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Abstract

Techniques to reduce the energy burden of an industrial ecosystem
often require solving a multiobjective optimization problem. However,
collecting experimental data can often be either expensive or time-
consuming. In such cases, statistical methods can be helpful. This ar-
ticle proposes Pareto Front (PF) and Pareto Set (PS) estimation meth-
ods using Bayesian Additive Regression Trees (BART), which is a non-
parametric model whose assumptions are typically less restrictive than
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popular alternatives, such as Gaussian Processes (GPs). These less
restrictive assumptions allow BART to handle scenarios (e.g. high-
dimensional input spaces, nonsmooth responses, large datasets) that
GPs find difficult. The performance of our BART-based method is
compared to a GP-based method using analytic test functions, demon-
strating convincing advantages. Finally, our BART-based methodol-
ogy is applied to a motivating engineering problem. Supplementary
materials, which include a theorem proof, algorithms, and R code, for
this article are available online.

Keywords: Computer Experiments, Bayesian Methods, Pareto Set, Band
Depth, Random Sets
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1 Introduction

Many important Industry 4.0 problems (e.g. Xie et al., 2014; Han et al.,
2016; Ivanov et al., 2016) can be formulated as multiobjective optimization
(MO) problems. For example, Shukla et al. (2020) describe how the use of
dynamic voltage scaling in real-time embedded systems (RTES) produces the
two mutually conflicting objectives of energy efficiency and timeliness of task
execution. Furthermore, the timing constraints of tasks in RTES can only
be approximated, which prompts the need to quantify this imprecision.

More generally, if each objective in a problem corresponds to an output
dimension in the vector-valued function f(·), the goal of MO is to “minimize”
(or “maximize”, depending on the application) this function. Seldom will all
of these objectives be simultaneously minimized by the same input setting.
Hence, we seek to find the set of best compromises between competing ob-
jectives and the set of all inputs that produce these compromises. (Section
3 provides a mathematical definition of best compromises.) The former set
is called the Pareto Front (PF); the latter set is called the Pareto Set (PS).

When the function cannot be explicitly evaluated or where the number of
evaluations is limited, statistical methods can be helpful. A common strategy
in computer experiments for PF and PS estimation is to approximate f(·) by a
surrogate model trained on a small number of evaluated points and perform
inference on this fitted surrogate model (e.g. see Svenson, 2011). Binois
et al. (2015) achieve PF estimation and uncertainty quantification (UQ) by
fitting a Gaussian Process (GP), simulating approximate realizations of the
fitted GP, and treating the resulting approximate conditional PFs as random
sets. However, their second step requires discretizing the input space into
a finite number of points, which may be computationally expensive if the
input dimension is large. Furthermore, no work in general has been done to
quantify the uncertainty of PS estimation with GPs.

A popular alternative to the GP for emulating single-output simulators is
the Bayesian Additive Regression Trees (BART) model introduced by Chip-
man et al. (2010) (CGM). BART partitions the input space into hyperrectan-
gles and applies a constant mean model to each hyperrectangle. Unlike GP,
BART can capture nonstationarity, avoids O(n3) matrix decompositions dur-
ing fitting, easily handles categorical inputs, and typically has fewer restric-
tive assumptions, which makes BART feasible in a wider range of scenarios
if enough training samples are provided. In particular, BART is well-suited
to problems with large input dimensions and large datasets (Pratola et al.,
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2014). Breiman (2001)’s Random-Forest model is also used in surrogate-
based optimization and retains many of BART’s advantages over GP, but
lacks BART’s natural UQ capabilities via its Bayesian formulation.

Though BART has been used for single-objective optimization (e.g. in
Chipman et al., 2012), it has never been used to perform multiobjective
optimization. Our primary contribution is twofold. We first find the PF and
PS of exact simulated realizations of a fitted multiple-output BART model
and hence avoid grid approximations of the input space. We then quantify
the uncertainty of these estimates of the PF and PS of f(·) using random sets
(Binois et al., 2015) and our novel extension of the depth approach described
in López-Pintado and Romo (2009); Sun et al. (2012); Whitaker et al. (2013).

The paper is organized as follows. Section 2 introduces BART with mul-
tiple outputs. Given a multiple-output BART function, Section 3 establishes
how to find its image, PF, and PS. In Section 4, we derive UQ measures
for BART-based PF and PS estimates. In Section 5, we perform simulation
studies, comparing our approach to the popular GP approach. Section 6
demonstrates our BART-based methodology on an engineering application.
Section 7 concludes the paper with a discussion. Proofs of stated theorems
can be found in the Supplementary Materials.

2 BART

We observe data D := {(y(xi),xi)}ni=1. Each output y(xi) = (y1(xi), y2(xi), . . . , yd(xi)) ∈
Rd is assumed to be a realization of the random variable

Y(xi) = f(xi) + εi, f(·) = (f1(·), f2(·), . . . , fd(·)) : X → Rd (1)

where f(·) is the vector-valued function described in Section 1, each yj(·) and

fj(·) has common domain X ⊂ Rp, noise vectors ε1, . . . , εn
iid∼ Nd(0,σ

2Id),
and parameter σ2 = (σ2

1, . . . , σ
2
d). We assume the domain X is a p−dimensional

bounded hyperrectangle.

