh)s for some sufficiently large ζ > 0.

Lemma S.4. Under Assumptions S.1–S.6, there exists some kj ∈ {1, . . . , J∗}, for each

j = 1, . . . , J∗, such that Pr(|t̂j − t∗kj | ≤ dnj/n) → 1, where dnj is an integer satisfying

dnj ∼
√
nh log n/|δ∗kj | → ∞.

Proof. We prove the lemma only for t̂1, since the result for other detected jumps could be

proved similarly. To this end, we will show that

Pr(|t̂1 − t∗j | > dnj/n, ∀j = 1, . . . , J∗) = o(1/J∗).

By Lemma S.1 and Assumption S.5, it is not hard to show that,

f̂±(t) = f(t) + δ∗j (nh)
−1
∑

K̃±{(ti − t)/h}
{
I
(
ti ≥ t∗j

)
− I
(
t ≥ t∗j

)}
[1 +O{(nh)−1}] +O(h2),
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where t∗j is the change-point located in [t, t + h] or [t − h, t] (if either interval contains a

jump point). Noting that

Pr(|t̂1 − t∗j | > h, ∀j) ≤ Pr

{
sup

t:|t−t∗j |>h, ∀j
|δ̂O(t)| > |δ̂O(t∗j)|, ∀j

}
,

and by using arguments similar to those in the proof of Lemma S.2, we conclude that

Pr(|t̂1 − t∗j | > h, ∀j) = o(1/J∗). Then, it suffices to show that J∗Pr(t∗j + dnj/n < t̂1 ≤

t∗j + h, ∀j) → 0, since the other half follows similarly. Note that

d̂f (t∗j + dnj/n)− d̂f (t∗j) = −δ∗j (nh)
−1

∑
−dnj≤i<0

K̃−{i/(nh)}[1 +O{(nh)−1}] +O(h2).

Again using arguments similar to those in the proof of Lemma S.2 and by the assumption

that K+(0) > 0, the conclusion follows.

Proof of Theorem 1

Let fE
i := f(tEi ) for i = 1, . . . , n. First, assume that 1 ≤ J < J∗. In such cases, we have

C(J)− C(J∗) =−
J∗∑

j=J+1

{
d̂f

E

E (t̂j)− d̂f (t̂j) + d̂VE(t̂j)− d̂U(t̂j)
}2

+
J∗∑

j=J+1

{
d̂f

E

E (t̂j) + d̂VE(t̂j)
}2

.

Noticing that maxj=1,...,J∗ |δ∗j | = O(1) and by the boundedness of K and f
′
C, it can be

verified that d̂f
E

E (t̂j)− d̂f (t̂j) ∼ n−1, uniformly for all j = J + 1, . . . , J∗. By a similar proof

to that of Lemma S.4, under the assumption that nh5/ log n → 0, we have

|d̂f (t̂j)− δ∗kj | =

∣∣∣∣∣∣δ∗kj(nh)−1
∑

i:0≤|ti−t̂j |≤|t∗j−t̂j |

K̃−{(ti − t̂j)/h}[1 +O{(nh)−1}] +O(h2)

∣∣∣∣∣∣
= O

(√
log n

nh

)
,

which holds with a probability approaching one. Then, by Lemma S.2, we have

Pr{C(J)− C(J∗) > 0} = Pr

{
(J∗ − J)Op

(
log n

nh

)
+

J∗∑
j=J+1

(
δ∗kj

)2
> 0

}
→ 1.
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Hence, Pr(Ĵ ≥ J∗) → 1.

Now, in the case when J∗ < J ≤ J̄ , we have

C(J)− C(J∗) =
J∑

j=J∗+1

{
d̂f

E

E (t̂j)− d̂f (t̂j) + d̂VE(t̂j)− d̂U(t̂j)
}2

−
J∑

j=J∗+1

{
d̂f

E

E (t̂j) + d̂VE(t̂j)
}2

.

Let GJ = G\ ∪J−1
k=1 [t̂k − h, t̂k + h]. Then, by Lemma S.4, GJ contains no jump points

in probability approaching one. Once again, d̂f
E

E (t̂j) − d̂f (t̂j) ∼ n−1, uniformly for all

j > J∗, and similar to the proof of Lemma S.4, we have d̂f (t̂j) = O(h2), for j > J∗.

On one hand, by the independence between ZO and ZE, we have d̂VE(t̂j) = Op{(nh)−1/2}.

On the other hand, by Lemma S.3, we have d̂U(t̂j) ≳
√

log n/(nh). It then follows that

Pr{C(J)− C(J∗) > 0} → 1, which completes the proof. □

B.2 Proof of Theorem 2

Consider the following thresholding rule

L = inf

{
s > 0 :

1 + #{k : Wk ≤ −s}
#{k : Wk ≥ s} ∨ 1

≤ α

}
.

Lemma S.5. For any α ∈ (0, 1), we have

FDR(L) ≡ E

[
#{k : Wk ≥ L, t̂Ok ∈ I0}
#{k : Wk ≥ L} ∨ 1

]
≤ min

ϵ≥0

{
α(1 + 5ϵ) + Pr

(
max
t̂Ok ∈I0

∆k > ϵ

)}
,

where ∆k = |Pr(Wk > 0 | |Wk|,Wk−1,Wk+1)− 1/2|, and W0 = WJ̄+1 = 0.

Proof. Lemma S.5 can be proved similarly to Theorem 2 in Barber et al. (2019) which

shows that the Model-X knockoff selection procedure has a FDR proportional to the errors

in estimating the distribution of each feature conditional on the remaining features. Let

j ∈ I0 denote t̂Oj ∈ I0. Then, for given ϵ > 0 and t > 0, define

Rϵ(t) =

∑
j∈I0 I (Wj ≥ t,∆j ≤ ϵ)

1 +
∑

j∈I0 I (Wj ≤ −t)
.
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Consider the event that A = {∆ ≡ maxj∈I0 ∆j ≤ ϵ}. For a given threshold rule L = T (W)

that maps statistics W = (W1, . . . ,WJ̄)
′ to a threshold value L ≥ 0, define

Lj = T (W1, . . . ,Wj−1, |Wj|,Wj+1, . . . ,WJ̄) ≥ 0,

for each j = 1, . . . , J̄ . Then, for the SOPS method with the threshold L, we can write∑
j∈I0 I (Wj ≥ L,∆j ≤ ϵ)

1 ∨
∑

j I(Wj ≥ L)
=

1 +
∑

j I (Wj ≤ −L)

1 ∨
∑

j I(Wj ≥ L)
×
∑

j∈I0 I (Wj ≥ L,∆j ≤ ϵ)

1 +
∑

j I (Wj ≤ −L)

≤ α×Rϵ(L).

It is crucial to obtain an upper bound for E{Rϵ(L)}. To this end, we have

E{Rϵ(L)} = E

{∑
j∈I0 I (Wj ≥ L,∆j ≤ ϵ)

1 +
∑

j∈I0 I (Wj ≤ −L)

}
(S.3)

=
∑
j∈I0

E

{
I (Wj ≥ Lj,∆j ≤ ϵ)

1 +
∑

k∈I0,k ̸=j I (Wk ≤ −Lj)

}

=
∑
j∈I0

E

[
E

{
I (Wj ≥ 0) I (|Wj| ≥ Lj,∆j ≤ ϵ)

1 +
∑

k∈I0,k ̸=j I (Wk ≤ −Lj)
| |Wj|,W−j

}]

=
∑
j∈I0

E

{
Pr (Wj > 0 | |Wj|,Wj−1,Wj+1) I (|Wj| ≥ Lj,∆j ≤ ϵ)

1 +
∑

k∈I0,k ̸=j I (Wk ≤ −Lj)

}
, (S.4)

where W−j = W\Wj.