2.1 Multiple-output BART

To make inference on the unknown f(·), we approximate each marginal
fj(·) (for j = 1, . . . , d) by fitting a BART model to the marginal data set
Dj := {(yj(xi),xi)}ni=1. These d independently fitted BART models define
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our d−output BART model: the ith posterior draw of the d−output BART

model is Θ(i) =
(

Θ
(i)
1 , . . . ,Θ

(i)
d

)
, where each Θ

(i)
j is the ith posterior draw of

the jth fitted BART model.
Section 2 of Horiguchi et al. (2021) describes how a posterior draw Θ of a

BART model induces a regression function E(·; θ), where θ := {(Tt,Mt)}mt=1.
Similarly, each posterior draw Θ of our d−output BART model induces the
d−output regression function

E(·;θ) = (E(·; θ1), E(·; θ2), . . . , E(·; θd)) : X → Rd (2)

where θ = (θ1, . . . , θd) and each θj comes from the jth fitted BART model.

2.2 Prior specification

Here we describe our prior specifications for tree-topology parameters Tt,
leaf-node parameters µtk|Tt, and noise variance σ2 because we ultimately
deviate from CGM’s default hyperparameter values for our multiobjective
optimization problem.

The π(Tt) prior decomposes into three components: tree depth, split
variable at each internal node, and cutpoint value at each internal node. We
leave details of the first two components to CGM and Chipman et al. (1998).
For the cutpoint value of any given split variable, this paper uses a discrete
uniform prior of 30 values over the range of the observed input values.

CGM model µtk|Tt with a Gaussian prior N(0, (4κ2m)−1) (after cen-
tering and rescaling the output data so that the minimum and maximum
observed transformed response values are, respectively, ymin = −0.5 and
ymax = 0.5). Under the sum-of-trees model, the prior on E[Y (x)] then be-
comes N (0, (4κ2)−1), where CGM default to κ = 2. For single-objective
optimization, however, Chipman et al. (2012) use κ = 1 to allow BART to
produce more pronounced optima. For similar reasons, we use κ = 1 and
m = 30 trees for our applications in Section 5, but other situations may call
for different (κ,m) values. We also set the minimum number of observations
allowed in each leaf node to ten.

For π(σ2), we use the scaled inverse chi-square distribution σ2 ∼ Scale-χ−2(ν, λ)
with values ν = 3 and λ = 0.012 chosen to induce a prior mean of 0.0003 (see
CGM for details of ν and λ selection). However, we find that the hyperpa-
rameter κ more strongly influences the smoothness of the response.
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Figure 1: A biobjective function f(x) = (f1(x), f2(x)) where x ∈ [0, 1].

3 Multiobjective optimization

This section details how we can find the PF and PS of the multiple-output
BART regression function (2) given some fixed θ. However, we must first
introduce the notion of Pareto dominance, which we use to identify the best
compromises between competing objectives.

Definition 1 (Pareto dominance). The objective point v = (v1, . . . , vd) ∈ Rd

(weakly) dominates the point w = (w1, . . . , wd) ∈ Rd (denoted v � w) if
vj ≤ wj for all j = 1, . . . , d. If at least one of these inequalities is strict, we
say v strictly dominates w (denoted v � w).

We can now precisely define a multiobjective function’s PF and PS: the
PF is the set of all nondominated image points; the PS is the set of all
inputs that produce the PF. For example, consider Figure 1c, which shows
the image of a biobjective function. Any point on the dashed segment is
not dominated by any other image point while any image point on a solid
segment is dominated by at least one other image point. Thus, the PF is the
dashed segment in Figure 1c and the PS is the interval [0.25, 0.75] in Figures
1a and 1b.

We find the PF and PS of (2) using the two-step algorithm:

1. (Section 3.1) Find the image E(X ;θ) and corresponding input hyper-
rectangles.

2. (Section 3.2) Find all nondominated points in the image E(X ;θ).
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Step 2 produces the desired PF. The desired PS is the union of all input
hyperrectangles (found in Step 1) that yields a point in the PF.

3.1 Finding the image of a multiple-output BART func-
tion

The following example will make it clear that (2) has a finite image. We can
find these image points and their corresponding input hyperrectangles using
the parameter values θ.
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Figure 2: A biobjective function E(·;θ) = (E(·; θ1), E(·; θ2)) with tree ensem-
bles (top row) with parameters θ1 (left) and θ2 (right). Bottom left: input
space partitioned into 10 rectangles. Bottom right: output space with all 10
image points of E(·;θ).
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Example 1. Here, we find the image of the biobjective function E(·;θ)
shown in Figure 2, where X = [0, 1]2. Any input belongs to one leaf node per
tree; these dm = 4 leaf nodes correspond to an image point. For example,
the input x∗ = (0.1, 0.07) belongs to the four dash-bordered leaf nodes,
which correspond to the image point E(x∗;θ) = (−5,−4) shown as a dashed
triangle. Conversely, this image point corresponds to the hatch-filled input
rectangle, which is the set of all inputs that belong to all four dash-bordered
leaf nodes.

Of the (3× 2)(3× 2) = 36 possible one-leaf-node-per-tree combinations,
only 10 are valid and produce an image point. For an example of an invalid
combination, an input point cannot belong to both the right and left leaf
nodes of, respectively, the first and second ensemble’s right tree; the condi-
tions x1 ≥ 0.6 and x1 < 0.5 cannot be simultaneously satisfied. With only
10 valid combinations, the function E(·;θ) has only 10 image points (shown
in the bottom right plot of Figure 2).

Between the two ensembles, the six split rules together partition the input
space such that the resulting set of partitioning rectangles (shown in the
bottom left plot of Figure 2) is bijective to the set of valid one-leaf-node-per-
tree combinations, which is itself bijective to the image of E(·;θ). Thus, the
function E(·;θ) can be written as a linear combination of indicator functions
each corresponding to a partitioning rectangle. �

Theorem 1 describes a similar result but for any d-output BART func-
tion E(·;θ): if we obtain every possible one-leaf-node-per-tree combination,
we can find the image and corresponding input (hyper)rectangles of the d-
objective function. The proof of Theorem 1 (see Supplement) provides more
insight into how these two tasks can be achieved.

Theorem 1. Any d-output BART function in the form of (2) can be written
as a linear combination of indicator functions of hyperrectangles:

E(·;θ) =
∑
q∈BE

αqIRq(·),

where the set BE indexes the valid one-leaf-node-per-tree combinations in θ,
each αq ∈ Rd is an image point of E(·;θ), and the set of hyperrectangles
{Rq}q∈BE partitions X .
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3.2 Finding the PF and PS of multiple-output BART
function

After finding the image of a d−output BART function E(·;θ), we find its
set of nondominated points using an efficient recursive algorithm from Kung
et al. (1975). For simplicity, we describe (in the Supplement) only one of
these algorithms, which finds the nondominated points in a finite set V of
d−dimensional vectors. In our setting, the set V is the image of E(·;θ). Kung
et al. (1975) shows that the algorithm’s time complexity has an upper bound
of O(|V |(log2 |V |)d−2) if d > 3. This algorithm is still valid if d ∈ {2, 3}, but
this upper bound no longer applies in these cases.

The desired PS is the union of all input hyperrectangles corresponding to
the nondominated image points. For the example in Figure 2, the PF is the
dashed triangle image point while the PS is the hatched input rectangle.

4 Uncertainty quantification

We can quantify the uncertainty of PF estimates induced by a fitted multiple-
output BART model by making N independent draws from the posterior,
creating for each draw the resulting BART regression function as defined in
(2), and finding each conditional PF (CPF) as described in Section 3. This
section details two UQ approaches using the sample of N CPFs, which we
denote as c(1), . . . , c(N). Both approaches use dominated point set closures
(DPSCs): for i = 1, . . . , N , define the DPSC A(i) of a CPF c(i) to be the
closure of the set of points dominated by at least one point in c(i). That
is, A(i) := {y′ ∈ Y | y′ � y for at least one y ∈ c(i)}, where Y ⊂ Rd is the
smallest compact hyperrectangle that contains every objective point in the
training set D . Figure 3 shows examples of DPSCs.

4.1 Random-sets approach

da Fonseca and Fonseca (2010) treat each DPSC as a realization of an
attained set – a random closed set whose probability distribution is char-
acterized by its attainment function.

Definition 2 (Attained set and attainment function). The DPSC of a ran-
dom PF is the set attained by the random PF. The attainment function
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Figure 3: Example of 2 CPFs (triangles and squares) and the corresponding
DPSCs (areas with hatched lines) in objective space Y = [0, 1]2.

αA : Y → [0, 1] of an attained set A is defined as αA(y) := P(y ∈ A) for
every point y ∈ Y.

Example 2. Consider Figure 3 and let A� (AN) be the DPSC created from
the square (triangle) points. Define an attained set A to be A� with proba-
bility 0.1 and AN otherwise. The attainment function αA of A is then

αA(y) =

{
0, y /∈ A� ∪ AN0.1, y ∈ A� \ AN0.9, y ∈ AN \ A�1, y ∈ A� ∩ AN

which we can interpret as the probability of y being in the random set A. �

4.1.1 PF and PS estimation

If an attained set A has uncountably many possible set realizations, its at-
tainment function may be difficult to formulate. We may instead estimate
the attainment function using an empirical version, which takes on values in
the set {0, 1

N
, 2
N
, . . . , N−1

N
, 1}.

Definition 3 (Empirical Attainment Function). Let A(1), A(2), . . . , A(N) be
realizations of the attained set A on Y. The empirical attainment function
α̂N : Y → [0, 1] is defined to be the fraction of attained set realizations that
contain its argument: α̂N(·) := 1

N

∑N
i=1 IA(i)(·).
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With the empirical attainment function, we can quantify the uncertainty
of the CPFs using an αRS% (where 0 < αRS < 1) PF UQ point cloud,
which we define to be the set of all CPF points y such that α̂N(y) ∈
(0.5− αRS/2, 0.5 + αRS/2). That is, this UQ point cloud is the set of CPF
points dominated by some proportion of CPFs, where this proportion is be-
tween (0.5− αRS/2, 0.5 + αRS/2). Obtaining this point cloud requires eval-
uating the function α̂N(·) at every CPF point, which means checking the
condition “y ∈ A(i)” for all CPF points y and all i = 1, . . . , N . A single
“y ∈ A(i)” check assesses y’s dominance relationship with possibly every
point in the CPF c(i) and thus takes O(d|c(i)|) time. Checking “y ∈ A(i)” for
all CPF points y and all i = 1, . . . , N then takes O

(
d(
∑N

i=1 |c(i)|)2
)

time.
Regarding PS estimation, recall from Theorem 1 that each image point of

a d−output BART function E(·;θ) corresponds to a partitioning hyperrect-
angle. Hence, the PS of E(·;θ) corresponds to a collection of hyperrectangles.
This paper thus quantifies the uncertainty of conditional PSs to be the union
of the hyperrectangles corresponding to the points in the PF UQ point cloud:
P̂X :=

⋃
y∈P̂F

E−1(y;θ), where P̂F is a PF UQ point cloud and E−1(y;θ)
is the hyperrectangle corresponding to the objective point y.