By the definition of ∆j, we have Pr (Wj > 0 | |Wj|,Wj−1,Wj+1) ≤ 1/2 + ∆j. Hence,

E{Rϵ(L)}

≤
∑
j∈I0

E

{
(1
2
+∆j)I (|Wj| ≥ Lj,∆j ≤ ϵ)

1 +
∑

k∈I0,k ̸=j I (Wk ≤ −Lj)

}

≤ (
1

2
+ ϵ)

[∑
j∈I0

E

{
I (Wj ≥ Lj,∆j ≤ ϵ)

1 +
∑

k∈I0,k ̸=j I (Wk ≤ −Lj)

}
+
∑
j∈I0

E

{
I (Wj ≤ −Lj)

1 +
∑

k∈I0,k ̸=j I (Wk ≤ −Lj)

}]

= (
1

2
+ ϵ)

[
E{Rϵ(L)}+

∑
j∈I0

E

{
I (Wj ≤ −Lj)

1 +
∑

k∈I0,k ̸=j I (Wk ≤ −Lj)

}]
.
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Finally, the summation in the last expression can be simplified as follows: for all “uninfor-

mative” j, if Wj > −Lj, then the sum is equal to zero, otherwise,

∑
j∈I0

E

{
I (Wj ≤ −Lj)

1 +
∑

k∈I0,k ̸=j I (Wk ≤ −Lj)

}
=
∑
j∈I0

E

{
I (Wj ≤ −Lj)

1 +
∑

k∈I0,k ̸=j I (Wk ≤ −Lk)

}
= 1,

where the first equation comes from the fact that for any j, k, if Wj ≤ −min(Lj, Lk) and

Wk ≤ −min(Lj, Lk), then Lj = Lk; see Barber et al. (2019). So, we have

E{Rϵ(L)} ≤ 1/2 + ϵ

1/2− ϵ
≤ 1 + 5ϵ.

Therefore, the result in Lemma S.5 is valid.

For j = 1, . . . , J̄ , we write δ̂1j = δ̂O(t̂Oj ) and δ̂2j = δ̂E(t̂Oj ) for simplicity, and denote

T1j =
√
nhδ̂1j and T2j =

√
nhδ̂2j. Let an = C

√
log n, where C > 0 is specified in Lemma

S.2. Let C = {∩j∈I0|Wj| ≤ λn}, where λn = inf{z : Pr(maxj∈I0 |Wj| > z) ≤ bn}, and bn be

a sequence satisfies the conditions that bn → 0 and J̄a3n/(n
η/2bn) → 0.

Lemma S.6. Under the conditions in Theorem 2, we have

sup
0≤t≤λn

∣∣∣∣ Pr(Wj ≥ t)

Pr(Wj ≤ −t)
− 1

∣∣∣∣ = O(cn),

uniformly for j ∈ I0, where cn = (a3n/
√
nh)/bn.

Proof. Let Ant = {v ∈ R : |v| ≥ t/an}. Note that

Pr(T1jT2j > t)

Pr(T1jT2j < −t)
− 1

=
Pr(T1jT2j > t, T1j ∈ Ant)− Pr(T1jT2j < −t, T1j ∈ Ant)

Pr(T1jT2j < −t)

+
Pr(T1jT2j > t, T1j ∈ Ac

nt)− Pr(T1jT2j < −t, T1j ∈ Ac
nt)

Pr(T1jT2j < −t)

:=A11 + A12.
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By Lemma S.2, we have

A12 ≲
Pr (|T2j| ≥ an)

bn
= o(cn), (S.5)

provided that η > 2/(θ − 1). Furthermore, we have

Pr(T1jT2j ≥ t, T1j ∈ Ant) =

∫
v∈Ant

Pr(T1jT2j > t | T1j = v)f(v)dv

=

∫
v∈Ant

Φ̃(t/(vs))f(v)dv +O(a3n/
√
nh)

=

∫
v∈Ant

Φ(−t/(vs))f(v)dv +O(a3n/
√
nh)

= Pr(T1jT2j < −t, T1j ∈ Ant) +O(a3n/
√
nh),

where the second equality holds due to the Berry-Esseen theorem. By the definition of

C, we have Pr(Wj ≥ t) ≥ bn, for t ≤ λn. By combining this result with (S.5), we have

Pr(Wj ≥ t, T1j ∈ Ant) ≳ bn. So,

Pr(Wj ≥ t, T1j ∈ Ant) = Pr(Wj ≤ −t, T1j ∈ Ant){1 + o(1)},

which is true uniformly in j and 0 ≤ t ≤ λn, as long as cn → 0. Consequently, Lemma S.6

follows.

Proof of Theorem 2–(i)

We first show that the result is valid under the condition that Wi’s are independent.

According to Lemma S.5, we have

Pr

(
max
j∈I0

∆j > ϵ

)
= Pr

(
max
j∈I0

∆j > ϵ | C
)
Pr(C) + Pr

(
max
j∈I0

∆j > ϵ, Cc

)
≤ Pr

(
max
j∈I0

∆j > ϵ | C
)
+ Pr(Cc) := A1 + A2.
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By definition, A2 = o(1). It remains to handle A1.

Notice that

A1 ≤
∑
j∈I0

sup
0≤t≤λn

|fj(−t)/fj(t)− 1| , (S.6)

where fj(·) is the density of Wj. It remains to prove that the right-hand side of (S.6) goes

to zero as n → ∞. To this end, denote Hj(t) = Pr(Wj > t) and Hj−(t) = Pr(Wj < −t).

Then,

sup
0≤t≤λn

|fj(−t)/fj(t)− 1| ≤ sup
0≤t≤λn

{fj(t)}−1 (|Hj(t)−Hj−(t)|+ |Hj(t−)−Hj−(t−)|)

≲ cn sup
0≤t≤λn

{fj(t)}−1Hj(t),

where Lemma S.6 has been used. So, we need to study inf0≤t≤λn{fj(t)}. Note that

fj(t) =

∫
v∈Ant

Φ̃(t/(vs))f(v)dv −
∫
v∈Ant

Φ̃(t/(vs)−)f(v)dv + o(bn)

=

∫
v∈Ant

1

vs
ϕ(t/(vs))f(v)dv + o(bn)

≥
∫
v∈Ant

t

(vs)2
Φ̃(t/(vs))f(v)dv + o(bn)

≥ a2n
ts2

∫
v∈Ant

Φ̃(t/(vs))f(v)dv + o(bn)

=
a2n
ts2

Hj(t){1 + o(bn)}+ o(bn).

Because λn ≲ a2n, fj(t) ≳ Hj(t). Hence, (S.6) holds if J̄cn → 0, from which the result (i)

in the theorem holds. □

To prove the result (ii) in the theorem, we need to show that∣∣∣∣∣ J
−1
0

∑
j∈I0 I (Wj ≥ t)

J−1
0

∑
j∈I0 I (Wj ≤ −t)

− 1

∣∣∣∣∣ = op(1),

13



which is true uniformly in t ∈ (0,∞). To this end, we first build Lemmas S.7 and S.8 below,

in which G(t) = J−1
0

∑
j∈I0 Pr(Wj ≥ t), G−(t) = J−1

0

∑
j∈I0 Pr(Wj ≤ −t) and J0 = |I0|.

Lemma S.7. Under the conditions in Theorem 2, for any 0 ≤ t ≤ G−1
− (1/J̄), we have∑

j∈I0 Pr(Wj ≥ t)∑
j∈I0 Pr(Wj ≤ −t)

− 1
P→ 0.