4.2 Band depth approach

A second approach to quantify the variability of CPFs c(1), c(2), . . . , c(N) (with
associated DPSCs A(1), A(2), . . . , A(N)) is to order them using a graph-based
notion of depth. The idea is to measure the centrality of a curve with respect
to either a set of curves or a population distribution. A sample of curves
can then be ordered from the center outward, where the “deepest” curve
would be the “median” curve. López-Pintado and Romo (2009) introduce
the concept of band depth for univariate functions. Whitaker et al. (2013)
generalize this band depth definition to operate on sets, which we use to
order c(1), c(2), . . . , c(N). We say that a CPF c(i) lies in the band delimited by

two CPFs c(j) and c(k) if and only if
[
A(j) ∩A(k)

]
⊆ A(i) ⊆

[
A(j) ∪A(k)

]
. We

denote this relationship by c(i) ⊆∗ B(c(j), c(k)). Figure 4 shows an example of
a band delimited by two CPFs. We now define the band depth of c(i) to be
the proportion of bands delimited by two of the N CPFs containing c(i) in
the ⊆∗ sense. That is, given CPFs c(1), c(2), . . . , c(N), the band depth of CPF

c(i) is BDN(c(i)) =
(
N
2

)−1∑N−1
j=1

∑N
k=j+1 I

(
c(i) ⊆∗ B(c(j), c(k))

)
.
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Figure 4: The lower-left boundaries of N = 101 DPSCs. Left: faint gray
curves correspond to the N CPFs. Right: thick black curve corresponds to
the deepest CPF. Thick gray curves correspond to the 50% deepest CPFs
corresponding to αMBD = 0.5.

4.2.1 Modified band depth

Whitaker et al. (2013) note that if N is small and the CPFs strongly vary
in shape, this band depth definition can produce many zero-depth CPFs.
To circumvent this issue for one-dimensional functions, López-Pintado and
Romo (2009) define a modified band depth that measures the proportion of a
function’s graph that is in the band. Sun et al. (2012) introduce an efficient
algorithm to compute this modified band depth. We extend this efficient
algorithm to compute modified band depth for d−dimensional CPFs, where
d ≥ 2.

Example 3. We motivate our algorithm through an illustrative example in
which we compute the depth of an arbitrary CPF, denoted as c(∗), among the
N = 101 CPFs in Figure 4, where we assume Y = [0, 1]2. First, we define and
compute c(∗)’s depth at the vertical dotted line y1 = 0.8, which we denote
as d(∗)|y1=0.8. Let A(∗)|y1=0.8 = min{y2 ∈ [0, 1] : (0.8, y2) ∈ A(∗)} be the
minimum y2 value of the lower-left boundary of DPSC A(∗) that intersects
the vertical line y1 = 0.8. Analogous to the ⊆∗ relation, a pair of CPFs
c(j) and c(k) is said to contain CPF c(∗) at the line y1 = 0.8 if and only if
A(∗)|y1=0.8 is in the closed interval [A(j)|y1=0.8, A

(k)|y1=0.8]. Then d(∗)|y1=0.8 is
defined to be the fraction of pairs of the N CPFs that contain c(∗), where the
number of CPF pairs that contain c(∗) is |{i : A(i)|y1=0.8 ≤ A(∗)|y1=0.8}|× |{i :
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A(i)|y1=0.8 ≥ A(∗)|y1=0.8}| − 1 (we subtract one to avoid counting the band
delimited by c(∗) with itself). Note that |{i : A(i)|y1=0.8 ≤ A(∗)|y1=0.8}| is
simply the rank of A(∗)|y1=0.8 among {A(i)|y1=0.8 : i = 1, . . . , N} and is also
equal to N − |{i : A(i)|y1=0.8 ≥ A(∗)|y1=0.8}|+ 1.

We may repeat the process above for any vertical line, e.g. y1 = s, to
obtain the depth d(∗)|y1=s of CPF c(∗) at y1 = s. Similarly, we may easily
alter the process above to obtain depth d(∗)|y2=t of c(∗) at any horizontal
line, e.g. y2 = t. If we create a dense uniform grid of q lines for each
output dimension and find the depth of c(∗) at each of the 2q lines, we can
approximate the “overall” depth of c(∗) by the sample mean of these 2q
depths: 0.5q−1

∑q
j=1 d

(∗)|y1=tj +0.5q−1
∑q

j=1 d
(∗)|y2=tj , where tj := (j−1)/(q−

1). �

Following a process similar to Example 3, Section B.2 of the Supplement
provides an explicit algorithm to find the depth of all N CPFs when d = 2.
Step 1 creates the 2q lines while Step 2 finds the y2 and y1 intersection values
for all N CPFs. At each line, Step 3 ranks the CPFs while Step 4 computes
for each CPF the number of pairs of CPFs that contain it. Step 5 then
calculates the depth of each CPF. Section B.3 of the Supplement extends
this d = 2 process to any d ≥ 2, which has a runtime of O(dqd−1N logN).

4.2.2 PF and PS estimation

Our αMBD% PF UQ point cloud for the depth approach is the union of the
αMBD deepest CPFs, where 0 < αMBD < 1. Our PS UQ region is then the
union of the hyperrectangles corresponding to the points in the PF UQ point
cloud.