The proof of this Lemma is similar to that of Lemma S.6, and thus omitted here.

Lemma S.8. Under the conditions in Theorem 2, for any an → ∞, we have

sup
0≤t≤G−1(an/J̄)

∣∣∣∣∣{J0G(t)}−1
∑
j∈I0

I (Wj ≥ t)− 1

∣∣∣∣∣ = op(1),

sup
0≤t≤G−1

− (an/J̄)

∣∣∣∣∣{J0G−(t)}−1
∑
j∈I0

I (Wj ≤ −t)− 1

∣∣∣∣∣ = op(1).

Proof. We only prove the first equation here, and the second one can be proved similarly.

Note that G(t) is a deceasing continuous function. Let z0 < z1 < · · · < zdn ≤ 1, ti =

G−1(zi), where z0 = an/J̄ and zi = an/J̄ + ani
δ/J̄ , and dn = [{(J̄ − an)/an}1/δ], where

δ > 1. Then, G(ti)/G(ti+1) = 1 + o(1) uniformly in i. It is therefore enough to obtain the

convergence rate of

Dn = sup
0≤i≤dn

∣∣∣∣
∑

j∈I0 {I(Wj > ti)− Pr(Wj > ti)}
J0G(ti)

∣∣∣∣ .
To this end, define Sj = {k ∈ I0 : Wk is dependent with Wj} and

D(t) = E

[∑
j∈I0

{I(Wj > t)− Pr(Wj > t)}2
]
.

Then,

D(t) =
∑
j∈I0

∑
k∈Sj

E [{I(Wj > t)− Pr(Wj > t)} {I(Wk > t)− Pr(Wk > t)}] ≤ 2J0G(t).

14



Since W1, . . . ,WJ̄ is a 1-dependent sequence, so is I(Wj > ti). Then, we have

Pr(Dn ≥ ϵ) ≤
dn∑
i=0

Pr

(∣∣∣∣
∑

j∈I0 [I(Wj > ti)− Pr(Wj > ti)]

J0G(ti)

∣∣∣∣ ≥ ϵ

)

≤ 1

ϵ2

dn∑
i=0

1

p20G
2(ti)

D(ti) ≤
2

ϵ2

dn∑
i=0

1

J0G(ti)
.

Moreover, we have

dn∑
i=0

1

J0G(ti)
=

J̄

J0

(
1

an
+

dn∑
i=1

1

an + aniδ

)

≤ c

(
1

an
+ a−1

n

dn∑
i=1

1

1 + iδ

)
≤ ca−1

n {1 + o(1)}.

Therefore, we can have the result that Pr(Dn ≥ ϵ) → 0 when an → ∞.

Proof of Theorem 2–(ii)

Next, we show that the result (ii) of Theorem 2 is valid. By definition, our thresholding

rule is equivalent to select j if Wj > L, where

L = inf

{
t ≥ 0 : 1 +

∑
j

I(Wj < −t) ≤ αmax

(∑
j

I(Wj > t), 1

)}
.

In order to use the results of Lemmas S.7-S.8, we need to establish an asymptotic bound

for L. Let t∗ = G−1
− (αβn/J̄). By Assumption 1, we have

Pr

(∑
j

I(Wj > Ca2n) ≥ βn

)
→ 1. (S.7)

Thus, we have Pr(
∑

j I(Wj > t∗) ≥ βn) → 1, which implies that

1 +
∑
j

I(Wj < −t∗) ≲ αβn ≤ α
∑
j

I(Wj > t∗).

Therefore, it is true that G−(L) ≳ G−(t
∗). By Lemmas S.7-S.8,∑

j∈I0 I(Wj > L)∑
j∈I0 I(Wj < −L)

= 1 + o(1). (S.8)
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Then, we have

FDP =

∑
j∈I0 I (Wj ≥ L)

1 ∨
∑

j I(Wj ≥ L)
=

1 +
∑

j I (Wj ≤ −L)

1 ∨
∑

j I(Wj ≥ L)
×

∑
j∈I0 I (Wj ≥ L)

1 +
∑

j I (Wj ≤ −L)

≤ α×R(L).

Note thatR(L) ≤
∑

j∈I0 I (Wj ≥ L)/
∑

j∈I0 I (Wj ≤ −L). Thus, by (S.8), lim supn→∞ FDP ≤

α in probability. Then, for any ϵ > 0,

FDR ≤ (1 + ϵ)αR(L) + Pr (FDP ≥ (1 + ϵ)αR(L)) ,

from which the result (ii) of the theorem is proved. □

Under all the conditions in Theorem 2 and Assumption S.6, we have limn→∞ Pr {S(L) ⊇ I1} =

1 due to the fact that L ≲ a2n.

C Additional numerical results

Figures S1–S2 depict the estimation precision of the detected jumps by different methods

in Example I when the bandwidth h changes. Suppose the set of true jumps is {t∗1, . . . , t∗J∗}

and the set of estimated jumps is {t̂1, . . . , t̂Ĵ∗} returned by any of the considered methods.

To measure the estimation precision, we define two indices

d1 = sup
k=1,...,Ĵ∗

inf
j=1,...,J∗

|t̂k − t∗j | and d2 = sup
j=1,...,J∗

inf
k=1,...,Ĵ∗

|t̂k − t∗j |,

and the Hausdorff distance dH = max{d1, d2}. Intuitively, d1 is small if each detected jump

is close to some true jump, and d2 is small if each true jump is close to some estimated

jump. An estimate with well detection precision should have both small values of d1 and

16



d2. From Figures S1–S2, we observe that the ability of correctly identifying the number of

jumps by these methods seems to be revived for some large h values (e.g., near 0.16 for

the JIC method when σ = 0.4). In fact, this is not the whole story if we also check the

estimation precision of the detected jumps. Figures S3–S5 present the estimation precision

of the detected jumps by different methods in Example II when the bandwidth h changes.

Figure S6 shows the probabilities of correct, under- and over-estimation of the number

of true jumps against the sample sizes under relatively large and small noise levels for three

different COPS*-type procedures in Example I, respectively. The three procedures differ in

the selection of the bandwidth. Recall that ĥu = argminh∈H RSSu(h) for u = 1, . . . , U . The

proposed COPS* procedure uses ĥ = maxu=1,...,U ĥu as the bandwidth, which is termed as

“COPS*-min-max”. A new procedure “COPS*-min-med” selects the bandwidth as the the

median of all ĥu’s. And another procedure “COPS*-ave-min” is based on the bandwidth

given by argminh∈H U−1
∑U

u=1RSS
u(h). From the plots we can see that, either “COPS*-

min-med” or ‘COPS*-ave-min” would result in underestimation under low signal-to-noise

ratio (SNR) scenarios such as those with small sample sizes or large noise levels. This may

be due to the inaccurate estimation of some (here 1) jump magnitudes, and consequently

ignoring unidentified true jumps could even give a better curve fitting (or a smaller value

of RSS). A slightly larger value ĥ in “COPS*-min-max” helps to mitigate that effect.

Figure S7 depicts the probabilities of correct, under- and over-estimation of the number

of true jumps against the number of random sample-splittings in the COPS* method in

Example I, which suggests that the proposed approaches perform quite robustly to the

choice of the number of random sample-splitting U if it is not selected too small. For
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practical implementation, we recommend using U = 20.

Figure S8 shows the FDR and TPR values of different methods when the bandwidth h

changes, under different combinations of the sample size and the noise distribution consid-

ered in Example III when the noise level σ = 0.2.