4.3 Comparing time complexity

To compare the runtime of the two approaches for any d ≥ 2, we first express
the random-sets runtime as O(dN2n̄2), where n̄ := N−1

∑N
i=1 |c(i)| is the

mean number of points in each CPF. Inference can be controlled by varying
either the number of posterior draws (N) or the training size (n). If we
fix N and increase n (and hence also n̄), the random-sets runtime grows
quadratically in n̄, but we would also want to grow q proportionally to n̄ in
order to faithfully capture the ranks of the increasingly refined CPFs, which
would affect the depth runtime via qd−1. Hence, the comparison between the
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two runtimes depends on d. In practice, however, the training size is fixed
(which also roughly fixes n̄). As N increases, the depth runtime grows more
slowly than does the random-sets runtime (N logN vs N2), which makes the
depth approach the more computationally tractable option in this case.

5 Simulation study

Simulation settings. We generate data from one of four test functions:
MOP2 (Fonseca and Fleming, 1995), ZDT3 (Zitzler et al., 2000), DTLZ2
(Deb et al., 2005), and ZLT1 (Laumanns, 2005), which for brevity are defined
in the Supplement. Figure 5 shows the MOP2 function (p = d = 2) to be
the simplest of the four. ZDT3 (p = d = 2) has a disconnected PF and PS.
DTLZ2’s (p = 4 and d = 2) PF and PS (not shown) are similar to MOP2’s.
ZLT1’s (p = d = 3) PF is a convex 2-dimensional surface while its PS is the
2-dimensional probability simplex {(x1, x2, x3) ∈ [0, 1]3 : x1 + x2 + x3 = 1}.
Though the methodology in Sections 3.2 and 4 is invariant to shifts and scales
of inputs or outputs, our performance metrics in Section 5.1 are not. Thus,
we shift and scale the input space to be X = [0, 1]p and each objective to
have range [0, 1].

Given data from (1) and f(·)’s PF and PS, this section explores how
sample size and measurement error magnitude affect the accuracy of:

Q.1 BART’s PF point clouds and GP’s PF approximate point clouds.

Q.2 BART’s PS point clouds.

Q.3 Depth approach and random sets approach to uncertainty quantifica-
tion.

For each test function f(·), we explore the six possible combinations of the
following parameter settings: noise-variance multiplier ζ ∈ {0.0, 0.1, 0.25}
and training size n ∈ {32p, 64p}. Given any (f(·), n, ζ) combination, we
can create a data set D := {(y(xi),xi)}ni=1 by simulating y(xi) from (1) at
each design point xi of an n−point maximin LHS on [0, 1]p (from Edwin
van Dam et al., 2015), where σ2

j = ζVar(fj(X)) for all j = 1, . . . , d and

X = (X1, . . . , Xp) with each Xi
iid∼ U(0, 1). For each (f(·), n, ζ) combination,

we generate either 100 such data sets D := {(y(xi),xi)}ni=1 if f(·) is one of
the three d = 2 functions, or 50 such data sets if f(·) is ZLT1. To each
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Figure 5: The first row (MOP2) and second row (ZDT3) show, from left
to right, the respective function’s f1 contour, f2 contour, PS, and PF. For
these plots, darker contour lines indicate lower objective values. The third
row shows the PF of DTLZ2 (left) and ZLT1 (right), where darker values
indicate lower y2 values.

data set, we fit two models: a multiple-output BART model and a multiple-
output GP model produced by fitting an independent single-output GP to
each marginal data set Dj for j = 1, . . . , d. For each model our BTE (burn-
in B steps, terminate after T steps, sample every E steps) is (300, 800, 1),
resulting in 500 posterior draws per generated data set. To summarize, we
fit a multiple-output BART model and a multiple-output GP model to each
of the 2, 100 data sets, obtain 500 posterior draws from each of the 4, 200
models, find or approximate the image at each posterior draw, find the CPF
of each image, compute the depth and empirical attainment function value
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for each CPF to produce PF (and PS if using a BART model) UQ point
clouds, and compute performance metrics (defined in Section 5.1) for each
point cloud. Running the simulation study pipeline for ZLT1 (where d = 3)
for 50 data sets took roughly 6 days with 32 cores (approximately 8.3 hours
per BART model run). However, we note the much shorter runtime for the
engineering application in Section 6, where d = 2.

We use the OpenBT implementation of BART (Pratola, 2021) with de-
fault parameter settings unless otherwise stated in Section 2. For the GP
method, we use the km and simulate functions of Roustant et al. (2012)’s
DiceKriging package with error variance set to the scenario’s noise variance.
Because noise variance is not known in most applications, the GP fits can be
seen as idealized. For UQ, we use αRS = 0.25 and αMBD = 0.5.

5.1 Performance metrics

undercoverage overcoverage biased coverage good coverage

y1

y2

y1

y2

y1

y2

y1

y2

small d1, large d2 large d1, small d2 large d1, large d2 small d1, small d2

Table 1: Each plot shows a different PF point cloud (black triangles) that
attempts to capture the same, disconnected target set (gray lines). Of the
four point clouds, the one in the fourth panel is the only one that adequately
captures target set. Qualitative values of d1 and d2 for each point cloud are
provided.

This section defines two performance metrics that jointly quantify how
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well a point cloud P̂ (either P̂F or P̂X ) estimates its target set P (either PF
or PX ):

d1 := d(P̂ ,P) and d2 := d(P , P̂)

where d(A,B) := |A|−1
∑

a∈A(minb∈B ‖a− b‖2) is the average distance from
points in a finite point set A to a set B (Dubuisson and Jain, 1994). These
two metrics are analogous to the Type I / Type II error of a hypothesis
test: a point cloud with many points far from the target set (similar to false
negatives) will have a large d1 value while a point cloud far away from many
points in the target set (similar to false positives) will have a large d2 value.
That is, the metrics d1 and d2 measure the degree to which a point cloud
exhibits these two undesirable behaviors. As examples, the point clouds in
the first and third panels of Table 1 have large d1 values while the point
clouds in the second and third panels have large d2 values. Conversely, a
point cloud with small d1 and d2 values, e.g. in the fourth panel, indicates it
is a high-performing estimate of the target set.

Our metric d1 is equivalent to the function M1 in Zitzler et al. (2000),
which is one of 63 performance indicators in the MO literature reviewed by
Audet et al. (2020). Though many of these indicators penalize only one of the
two mentioned undesirable behaviors, some more recent indicators penalize
both behaviors with a single metric to be used in a sequential MO design.
This paper, however, focuses on characterizing the performance of estimates
of PF and PX . Hence, we penalize these two behaviors separately to see how
a point cloud might underperform.

5.2 Simulation results

Figure 6 displays bagplots of the 100 values of d(P̂F ,PF) and d(PF , P̂F) for
each n = 64p simulation scenario (PS plots and similar n = 32p scenario
results can be found in the Supplement). A bagplot extends the common
boxplot for two-dimensional outputs and contains three main features anal-
ogous to the common univariate median, the box, and the whiskers on a
conventional boxplot (Rousseeuw et al., 1999). For visual clarity, we include
only two of these features: the depth median, which is the point with the
highest possible halfspace depth, and the “bag”, which is a polygon that
encloses 50% of the points around the depth median.

As another point of comparison, we also plot in Figure 6 the median un-
dercoverage and overcoverage of 100 sets of 10 points randomly selected from
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Figure 6: Bagplots of the 100 values of d(P̂F ,PF) and d(PF , P̂F). Each plot
represents a n = 64p simulation scenario where the variance multiplier is a
value in {0, 0.1, 0.25}. Bags with solid (dashed) outline and median labeled
‘d’ (‘r’) display depth (random sets) approach. Black (gray) bags display
BART (GP) model.
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the underlying function’s PF and perturbed according to the scenario’s noise
level. These medians are the points labeled ‘m’. Each set of 10 randomly
selected points from PF provides a sense of the undercoverage and overcov-
erage one can expect from a “well-fitting” statistical model that produces a
10-point CPF. The subsequent perturbation accounts for the quality of the
data that a statistical model is trained on. We do not perform this compari-
son for the PS figures for lack of a natural mapping of observation noise level
to input noise level.

To address Q.1, we make several observations in Figure 6. We first com-
pare the difficulty of MO between the three d = 2 functions. The ZDT3 PF
point clouds tend to produce higher overcoverage than either the MOP2 or
DTLZ2 PF point clouds, which can be explained by ZDT3’s disconnected
PF. The PF point cloud undercoverage is roughly the same between the
three d = 2 functions. The ZLT1 PF point cloud (Supplement, Figures 5a),
however, produces much more undercoverage than those of the other three
functions, presumably because 2-dimensional surfaces (e.g. ZLT1’s PF) are
usually more difficult to cover than 1-dimensional sets (e.g. the other three
PFs). However, the PS point clouds (Supplement, Figures 2b, 3b, 4b, and
5b) perform differently between the three d = 2 functions. When d = 2, the
DTLZ2 PS point clouds have the most undercoverage, which may be due to
a larger input dimension (p = 4). These point clouds also have the most
overcoverage (when d = 2), but the overcoverage difference between DTLZ2
and ZDT3 is roughly the same as the overcoverage difference between ZDT3
and MOP2, which again can be explained by ZDT3’s PS being disconnected
and on the boundary of the input space. Similar to the PF regime, the ZLT1
PS point cloud produces much more undercoverage than those of the other
three functions, which again may be explained by ZLT1’s 2−dimensional PS.
Surprisingly, the ZLT1 PS point clouds have fairly low overcoverage, which
suggests we could increase αMBD and αRS to improve undercoverage. From
these observations, we conclude that among the d = 2 functions, ZDT3 has
the most difficult PF to capture while DTLZ2 has the most difficult PS to
capture, but the increased dimensionality of ZLT1’s PF and PS makes point
cloud prone to have large undercoverage.

We also compare performance between BART and (idealized) GP. In the
MOP2 PF results, the no-noise scenario shows an overcoverage/undercoverage
tradeoff between BART and GP while the two noisy n = 128 scenarios show
GP outperforming BART in both metrics. The DTLZ2 PF results show
roughly equal performance between BART and GP. The ZDT3 PF results
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show BART’s performance improving relative to GP’s performance as noise
increases, which suggests that the fitted stationary GP models struggle with
ZDT3’s irregular oscillations in its image. These observations imply that
BART performs possibly worse than idealized GP (which presumably per-
forms better than a fitted GP when noise is not known) in “simpler” scenarios
but better adapts to “complex” behaviors in the underlying data-generating
function. We conclude that when the underlying function and noise level are
not known, BART may be a safer bet than the GP.