Figure S9 shows that the estimated number of jumps against the value of the bandwidth

for three versions of the JIC, COPS and SOPS methods, for the real data example. For

the SOPS procedure, we use α = 20%. It can be seen that the detected numbers of

jumps are close to each other among all methods for each bandwidth, while they differ

significantly as the bandwidth varies for each method. Table S1 lists the specific dates of

the detected jumps obtained by the COPS* and SOPS* methods, with the corresponding

jump magnitudes.

Table S1: Dates of the detected jumps obtained by the COPS* and

SOPS* methods, with the corresponding jump magnitudes.

Date COPS* SOPS*

1986-07-14 -247.6670 NA

1986-07-21 NA -212.01796

1987-10-12 -741.2939 -681.73730

1988-08-08 NA -97.38503

1989-05-08 176.8476 NA

1989-10-09 NA -159.11230

1990-08-13 -435.3975 -457.32177

1991-12-30 256.1716 266.18602

1993-02-08 NA 120.12357
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1994-03-21 NA -235.39690

1994-03-28 -240.8167 NA

1995-04-03 221.6169 227.58850

1996-04-29 -345.0389 NA

1996-06-03 NA -430.46053

1997-05-05 428.9300 NA

1997-10-06 NA -874.96441

1998-07-27 NA -1464.81459

1998-08-03 -1497.7883 NA

2000-01-24 -752.1800 NA

2000-02-14 NA -773.51320

2001-07-09 -699.4715 NA

2001-08-20 NA -1079.50397

2002-06-17 NA -1404.62870

2002-07-08 -1576.2382 NA

2003-06-02 NA 644.59422

2004-04-26 -724.6147 NA

2004-05-03 NA -660.29931

2005-03-21 NA -484.11798

2005-11-07 369.2984 NA

2006-05-08 NA -647.17828

2007-04-23 821.0891 696.33857

2008-10-06 -2780.6403 -2184.25277

2009-07-27 NA 959.54301

2010-05-03 -1258.6945 NA
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2010-05-17 NA -1077.73956

2011-07-25 -1633.2045 -1733.46844

2012-05-21 NA -818.14233

2013-01-21 835.6474 NA

2013-03-11 NA 799.57119

2014-01-06 NA -159.22462

2014-01-20 -272.5445 NA

2014-10-27 NA 630.30186

2015-08-03 -1320.4034 NA

2015-08-17 NA -965.25943

2016-09-05 -333.8651 NA

2016-12-12 NA 1087.59420

2017-10-16 1541.0521 NA

2018-03-19 NA -2128.76793

2018-11-19 -1587.4973 NA

2019-02-18 NA 1268.42514

2020-02-24 -6397.8115 -7227.39968
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Figure S1: Estimation precision of the detected jumps by different methods in Example I

when the bandwidth h changes, under a relatively low SNR with σ = 0.4.
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Figure S2: Estimation precision of the detected jumps by different methods in Example I

when the bandwidth h changes, under a relatively high SNR with σ = 0.3.
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Figure S3: Estimation precision of the detected jumps by different methods in Example II

with ζ = 0.5 when the bandwidth h changes.
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Figure S4: Estimation precision of the detected jumps by different methods in Example II

with ζ = 0.75 when the bandwidth h changes.
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Figure S5: Estimation precision of the detected jumps by different methods in Example II

with ζ = 1 when the bandwidth h changes.
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Figure S6: Probabilities of correct, under- and over-estimation of the number of true jumps

against the sample sizes under relatively larger and smaller noise levels for three different

COPS*-type procedures in Example I.
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Figure S7: Probabilities of correct, under- and over-estimation of the number of true jumps

against the number of random sample-splittings in the COPS* method in Example I.
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Figure S8: FDR and TPR values of different methods when the bandwidth h changes,

under different combinations of the sample size and the noise distribution considered in

Example III when the noise level σ = 0.2.
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Figure S9: Estimated number of jumps against the value of the bandwidth for three versions

of the JIC, COPS and SOPS methods with their bandwidth-adaptive versions, for the real

data example.
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