To address Q.2, we refer to Figures 2b, 3b, 4b, and 5b in the Supplement.
For each d = 2 test function, the depth approach tends to produce similar
overcoverage and undercoverage as the random sets approach. Overcoverage
tends to be larger than undercoverage for each function and each approach,
which suggests αMBD and αRS could be lowered to produce point clouds with
less overcoverage and minimally more undercoverage. For ZLT1, the differ-
ence between the two approaches is slightly more pronounced. When n = 96,
there seems to be a tradeoff between overcoverage and undercoverage, but
when n = 192, the depth approach seems to have slightly less undercoverage
and roughly equal overcoverage as the random sets approach. Interestingly,
undercoverage of ZLT1’s PS point clouds remains large and does not decrease
with larger sample size, which suggests there is a region of the PS that the
point clouds consistently fail to cover.

To address Q.3, we now compare the depth approach to the random
sets approach. We first look at BART’s PF point clouds. For the MOP2
and ZLT1 functions, the depth approach tends to produce more overcover-
age and less undercoverage than the random sets approach. For ZDT3, the
depth approach tends to produce less overcoverage and undercoverage than
the random sets approach. For DTLZ2, the depth approach tends to produce
less overcoverage and undercoverage than the random sets approach when the
observations are not noisy, but more overcoverage when noise is present. In
all of these BART PF observations, the depth approach either outperforms
or produces an overcoverage/undercoverage tradeoff with the random sets
approach. That is, in no BART PF scenario does the random sets approach
outperform the depth approach, which suggests the depth approach pro-
duces either as good or better PF point clouds than does the random sets
approach. For GP, the depth approach tends to produce less overcoverage
and less undercoverage than the random sets approach for all three d = 2
test functions, which suggests the depth approach produces overall better
GP-based PF point clouds than does the random sets approach. From these
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observations and from the depth approach’s runtime advantage as discussed
in Section 4.3, we conclude that the depth approach should be used over the
random sets approach if using either BART or GP.

6 Engineering application

Consider the single cut turning cost operation from Trautmann and Mehnen
(2009) (TM), who consider the MO problem of simultaneously minimizing
the machining and tool costs, Cm : X → R and Ct : X → R, respectively, for
an industrial engineering application where

Cm(νc, fr) = b1ν
−1
c f−1r and Ct(νc, fr) = b2ν

2
c f

3
r (3)

with constants b1 ≈ 12, 354 £ mm2 min−1 and b2 ≈ 0.0284 £ mm−5 min2.
Each cost has two input variables: cutting speed νc with typical values be-
tween 10 and 400 mm/min, and the feed fr with typical values between 0.04
and 1 mm. Thus, we use the input space X = [10, 400]× [0.04, 1].

Figure 7: Left: image (gray) and PF (black) of the single cut turning cost
operation biobjective function. Middle: the left plot zoomed into the lower-
left region. Right: input space (gray) and PS (black).

As shown in the left and middle plots of Figure 7, no image point is
far from the PF. Thus, it is “easy” to estimate the PF. However, this same
property in the output space makes PS estimation very difficult, as any input
will map to an image point close to or on the PF. Because many input points
are far from the PS (shown in the right plot of Figure 7), PS estimates will
tend to have large uncertainty.

TM perform PF estimation but not UQ or PS estimation, which hides
the aforementioned large uncertainty in PS estimates. In contrast, we apply
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(a) n = 15300 PF
UQ.

(b) n = 15300 PS
UQ.

(c) n = 1500 PF
UQ.

(d) n = 1500 PS
UQ.

Figure 8: 50% UQ point clouds for the PF and PS.

our BART-based methodology (with BTE (300, 2300, 1)) to perform PF/PS
estimation and UQ on two training data sets generated from (1), where σ2 =
0 and (3) takes the role of f(·). We generate noiseless data, but approach the
problem as if we do not a priori know the level of noise in the observations.
Due to sharp peaks in Cm and Ct in the generated data, we fit our two BART
models to logCm and logCt. We then transform the BART predictions back
to Cm and Ct before performing PF/PS estimation and UQ. For UQ, we use
only the depth approach per our simulation study conclusions in Section 5.2.
The runtime of this analysis for n = 15300 was 2 minutes and 45 seconds
with 32 cores.

Figure 8 shows the 50% PF and PS point clouds for two training sizes:
n = 15300 to match the number of function evaluations made by TM, and
n = 1500 to consider the case of an expensive simulator. The dark PF points
correspond to the dark PS regions and indicate relatively low Cm and Ct

values. As explained in the previous paragraph, both PS point clouds (Figs.
8b and 8d) show large uncertainty. On the other hand, the two PF point
clouds (Figs. 8a and 8c) indicate small uncertainty and differ only slightly
from each other, which implies only a minor loss in PF inference even with
a training size reduction of 90%. Hence, a practitioner can pick an input
setting to achieve relatively low Cm and Ct values even with n = 1500.

If such a single cut turning cost operation is embedded in a continu-
ously monitored and adapting manufacturing system, it makes sense to allow
cutting speed to be continuously manipulated by automated systems using
relevant manufacturing information obtained in real-time. For example, a
sudden jump in the price of raw materials might increase the impact of cut-
ting speed on tool wear cost and hence change the nature of the PF. Our
methodology provides an automated approach to understanding which input
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settings will result in low-cost outcomes.

7 Summary and Discussion

Using the fact that BART produces a set of hyperrectangles which partition
the input domain (Theorem 1), this paper describes the details of using
BART for performing multiobjective optimization, provides an algorithm to
find the PF and PS of the multiple outputs and inputs, and compares two
different approaches of UQ for the PF and PS. A “random-sets” approach
and a newly proposed “depth” approach are used to quantify the uncertainty
of BART-generated and GP-generated PF and PS estimates. The depth
approach performs similarly or better than the random sets approach (while
being computationally advantageous). When the underlying function and
noise level is unknown, UQ based on BART-based MO optimization may be
superior to GP-based MO optimization. We also note that BART can readily
handle categorical inputs, which are often a challenge in GP models. Finally,
we demonstrated our BART-based PF and PS estimation to data generated
from an engineering application.

This paper suggests several topics for additional research. First, our
UQ comparisons used αMBD = 0.50 and αRS = 0.25, but we could lower
these values to decrease the expected overcoverage and increase the expected
undercoverage (or raise these α values to increase expected overcoverage and
decrease expected undercoverage). Indeed, the empirical results in this paper
suggest using lower values than our α choices but it is unknown what αMBD

and αRS values will produce desirable overcoverage/undercoverage values in
general.

Second, this paper used one-stage maximin LHDs. Presumably, BART’s
PF and PS estimates could be improved using alternative input designs. For
example, Chipman et al. (2012) performed sequential design using single-
output BART prediction, but additional design research is required for multiple-
output BART.

Third, this paper assumes an independent correlation structure in the
distribution of εi in (1). Introducing dependence would require a modeling
approach that cannot be accomplished via independent BART model fits.
To date, no such approach exists.

The implementation for finding the PF and PS of a two-output or three-
output BART model can be found in the Open Bayesian Trees (OpenBT)
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project at https://bitbucket.org/mpratola/openbt/.
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SUPPLEMENTARY MATERIAL

Proof, Algorithms, Function definitions, Additional simulation results
Proof of Theorem 1. Pseudocode for Kung et al. (1975)’s algorithm to
find the PF of a set of d−dimensional vectors as described in Section
3.2. Description of the algorithm to compute modified band depth as
described in Section 4.2.1. Definitions of the test functions introduced
in Section 5. ZLT1 simulation study plots, PS plots, and n = 32p
scenario results as described in Section 5. (pdf file)

R code for Section 6: R code for Section 6. (zip file)
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López-Pintado, S. and J. Romo (2009). On the concept of depth for functional
data. Journal of the American Statistical Association 104(486), 718–734.

Pratola, M. T. (2021). Open Bayesian trees. https://bitbucket.org/

mpratola/openbt/. Accessed: 2021-07-14.

26

https://bitbucket.org/mpratola/openbt/
https://bitbucket.org/mpratola/openbt/


Pratola, M. T., H. A. Chipman, J. R. Gattiker, D. M. Higdon, R. McCulloch,
and W. N. Rust (2014). Parallel bayesian additive regression trees. Journal
of Computational and Graphical Statistics 23, 830–852.

Rousseeuw, P. J., I. Ruts, and J. W. Tukey (1999). The bagplot: a bivariate
boxplot. The American Statistician 53(4), 382–387.

Roustant, O., D. Ginsbourger, and Y. Deville (2012). DiceKriging, DiceOp-
tim: Two R packages for the analysis of computer experiments by
kriging-based metamodeling and optimization. Journal of Statistical
Software 51(1), 1–55.

Shukla, A. K., R. Nath, P. K. Muhuri, and Q. D. Lohani (2020). Energy
efficient multi-objective scheduling of tasks with interval type-2 fuzzy tim-
ing constraints in an industry 4.0 ecosystem. Engineering Applications of
Artificial Intelligence 87, 103257.

Sun, Y., M. G. Genton, and D. W. Nychka (2012). Exact fast computation
of band depth for large functional datasets: How quickly can one million
curves be ranked? Stat 1(1), 68–74.

Svenson, J. (2011). Computer experiments: Multiobjective optimization and
sensitivity analysis. Ph. D. thesis, The Ohio State University.

Trautmann, H. and J. Mehnen (2009). Preference-based pareto optimization
in certain and noisy environments. Engineering Optimization 41(1), 23–38.

Whitaker, R. T., M. Mirzargar, and R. M. Kirby (2013, Dec). Contour
boxplots: A method for characterizing uncertainty in feature sets from
simulation ensembles. IEEE Transactions on Visualization and Computer
Graphics 19(12), 2713–2722.

Xie, Z., C. Zhang, X. Shao, W. Lin, and H. Zhu (2014). An effective hybrid
teaching–learning-based optimization algorithm for permutation flow shop
scheduling problem. Advances in Engineering Software 77, 35–47.

Zitzler, E., K. Deb, and L. Thiele (2000). Comparison of multiobjective evo-
lutionary algorithms: Empirical results. Evolutionary computation 8(2),
173–195.

27


	1 Introduction
	2 BART
	2.1 Multiple-output BART
	2.2 Prior specification

	3 Multiobjective optimization
	3.1 Finding the image of a multiple-output BART function
	3.2 Finding the PF and PS of multiple-output BART function

	4 Uncertainty quantification
	4.1 Random-sets approach
	4.1.1 PF and PS estimation

	4.2 Band depth approach
	4.2.1 Modified band depth
	4.2.2 PF and PS estimation

	4.3 Comparing time complexity

	5 Simulation study
	5.1 Performance metrics
	5.2 Simulation results

	6 Engineering application
	7 Summary and Discussion

